Introduction to Cosmology

Luigi Pilo
Dept. Physical and Chemical Sciences

University of L'Aquila

Outline

Isotropic and Homogeneous Universe GR in a Nutshell
FLRW metric and light propagation
Distances in Cosmology
Dynamics for FRW metric
Brief History of the Universe
Horizons
Problems of Standard Cosmological model Jeans Instability
S. Weinberg, Cosmology. Cambridge
E.W. Kolb, M.S. Turner; The Early Universe. Frontiers in Physics
V. Mukhanov; Physical Foundations of Cosmology. Cambridge
P. Patrick, J.-P. Uzan; Primordial Cosmology. Oxoford
D.S. Gorbunov, V.A. Rubakov; Intr. to the Theory of the Early Universe Vol.

1-2. World Scientific

Scales

Length parsec $(p c)=3.3$ light year $=3.1 \times 10^{18} \mathrm{~cm}$

$$
=2.1 \times 10^{5} \text { a.u. }
$$

I a.u. $=$ Earth Sun distance $\sim 3.1 \times 10^{24} \mathrm{~cm}$

$$
\text { Pluto ~ } 100 \text { a.u. }
$$

Nearest star (Proxima Centauri) ~ 1.2 pc center of Milky way $\sim 8 \mathrm{kpc}$
Diameter of the Milky way ~ 30 kpc
nearest galaxy (Sagitarius dwarf in local group) ~ 30 kpc nearest galaxy spiral (M3I) ~ 800 kpc size of the local cluster $\sim 3 \mathrm{Mpc}$
distance from the nearest cluster (Virgo) ~ 15 Mpc homogeneity scale ~ 100 Mpc
Hubble scale $=c / H_{0} \sim 4.2 \mathrm{Gpc}$

Observations (for instance Sloan Digital Sky Survey) tell us that there is a reference frame where Universe at scales ~ 100 Mpc appears

- homogeneous and Isotropic

Atlas of the Universe

At scales <<100 Mpc many structures can be distinguished
Filaments, Voids, Superclusters, Clusters, Galaxies ...

Hierarchical Approach:

Study first the Universe at large scales (> 100 Mpc) deviation from homogeneity are small perturbations (up to scales . 5 Mpc)
at smaller scales nonlinear methods are required

Small deviation from primordial homogeneities are amplified by gravitational instability: gravitational instability is efficient when the Universe is non relativistic (matter dominated)

GR in a Nutshell

Cosmology needs gravity
GR: Dynamics of spacetime
Dynamical variable: the metric field $g_{\mu \nu}$

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

"Matters (EMT) tells spacetime (metric) how to curve" (Wheeler)

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=T_{\mu \nu}
$$

Curvature $=\left[\mathrm{L}^{-2}\right] \sim \partial\left(g^{-1} \partial g\right)+\left(g^{-1} \partial g\right)\left(g^{-1} \partial g\right)$

Minkowski metric: flat space used in particle physics

$$
\begin{aligned}
d s^{2} & =\eta_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2} \\
& =-d t^{2}+d r^{2}+r^{2}\left(d \theta^{2}+\sin \theta^{2} d \varphi^{2}\right)
\end{aligned}
$$

In flat space free particles follows straight lines

$$
u^{\nu} \partial_{\nu} u^{\mu}=0 \quad u^{\mu}=\frac{d x^{\mu}}{d \tau}
$$

$u^{\mu} u^{\nu} \eta_{\mu \nu}=-1$ massive particles $\quad \mathrm{u}^{\mu} \mathrm{u}^{\nu} \eta_{\mu \nu}=0$ massless particles
In curved space free particles follows geodesics

$$
\begin{array}{cc}
\qquad u^{\nu} \nabla_{\nu} u^{\mu}=0 & u^{\mu} u^{\nu} g_{\mu \nu}=-1 \quad u^{\mu}=\frac{d x^{\mu}}{d \tau} \\
\nabla_{\nu} u^{\mu}=\partial_{\nu} u^{\mu}+\Gamma_{\nu \alpha}^{\mu} u^{\alpha} & \Gamma_{\nu \alpha}^{\mu}=\frac{1}{2} g^{\mu \beta}\left(\partial_{\nu} g_{\alpha \beta}+\partial_{\alpha} g_{\nu \beta}-\partial_{\beta} g_{\nu \alpha}\right) \\
\text { for a scalar field: } & \nabla_{\mu} \phi \equiv \partial_{\nu} \phi
\end{array}
$$

Bianchi identities

$$
\nabla^{\nu}\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right)=\nabla^{\nu} G_{\mu \nu}=0 \quad \rightarrow \nabla^{\nu} T_{\mu \nu}=0
$$

The EMT is covariantly conserved

EMT: response of matter action to a metric variation

$$
\delta S_{\mathrm{matter}}=-\frac{1}{2} \int d^{4} x \sqrt{g} T_{\mu \nu} \delta g^{\mu \nu}
$$

Examples

$$
S=\int d^{4} x \sqrt{g}\left[-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-V(\phi)\right]
$$

Scalar field

$$
T_{\mu \nu}=\left[-\frac{1}{2} g^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \phi-V\right] g_{\mu \nu}+\partial_{\mu} \phi \partial_{\nu} \phi
$$

Perfect Fluid

$$
T_{\mu \nu}=p g_{\mu \nu}+(p+\rho) u_{\mu} u_{\nu} \quad u^{2}=u^{\mu} u^{\nu} g_{\mu \nu}=-1
$$

Momentum density measured by an observer with four velocity v^{μ}

$$
-T_{\mu \nu} v^{\nu}
$$

Energy density measured by an observer with four velocity v^{μ}
$T_{\mu \nu} \nu^{\nu} v^{\nu}$

Energy density seen by an observer co-moving with fluid

$$
\rho=T_{\mu \nu} u^{\nu} u^{\nu}
$$

Pressure part leaves in

$$
\begin{gathered}
T_{\mu \nu}=\rho u_{\mu} u_{\nu}+p\left(g_{\mu \nu}+u_{\mu} u_{\nu}\right) \\
\left(g_{\mu \nu}+u_{\mu} u_{\nu}\right) u^{\nu}=0
\end{gathered}
$$ space orthogonal the fluid velocity

Perfect Fluid in flat space

Take a homogeneous configuration (no space dependence)
co-moving coordinates: $\mathbf{u}^{\mu}=(1,0,0,0)$
$\mathrm{T}_{00}=\rho$

$$
\mathrm{T}_{0 \mathrm{i}}=0
$$

$$
\mathrm{T}_{\mathrm{ij}}=\mathrm{p} \delta_{\mathrm{ij}}
$$

Exercises

For the scalar field

- in flat space compute the EMT and check that it is conserved
- do the same in the case the metric is generic
- compute the EMT for a configuration of the form $\phi(t)$ and check that is perfect fluid, find then p and ρ

Friedmann-Lemaitre-Robertson-Walkwer (FLRW)

Observed Homogeneity and Isotropy at any given time t, the hypersurface (3dim.) $\mathrm{t}=$ const. has no preferred direction and is translational invariant $\boldsymbol{\boldsymbol { c }}$ maximally symmetric 3d geometry \Rightarrow 3 d curvature is constant

$$
d s^{2}=-d t^{2}+a(t)^{2} d \Sigma^{2} \quad d \Sigma^{2}=\gamma_{i j} d x^{i} d x^{i}
$$

Observers with 4 -velocity $u^{\mu}=(1,0,0,0)$ sees the Universe homogenous and isotropic

$$
d \Sigma^{2}=\gamma_{i j} d x^{i} d x^{i}=\frac{d r^{2}}{1-\kappa r^{2}}+r^{2}\left[d \theta^{2}+\sin (\theta)^{2} d \varphi^{2}\right]
$$

$\mathrm{k}=0$ flat 3d geometry
$\mathrm{k}=1$ positive curvature
(spatially closed Universe)

Observers with 4 -velocity $u^{\mu}=(1,0,0,0)$ follow geodesics
Exercise: check that at least in the case case $\mathrm{K}=0$
Overwhelming evidence that: our Universe is spatially flat ($\mathrm{K}=0$)

For spatially flat ($\kappa=0$) and open ($\kappa<0$) Universe the spatial volume is infinite For a spatially closed ($\kappa>0$) Universe the spatial volume is finite

The distance $d(t, r)$ between the points: $(t, 0,0,0)$ and ($t, r, 0,0$) is not constant

$$
d(t, r)=\int d s=a(t) \int_{0}^{r} \frac{d x}{\left(1-\kappa x^{2}\right)^{1 / 2}}=a(t) f_{k}(r)
$$

$$
f_{0}(r)=r \quad f_{\kappa>0}(r)=\sin ^{-1}\left(k^{1 / 2} r\right) \quad f_{\kappa<0}(r)=\sinh ^{-1}\left(|k|^{1 / 2} r\right)
$$

Hubble Parameter

$$
\frac{\dot{d}(t, r)}{d(t, r)}=\frac{\dot{a} f_{k}(r)}{a f_{k}(r)}=\frac{\dot{a}}{a}=H(t)
$$

Hubble constant $=\mathrm{H}$ today $=\mathrm{H}_{0}=\mathrm{h} 100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$

$$
h=0.673(\mathrm{I} 2)
$$

$\mathrm{H}>0$ the Universe is expanding

Propagation of light in a FLRW Universe

4-velocity of photon (radial motion) $u^{\mu}=\frac{d x^{\mu}}{d \ell} \quad u^{\mu} u^{\nu} g_{\mu \nu}=u^{2}=0$

$$
\Rightarrow d s^{2}=0=-d t^{2}+a^{2} \frac{d r^{2}}{\left(1-\kappa r^{2}\right)} \Rightarrow \frac{d t}{a}= \pm \frac{d r^{2}}{\left(1-\kappa r^{2}\right)^{1 / 2}}
$$

emission event ($t_{E}, r_{E}, 0,0$) event

 absorption event: now and here ($\mathrm{t} 0,0,0,0$)$$
\int_{t_{E}}^{t_{0}} \frac{d t}{a(t)}=\int_{0}^{r_{E}} \frac{d r}{\left(1-\kappa r^{2}\right)^{1 / 2}} \equiv f_{k}\left(r_{E}\right)
$$

for a second photon traveling in the way

$$
\int_{t_{E}+\delta t_{E}}^{t_{0}+\delta t_{0}} \frac{d t}{a}=f_{k}\left(r_{E}\right) \quad \Rightarrow \quad \int_{t_{E}}^{t_{0}} \frac{d t}{a(t)}=\int_{t_{E}+\delta t_{E}}^{t_{0}+\delta t_{0}} \frac{d t}{a}
$$

$$
\begin{gathered}
\int_{t_{E}}^{t_{E}+\delta t_{e}} \frac{d t}{a(t)}=\int_{t_{0}+\delta t_{0}}^{t_{0}} \frac{d t}{a} \Rightarrow \frac{\delta t_{E}}{a\left(t_{E}\right)}=\frac{\delta t_{0}}{a\left(t_{0}\right)} \\
\frac{\delta t_{E}}{\delta t_{0}}=\frac{a_{E}}{a_{0}} \Rightarrow \frac{\nu_{0}}{\nu_{E}}=\frac{a_{E}}{a_{0}}
\end{gathered}
$$

Expanding universe: $\mathrm{a}_{\mathrm{E}}<\mathrm{a}_{0}$ then $\mathrm{V}_{0}<\mathrm{V}_{\mathrm{E}}$ Cosmological redshift

$$
z=\frac{\nu_{E}-\nu_{0}}{\nu_{0}}=-1+\frac{a_{0}}{a_{E}} \Rightarrow 1+z=\frac{a_{0}}{a_{E}}
$$

Setting t as the emission time $a_{E}=a(t)$ and $a_{0}=1$ we can replace time with redshift $\mathrm{t}(\mathrm{z})$

$$
\frac{d z}{d t}=-(1+z) H
$$

Hubble Law

At small z $\quad a(t)=a_{0}-\left(t_{0}-t\right) \dot{a}_{0}+\cdots=a_{0}\left[1-H_{0}\left(t_{0}-t\right)\right]+\cdots$

$$
\begin{gathered}
(1+z) a(t)=a_{0} \quad \Rightarrow \quad(1+z)\left[1-H_{0}\left(t_{0}-t\right)\right]=1+\cdots \\
z=H_{0}\left(t_{0}-t\right) c^{-1}+\cdots=H_{0} d+\cdots
\end{gathered}
$$

In general galaxies have peculiar velocities due to local gravitational field

$$
v=v_{\text {cosm }}+v_{\text {peculiar }}
$$

To overcome pec. velocities $\sim 100 \mathrm{Km} / \mathrm{s}$ one needs zc >> $100 \mathrm{Km} / \mathrm{s}$

$$
\mathrm{d}=\mathrm{cz} / \mathrm{H}_{0}=\mathrm{h} 3 \times 10^{3} \mathrm{Mpc} \mathrm{z}
$$

known galaxies (Hubble telescope) of
z~|I. 9 |3 bilion years old

Original Hubble Diagram

FLRW Dynamics

Solve Einstein equations with matter represented by a perfect fluid

$$
T_{00}=\rho \quad T_{0 i}=0 \quad T_{i j}=p \gamma_{i j}
$$

EMT conservation $\quad \nabla^{\nu} T_{\mu \nu}=0$ gives (check !!)

$$
\begin{aligned}
& \dot{\rho}+3 H(\rho+p)=\dot{\rho}+3 H(1+w) \rho=0 \quad p=w \rho \\
& \mathbf{p}=\mathbf{w} \boldsymbol{\rho} \text { is called fluid equation of state }
\end{aligned}
$$

EMT conservation \Leftrightarrow Ist principle of thermodynamics

$$
\partial_{t}\left(\rho a^{3}\right)=-p \partial_{t}\left(a^{3}\right) \quad d U=\delta L+d S
$$

EMT conservation can be integrated for w constant

$$
\rho(t)=\frac{\rho_{0}}{a^{3(w+1)}}
$$

$N B: t=t_{0}$ with $a\left(t_{0}\right)=I$
ρ_{0} present density

$$
\begin{array}{ll}
\mathrm{w}=0, \mathrm{p}=0 \text { non-relativistic matter } & \rho=\frac{\rho_{0}}{a^{3}} \\
\mathrm{w}=\mid / 3 \text { relativistic matter } & \rho=\frac{\rho_{0}}{a^{4}} \\
\mathrm{w}=-\mid \text { Cosmological Constant } & \rho=\Lambda
\end{array}
$$

EMT given by

$$
T_{\mu \nu}=-\Lambda g_{\mu \nu} \quad \text { Vacuum energy }
$$

Derived from the action

$$
S=-\int d^{4} x \sqrt{g} \Lambda
$$

NB: $a(t)=R$

$1+z=\frac{1}{R} \rightarrow$ backward

Einstein Equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

Symmetry:

0i components are zero

 ij components give a single eq.$$
\begin{aligned}
& H^{2}+\frac{\kappa}{a^{2}}=\frac{8 \pi G}{3} \rho \\
& 2 \frac{\ddot{a}}{a}+H^{2}+\frac{\kappa}{a^{2}}=-8 \pi G p
\end{aligned}
$$

00
ij

Actually from 00 eq. + EMT conservation one gets ij we can forget about ij eqs.

Newtonian "Derivation"

Take a bunch of particles with homogeneous density ρ the energy of a test particle of mass m at radius r

$$
\begin{aligned}
& E=\frac{m}{2} \dot{r}^{2}-\frac{M m G}{r}=\frac{m}{2} \dot{r}^{2}-\frac{m G}{r} \rho \frac{4 \pi r^{3}}{3} \\
&=\frac{m}{2} \dot{a}^{2} \vec{x}^{2}-\frac{4 \pi G m \rho a^{2} \vec{x}^{2}}{3} \\
& \begin{array}{ll}
\dot{a}^{2} & -\frac{2 E}{a^{2} a^{2} \vec{x}^{2}}=\frac{8 \pi G}{3} \rho \\
H^{2} & +\frac{\kappa}{a^{2}}=\frac{8 \pi G}{3} \rho \\
& \kappa=-\frac{2 E}{m \vec{x}^{2}} \quad H=a(t) \vec{x} \\
a
\end{array}
\end{aligned}
$$

Matter conservation
$\partial_{t}\left(\rho \frac{4 \pi}{3} r^{3}\right)=0 \quad \Rightarrow \dot{\rho}+3 H \rho=0$
EMT conservation non-rel. matter for $p=0$

Critical Density

$$
\begin{gathered}
\frac{\kappa}{a^{2}}=\frac{8 \pi G}{3}\left(\rho-\frac{3 H^{2}}{8 \pi G}\right)=\frac{8 \pi G}{3}\left(\rho-\rho_{c}\right)=\frac{8 \pi G \rho_{c}}{3}(\Omega-1)=H^{2}(\Omega-1) \\
\rho_{c}=\frac{3 H^{2}}{8 \pi G} \quad \Omega=\frac{\rho}{\rho_{c}}
\end{gathered}
$$

At any time the sign of K is the same Ω-। taking $\mathrm{t}=\mathrm{t}_{0}$ (now)

$$
\begin{aligned}
\kappa>0 & \Rightarrow \rho_{0}>\rho_{0 c}=\frac{3 H_{0}}{8 \pi G} \approx h^{2} 1.8 \times 10^{-29} \mathrm{gr} \mathrm{~cm}^{-3} \\
\kappa<0 & \Rightarrow \rho_{0}<\rho_{0 c} \\
\kappa=0 & \Rightarrow \rho_{0}=\rho_{0 c}
\end{aligned}
$$

Spatial curvature connected present amount of matter

MAP990006

2d Examples

Take a 2-sphere embedded in a 3d Euclidian space

$$
x^{2}+y^{2}+z^{2}=b^{2} \quad d \ell^{2}=d x^{2}+d y^{2}+d z^{2}
$$

How to find the infinitesimal distance (metric) on the 2-sphere ? Solve the constraint and plug it back on embedding space metric

$$
\begin{array}{rlr}
& x=r \cos \varphi \quad x=r \sin \varphi \quad z= \pm\left(b^{2}-r^{2}\right)^{1 / 2} \\
\Rightarrow \quad d x=d r \cos \varphi-r d \varphi \sin \varphi \quad d y=r d \varphi \cos \varphi+d r \sin \varphi \\
& d z=\mp\left(b^{2}-r^{2}\right)^{-1 / 2} r d r \\
\Rightarrow \quad & d l^{2}=\frac{d r^{2}}{1-\frac{r^{2}}{b^{2}}}+r^{2} d \varphi^{2}
\end{array}
$$

That is the case $\mathrm{K}=\mathrm{b}^{-2}>0$, positive constant curvature For large very large $b, k=0$, curvature $2 d$ plane

Take an hyperboloid embedded in a 3d Minkowski space

$$
\begin{array}{ll}
x^{2}+y^{2}-z^{2}=-b^{2} & d l^{2}=-d z^{2}+d x^{2}+d y^{2} \\
x=r \cos \varphi & y=r \sin \varphi \\
z= \pm\left(b^{2}+r^{2}\right)^{1 / 2}
\end{array}
$$

$\Rightarrow d x=d r \cos \varphi-r d \varphi \sin \varphi \quad d y=r d \varphi \cos \varphi+d r \sin \varphi$
$d z= \pm\left(b^{2}+r^{2}\right)^{-1 / 2} r d r$
$\Rightarrow \quad d l^{2}=\frac{d r^{2}}{1-\frac{r^{2}}{b^{2}}}+r^{2} d \varphi^{2}$
That is the case $\mathrm{K}=-\mathrm{b}^{-2}<0$, negative constant curvature
Lobachevski space

The fluid can have many component

$$
\rho=\sum_{n=1}^{N} \rho_{n} \rho_{n} \quad p=\sum_{n=1}^{N} p_{n} \quad p_{n}=w_{n} \rho_{n}
$$

One can measure ρ_{0} by counting matter and $\rho_{0}<\rho_{0 c}$ CMB observations tell us that K is very small The missing component is called Dark Energy

Today's Content

$$
\Omega_{\mathrm{DE}}=0.68 \quad \Omega_{\mathrm{rad}}=10^{-5}
$$

$\Omega_{\text {non-rel-matt }}=\Omega_{\text {dark matter }}+\Omega_{\text {baryons }}=0.27+0.048=0.32$

Solutions ($k=0$)

$$
\rho(t)=\frac{\rho_{0}}{a^{3(w+1)}} \quad \text { generic } \mathbf{w}
$$

Plug into the equation for a and solve it !

$$
\begin{gathered}
\frac{\dot{a}^{2}}{a^{2}}=\frac{8 \pi G}{3} \frac{\rho_{0}}{a^{3(w+1)}} \\
\Rightarrow \quad a(t)=\left(\frac{t}{t_{0}}\right)^{\frac{2}{3(w+1)}}
\end{gathered}
$$

Non-relat. matter dominated Universe, w=0

$$
a(t)=\left(\frac{t}{t_{0}}\right)^{\frac{2}{3}}
$$

Radiation dominated Universe, w=I/3

$$
a(t)=\left(\frac{t}{t_{0}}\right)^{\frac{1}{2}}
$$

Solutions ($\mathrm{k}=0$)

The case $w=-I$ is special. Universe dominated by a CC

$$
\frac{\dot{a}^{2}}{a^{2}}=\frac{8 \pi G}{3} \Lambda \equiv \lambda^{2} \quad \Rightarrow \quad a(t)=e^{\lambda t}
$$

de Sitter Universe

$$
d s^{2}=-d t^{2}+e^{\lambda t}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

In general the 4d scalar curvature is for FLRW

$$
R=6\left(\frac{\ddot{a}}{a}+H^{2}+\frac{\kappa}{a^{2}}\right) \quad R_{\mathrm{dS}}=12 \lambda^{2}>0
$$

de Sitter Universe has 4d constant positive curvature!

Milne Universe

Take the vacuum: $\rho=0$

K has to be <0

$$
H^{2}+\frac{\kappa}{a^{2}}=0
$$

$$
a(t)=|\kappa|^{1 / 2} t
$$

$$
\begin{aligned}
& d s^{2}=-d t^{2}+|k| t^{2}\left[\frac{d r^{2}}{1+|k| r^{2}}+r^{2}\left(d \theta^{2}+\sin \theta^{2} d \varphi^{2}\right)\right] \\
& H=t^{-1} \quad \ddot{a}=0 \quad \Rightarrow \quad R_{\text {Milne }}=0
\end{aligned}
$$

Setting

$$
\tau=t\left(1+|k| r^{2}\right)^{1 / 2} \quad s=|k|^{1 / 2} t r
$$

$$
d s^{2}=-d \tau^{2}+d s^{2}+s^{2}\left(d \theta^{2}+\sin \theta^{2} d \varphi^{2}\right)
$$

A portion of Minkowski space in disguise

Acceleration

$$
\begin{aligned}
& H^{2}+\frac{\kappa}{a^{2}}=\frac{8 \pi G}{3} \rho \quad 2 \frac{\ddot{a}}{a}+H^{2}+\frac{\kappa}{a^{2}}=-8 \pi G p \\
& -\frac{\ddot{a}}{a}=\frac{4 \pi G}{3}(\rho+3 p) \equiv q H^{2}
\end{aligned}
$$

If the Universe is accelerating a certain time t when $q(t)<0$

$$
\text { or } \rho+3 p<0 \Rightarrow w<-1 / 3 \text { negative pressure }
$$

With multiple components

$$
\begin{aligned}
& q=\frac{4 \pi G}{3 H^{2}}(\rho+3 p)=\frac{1}{2 \rho_{c}}(\rho+3 p)=\frac{1}{2}\left(\Omega+\sum_{n} 3 w_{n} \Omega_{n}\right) \\
& \text { acceleration } \Rightarrow \quad \Omega+\sum_{n} 3 w_{n} \Omega_{n}<0
\end{aligned}
$$

Data (SNe la) tell us that presently the Universe (flat) is accelerating

We have NR-matter+ Dark Energy

$$
q_{0}=\frac{1}{2}+\frac{3}{2} w_{D E} \Omega_{D E}<0
$$

If Dark Energy is a Cosmological Constant then $\mathrm{w}_{\mathrm{DE}}=\mathrm{w}_{\wedge}=-1$
$\Omega_{\Lambda}>\frac{1}{3}$

Time Since
Big Bang

Major Events Since Big Bang

neutron- electron
proton

neutrino - | antiproton |
| :--- |
| antineutron |

[^0]

[^0]: Copyright © Addison Wesley.

