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Scales 
Length   parsec (pc) = 3.3 light year = 3.1 x1018 cm 

= 2.1 x105 a.u. 
1 a.u. = Earth Sun distance ~ 3.1 x1024 cm 

Pluto ~ 100 a.u.
Nearest star (Proxima Centauri) ~ 1.2 pc

center of Milky way ~ 8 kpc
Diameter of the Milky way ~ 30 kpc

nearest galaxy (Sagitarius dwarf in local group) ~ 30 kpc
nearest galaxy spiral (M31) ~ 800 kpc

size of the local cluster ~ 3 Mpc
distance from the nearest cluster (Virgo) ~ 15 Mpc

homogeneity scale ~ 100 Mpc
Hubble scale = c/H0 ~ 4.2 Gpc



Observations (for instance Sloan Digital Sky Survey)
tell us that there is a reference frame where 

Universe at scales ~ 100 Mpc appears
- homogeneous and Isotropic

Atlas of the Universe

At scales <<100 Mpc many structures can be 
distinguished

Filaments,  Voids, Superclusters, Clusters, Galaxies ...  
 

http://www.atlasoftheuniverse.com/universe.html
http://www.atlasoftheuniverse.com/universe.html


Small deviation from primordial homogeneities
are amplified by gravitational instability:

gravitational instability is efficient when the Universe is 
non relativistic  (matter dominated)

Hierarchical Approach:
Study first the Universe at large scales (> 100 Mpc)
deviation from homogeneity are small perturbations 

(up to scales .5 Mpc)
at smaller scales nonlinear methods are required



GR in a Nutshell
Cosmology needs gravity

GR: Dynamics of spacetime
Dynamical variable: the metric field gμν
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“Matters (EMT) tells spacetime (metric) how to 
curve”          (Wheeler)  
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Minkowski metric:  flat space used in particle physics
ds
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In flat space free particles follows straight lines

In curved space free particles follows geodesics
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Bianchi identities

The EMT is covariantly conserved
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EMT: response of matter action to a metric variation
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Perfect Fluid

Tµ⌫ = p gµ⌫ + (p+ ⇢)uµ u⌫ u2 = uµu⌫gµ⌫ = �1

�Tµ⌫v
⌫

Momentum density measured by an observer
 with four velocity vμ 

Energy density measured by an observer
 with four velocity vμ Tµ⌫v

⌫v⌫

Energy density seen by an observer
 co-moving with fluid ⇢ = Tµ⌫u

⌫u⌫

Tµ⌫ = ⇢uµ u⌫ + p (gµ⌫ + uµ u⌫)

(gµ⌫ + uµ u⌫)u
⌫ = 0

Pressure part leaves in 
space orthogonal the 

fluid velocity



Perfect Fluid in flat space

Take a homogeneous configuration (no space dependence)

co-moving coordinates: uμ =(1,0,0,0)

T00 = ρ T0i = 0 Tij =  p δij

Exercises

For the scalar field

- in flat space compute the EMT and  check that it is 
conserved

- do the same in the case the metric is generic
- compute the EMT for a configuration of the form ϕ(t) 

and check that is perfect fluid, find then p and ρ



Friedmann-Lemaitre-Robertson-Walkwer (FLRW)
Observed Homogeneity and Isotropy ➡

at any given time t, the hypersurface (❨3dim.)❩ 
t=const. has no preferred direction and is 

translational invariant ➡
maximally symmetric 3d geometry ➡ 

3d curvature is constant
ds

2 = �dt

2 + a(t)2d⌃2
d⌃2 = �ij dx

i
dx
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Observers with 4-velocity uμ=(❨1,0,0,0)❩ sees the 
Universe homogenous and isotropic
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κ=0  flat  3d geometry κ=1  positive curvature 
(❨spatially closed Universe)❩

κ=-1  negative curvature 
(❨spatially open Universe)❩



Observers with 4-velocity uμ=(❨1,0,0,0)❩ follow geodesics
Exercise: check that at least in the case case κ=0

Overwhelming evidence that: 
our Universe is spatially flat (❨κ=0)❩

For spatially flat (❨κ=0)❩ and open (❨κ<0)❩ Universe
the spatial volume is infinite 

For a spatially closed (❨κ >0)❩ Universe
the spatial volume is finite

The distance d(❨t,r)❩ between the points:
 (❨t,0,0,0)❩ and (❨t,r,0,0)❩ is not constant 
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f0(r) = r f>0(r) = sin�1(k1/2 r) f<0(r) = sinh�1(|k|1/2 r)



Hubble Parameter

ḋ(t, r)

d(t, r)
=

ȧ fk(r)

a fk(r)
=

ȧ

a
= H(t)

Hubble constant =H today = H0 = h 100 km s-1 Mpc-1

h = 0.673(12) 

H >0  the Universe is expanding



Propagation of light in a FLRW  Universe 

4-velocity of photon (radial motion) u
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dx

µ

d`

u

µ
u

⌫
gµ⌫ = u

2 = 0

) ds2 = 0 = �dt2 + a2
dr2

(1�  r2)
) dt

a
= ± dr2

(1�  r2)1/2

emission event (tE, rE,0,0) event 
absorption event: now and here (t0,0,0,0)

for a second photon traveling in the way
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Expanding universe: aE < a0 then  ν0 < νE Cosmological redshift
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Setting t as the emission time aE =a(t) and  a0=1
we can replace time with redshift t(z)

dz

dt
= �(1 + z)H



Hubble Law

At small z a(t) = a0 � (t0 � t)ȧ0 + · · · = a0 [1�H0(t0 � t)] + · · ·

(1 + z)a(t) = a0 ) (1 + z) [1�H0(t0 � t)] = 1 + · · ·

z = H0 (t0 � t)c�1 + · · · = H0 d+ · · ·

In general galaxies have peculiar velocities 
due to local gravitational field

v= vcosm+ vpeculiar

To overcome pec. velocities ~ 100 Km/s
one needs zc >> 100 Km/s

d=c z /H0  = h 3x103 Mpc z

known galaxies (Hubble telescope)  of 
z~11.9  13 bilion years old 



Original Hubble Diagram



FLRW Dynamics

Solve Einstein equations with matter represented 
by a perfect fluid

T00 = ⇢ T0i = 0 Tij = p �ij

EMT conservation r⌫Tµ⌫ = 0 gives (check !!)

⇢̇+ 3H (⇢+ p) = ⇢̇+ 3H (1 + w) ⇢ = 0 p = w ⇢

p = w ρ is called fluid equation of state 

EMT conservation ⇔ 1st principle of  thermodynamics

@t(⇢ a
3) = �p@t(a

3) dU = �L+ dS

adiabatic process



EMT conservation can be integrated for w constant  

⇢(t) =
⇢0

a3(w+1)

NB: t=t0  with a(t0)=1
ρ0 present density 

w =0, p = 0 non-relativistic matter ⇢ =
⇢0
a3

w =1/3 relativistic matter ⇢ =
⇢0
a4

w = -1 Cosmological Constant ⇢ = ⇤

Tµ⌫ = �⇤ gµ⌫EMT given by Vacuum energy

Derived from the action S = �
Z

d

4
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p
g ⇤



NB: a(t) = R



Einstein Equations

Rµ⌫ � 1

2
Rgµ⌫ = 8⇡GTµ⌫

Symmetry:
 0i components are zero

ij components give a single eq.
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Actually from 00 eq. + EMT conservation  one gets ij
we can forget about ij eqs.



Newtonian “Derivation”

Take a bunch of particles with homogeneous density ρ
the energy of a test particle of mass m at radius r 
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= 0 ) ⇢̇+ 3H ⇢ = 0 EMT conservation
non-rel. matter for p=0 



Critical Density
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At any time the sign of κ is the same Ω-1
taking t=t0 (now) 

 > 0 ) ⇢0 > ⇢0c =
3H0

8⇡G
⇡ h2 1.8⇥ 10�29gr cm�3

 < 0 ) ⇢0 < ⇢0c

 = 0 ) ⇢0 = ⇢0c

Spatial curvature connected present amount of matter 





2d Examples

Take a 2-sphere embedded in a 3d Euclidian space 

x

2 + y

2 + z

2 = b

2
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2 = dx

2 + dy

2 + dz

2

How to find the infinitesimal distance (metric) on the 2-sphere ?
Solve the constraint and plug it back on  embedding space 

metric
x = r cos' x = r sin' z = ±(b
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That is the case κ=b-2>0, positive constant curvature

For large very large b, κ=0,  curvature 2d plane



Take an hyperboloid embedded in a 3d Minkowski  space 

dx = dr cos'� r d' sin' dy = r d' cos'+ dr sin'

dz = ±(b2 + r2)�1/2 r dr

⇒

That is the case κ=-b-2 <0, negative constant curvature

Lobachevski space
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One can measure ρ0 by counting matter and ρ0 < ρ0c

CMB observations tell us that κ is very small
The missing component is called 

Dark Energy

ΩDE=0.68

Ωnon-rel-matt= Ωdark matter + Ωbaryons =0.27+0.048 =0.32

The fluid can have many component

⇢ =
NX

n=1

⇢n ⇢n p =
NX
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pn pn = wn ⇢n

Ωrad=10-5

Today’s Content



Solutions (k=0)

⇢(t) =
⇢0

a3(w+1) generic w 
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Plug into the equation for a and solve it ! 
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Solutions (k=0)

The case w=-1 is special. Universe dominated by a CC

ȧ2
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⇤ ⌘ �2 ⇒ a(t) = e� t

de Sitter Universe
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In general the 4d scalar curvature is for FLRW
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de Sitter Universe has 4d constant positive 
curvature ! 



Milne Universe

Take the vacuum: ρ=0 H2 +


a2
= 0

κ has to be <0 a(t) = ||1/2 t

H = t�1 ä = 0 ⇒ RMilne = 0
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A portion of Minkowski space in disguise



Acceleration
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If the Universe is accelerating a certain time t when q(t) <0

or ρ + 3 p <0  ⇒ w <- 1/3 negative pressure 
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Data (SNe Ia) tell us that presently  the Universe (flat) is 
accelerating

We have NR-matter+ Dark Energy

q0 =
1

2
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2
wDE ⌦DE < 0

If Dark Energy is a Cosmological Constant then wDE = wΛ = -1
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