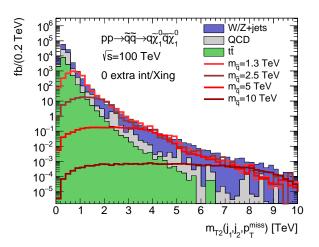
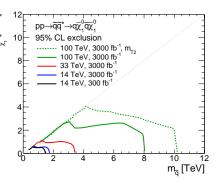
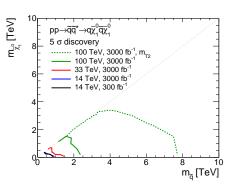

Simplified $pp o \tilde{q} \tilde{q}^* o q \widetilde{\chi}_1^0 \bar{q} \widetilde{\chi}_1^0$ at $\sqrt{s} = 100~{\rm TeV}$

Mike Hance Lawrence Berkeley National Laboratory February 25, 2015




- Originally probed in 1311.6480 using simple jets+ $E_{\rm T}^{\rm miss}$ analysis
- Poor discovery reach for this simplified model motivated a second look
- Took inspiration from CMS: 1502.04358
 - They bin events in number of jets, number of b-jets
 - Also bin in H_T^{jets} and m_{T2}
 - Combine multiple SRs in global fit
- Plan: revisit optimization with Snowmass samples


New approach

- Start from a zero-lepton, jets+ $E_{\rm T}^{\rm miss}$ sample:
 - Electron, muon, tau veto
 - \geq 2 jets with $p_{\rm T} > 100$ GeV
 - $\min \Delta \phi(E_{\rm T}^{\rm miss}, 4 \text{ leading jets}) < 0.3$
 - $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}^{\rm jets}} \geq 15~{\rm GeV}^{1/2}$
 - No b-tagging requirement/veto, no binning in n-jets
- Require $E_{\rm T}^{\rm miss} > (0.5 \times H_{\rm T}^{\rm jets})$ (optimized scale from 0.2 to 0.6)
- Bin events by H_T^{jets} : 2, 3, 4, 5, 6, 8, 10, 15 TeV
- Optimize a cut on m_{T2} for each signal point, for each bin
 - $m_{\rm T2}$ defined with leading two jets and $p_{\rm T}^{\rm miss}$
 - Optimization using Z_n with a total background uncertainty of 20%
 - Typical m_{T2} cut: $0.7 \times m(\widetilde{q})$ for $m(\widetilde{\chi}_0^1) = 0$
- Throw all optimized SRs into RooStats to get a combined limit
 - Assume 20% uncertainties on each background component (V+jets, $t\bar{t}$, OCD, t+V, $t\bar{t}+V$)

Example m_{T2} after some preselection:

Some notes:

- Discovery with around 400 produced events, not much more room for improvement for massless neutralinos
- Backgrounds at high- $m_{\rm T2}$, high- $H_{\rm T}^{\rm jets}$ are mostly $Z \to \nu \nu$ +jets, so uncertainties of $\sim 20\%$ are not too conservative