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Key Parameters FCC-hh

Parameter FCC-hh LHC
Energy [TeV] 100 c.m. 14 c.m.
Dipole field [T] 16 8.33
# P 2 main, +2 4
Luminosity/IP, .., [cm-2s-T] 5-25x10%| 1x10%
Stored energy/beam [GJ] 8.4 0.39
Synchrotron rad. [W/m/aperture] 28.4 0.17
Bunch spacing [ns] 25 (9) 29
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Preliminary Layout

First layout developed

 Two high-luminosity
experiments (A and G)

Arc (L=16km,R=13km)
 Two other experiments (F Mini-arc (L=3.2km,R=13km)
and H) DS (L=0.4km,R=17.3km)

Straight

Coll 2.8km Coll 2.8km
* Two collimation lines J

Extr 1.4 km Extr 1.4 km

 Two injection and two
extraction lines

* Insertion lengths are based
on first order estimates, will
be reviewed as optics designs
are made
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Injection and Site Study

P5

SPS, LHC or injector in collider tunnel considered
as injectors

Injection energy 3.3TeV (could be increased a bit
if LHC is used)

FCC collider

P5

LHC HEB

Preliminary conclusions:

* 93km seems to fit the site really well,
likely better than smaller ring

* 100km tunnel appears possible

* The LHC could be used as an injector

FCC collider
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FCC-hh experiment environment (1)

Some basic assumptions:

* pp centre-of-mass energy.

* Luminosity:

* Pile-up:

* Average/maximum occupancy:

* Integrated luminosity

* Expected radiation level

* ncoverage

100 TeV

5x103*cm2st in the 1%t phase

30x103*cm2s1 in a 2" phase

[170, then 1020] events at 25 ns spacing
[34, then 204] events at 5 ns spacing

~50% higher than at 14 TeV

3 ab! for the 1%t phase
30 ab! for a 2" phase

3x10%® cm2 1MeVneq fluence (15t phase)
10MGy Dose (15t phase)

up to n=4 (~2 degrees) or n=6 (~0.3 degrees)
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FCC-hh experiment environment (2)

14TeV - 100TeV:
Inelastic crossection 14 =100TeV changes from 80 = 108mb.

Multiplicity 14 - 100TeV changes from 5.4 - 8 charged particles per rapidity
unit.

Average p, of charged particles 14 - 100 TeV 0.6 0.8 GeV/c, i.e. bending
radius in 4T magnetic field is 50 2 67cm.

Transverse energy increase by about a factor of 2.

- The Min. Bias events at FCC are quite similar to the Min. Bias events at LHC.
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Approximate FCC-hh Overall Needs

Tracking: Momentum resolution H15% at p,=10TeV
Precision tracking (momentum spectroscopy) and Ecal up to n=4
Tracking and Calo for jets up to n=6.

98% containing calorimetry of 12 A\ , 1-2% constant term.

in?

Calorimeter granularity to mitigate pileup and measure jet substructure
and boosted objects.

B-tagging, timing for pileup rejection etc. ...

Werner Riegler Lucie Linssen, 30 Mar 2015




Werner Riegler ATLAS

e LHCL*=23m, TAS inside the air core muon system, heavy shielding
e Tracker r=1m, B=2T thin coil in front of the calorimeters

e LArg ECAL, HCAL and 7.4 A\ . that returns the flux

int

e Large air core toroid, B=0.5T ‘standalone muon system’

y[m]

b

15 Tracker |
Emcal —
10 Muon
Coil 1

TAS
Triplet

z[m]
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Werner Riegler CMS

e LHCL*=23m, TAS shielding inside the cavern

e Tracker r=1.2m in B=3.8T

e Compact Crystal ECAL, ‘short’ HCAL of and 5.82 A, cut at eta = 3 to move FCAL away.
¢ |ron Yoke to return Flux, instrumented with muon chambers.

e CMS muons are relying on a properly working tracker.

Tracker

CMS Emcal
ylm]

Muon
‘ Coil
TAS
Triplet

— p,=1000 GeV/c
— p=1000 GeV/c

z|m]
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Werner Riegler Twin Solenoid 7xBL? scaling

e FCCL*=40m, hide inside tunnel

e Solenoid and shielding solenoid with B=6T in Tracker and B=3T in Muon System Tracker
e Tracker r=2.5m, L=16m, tracker resolution same as CMS detector Emcal
e ECAL+HCAL=24m =12\,
e Momentum resolution gets marginal at n>3. Muon
Coil
y[m] Spyou%) Triplet
| 50.0 / |
M pt=10 TeV
100
5.0 — p;=10000 GeV/c
I — p=10000 GeV/c
10
05
S L L SRR R
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Werner Riegler | Twin Solenoid 7xBL? scaling+Forward Dipole

e QOpeningatn=2.5
e Adding a Dipole forward for momentum spectroscopy.

Tracker
e Moving forward calorimeters to larger distance decreasing the particle Emcal
densities and overlaps.
e Allows separate instrumentation and upgrade of forward detectors
e Integration and maintenance is a challenge Muon
Coil
Twin Soll
dpy/py(% .
y[m] oo S | Triplet
10.0 ; 1 A ; e
15 5.0 ~_— p=10TeV e
| | — p=10000 GeV/c
1.0
10 0.5
0.1
0 1 2 3 4 5"
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Werner Riegler | Twin Solenoid r=1.5m Tracker scaling+Forward Dipole

e Smaller tracker radius r=1.5m and improvement of resolution by factor 3 (7um, 15
layers) to keep same resolution
e Overall scale of solenoid stays the same if sower containment of 12 A, is required.

e Larger n acceptance for spectroscopy in central region Tracker
e Opening at eta n = 3.1 2 smaller dipole needed Emcal
- Push on tracker technology Muon
TwinSol2 C _I
dpi/p(%) ol
y[m] 1000, >
50.0 = .
1(5)83\ — =—= p:=1000v Gev c
15 —~N~_— : — p=10000 GeV/c
1.0
0.5
10 0.1
0 1 2 3 4 5"

- m /T Jfm]

0 10 20 tinssen, 30 mar 201530) 40



CMS scaled detector with very long extreme resolution tracker

e Maximum coil producing 6T with affordable iron yoke (r=4m)

e Tracker radius 1m, resolution has to be improved factor 6 (15 layers, 3um resolution)
e 8m long tracker gives large n acceptance.
e 2.8m available for EMCAL+HCAL e.g. very compact W/Si particle flow calorimeters
e Very high granularity forward calorimeters needed

e Muon system a’la CMS

- ‘extreme’ technology challenge.

y[m]

15

10

500

10.0
50

10
0.5

0.1

Werner Riegler

CMS+
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Werner Riegler caled detector, calorimetry at high-n moved forward

and radiation load

10

0=10TeV

Forward calorimetry moved to large distance from n = 3.5 for reduced occupancy

— p,=10000 GeV/c
— p=10000 GeV/c

m
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Werner Riegler |  Scaled ATLAS Detector 7xBL? with Integrated Dipole

e AT thin solenoid r=2.5m in front of ECAL

e Tracker r=2.5m, 16m long.

e Return flux through HCAL.

e Large Toroid for “standalon muon momentum spectroscopy” (needed ?)

Maintenance is challenging ATLAS+
dpy/pi(%)
100.0 - e
50.0 =10 TeV /’l P
t P4 //
y [m] 10.0 ~— ,’Z (‘ TeV
50 e —P=10ey p:=10000 GeV/c
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Werner Riegler | ATLAS type detector with muon tagging only

e Thin Coil B=4T of r=1.3m in front of ECAL
e Point resolution 3um in 15 layers
e Muon momentum measured on tracker, muon system only as Muon Indentifier

Thin Solenoid
dp/pi(%)
100.0 7~ ——
50.0 Er—— S ~
[ p=10 |9v// ~
m] /
y o e wmane
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Werner Riegler l
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Physics at FCC-ee

Q beam energy range from 45 GeV to 175 GeV
d main physics programs / energies:
» £ (45.5 GeV): Z pole, ‘TeraZ” and high precision M5 & I,
» W (80 GeV): W pair production threshold, high precision M,
» H (120 GeV): ZH production (maximum rate of H’S),
» t (175 GeV): tt threshold

d some polarization up to 280 GeV for beam energy calibration

2 optimized for operation at 120 GeV?! (2" priority “Tera-Z")
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Key Parameters FCC-ee

Parameter FCC-ee

Energy/beam [GeV] 45 120 175 105

Bunches/beam 13000- 200-| 51-98 4
60000 1400

Beam current [mA] 1450 30 6.6 3

Luminosity/IP x 1034 cm2s-1| 21-280| 5-11)1.5-2.6] 0.0012

Energy loss/turn [GeV] 0.03 1.67 7.55 3.34

Synchrotron Power [MW] 100 22

RF Voltage [GV] 0.3-25| 3.6-56.5 11 3.5

Dependency: crab-waist vs. baseline optics and 2 vs. 4 IPs

Michael Benedikt ’
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FCC-ee: Luminosity vs. Energy

1000 | Crab waist 4 IP ¢y
. _
Crabwaist2IP Q] ™

100 Baseline 4 1P O

Baseline 2 IP Q.

TOTAL LUMINOSITY [1034 CM-25-1]
o

H

0 50 100 150 200 250 300 350 400
C.M. ENERGY [GEV]

Note: here luminosity is scaled with the number of IP’s
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vt and Zt couplings from measurement of
in top decay productspolarisation
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* It is known that the top polarization
information is maximally transferred to
its final state particles via the weak
decay

* the lack of beam polarization is
compensated by the final state
polarization and by a larger statistics

* In particular some optimal observable
can be defined. In the case of tt->|+jets:
the lepton polar angle and its reduced

encrgy.

* main systematic comes from predicted
event rate

* More final state variables can be
considered: this is first look a more
complete study is in progress

Patrizia Azzi - FCC Week @Washington March 2015 P. Janot. arXiv:1503.01325v2 1s
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Further comments on FCC-ee

How come the luminosities at FCC-ee are so much higher than at LEP?

Experience with flavour factories:

= Can meanwhile produce beams with much lower emittances (factor ~10) and
with small beta-function at the IP (large factor);

= Can inject many more bunches in the machine (large factor), however this
requires 2 rings for FCC-ee (e.g. LEP had both beams in 1 ring, KEKB has 2
rings);

= Continuous beam top-up, required at FCC-ee given the large synchrotron
radiation (2x50 MW).

Other remarks:

= 4 physics operation energies => each time quite a different machine (currently
with different machine cell lengths);

—> Large synchrotron radiation load on the interaction point (2 MW), under study;

—> Beamstrahlung is sizeable and is being addressed (limits beam lifetime and
imposes enlarged momentum acceptance>1.5%).

Lucie Linssen, 30 Mar 2015
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The Present

« Adapt existing solutions from LHC
— Gaudi as underlying framework
— ROOT for 1710
— Geant4 for simulation
— C++ and Python for user analysis
« Adapt software developments from [LC/CLIC
— DD4Hep for detector description
* Invest in better fast vs. full sim integration
— Geantd fastsim, Atlfast (ATLAS)
* Invest in proper future-proof data model
— The LHC experiments’ ones are over-engineered

— The ILC/CLIC model (LCIO) was designed before power and memory wall
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FCC Simulation

FCC Software needs to support the studies of multiple detectors

At different stages different level of detail required

— Smearing vs. fast sim vs. full sim

FCC choices are

— Delphes (*) and HepSim (**)
— Fast simulation in Python

— Integrated fast/full simulation with Geant4

Should all be accessible from within the same framework

(*) http://delphes_hepforge. org
(**) hitp.//atlaswww hep.anl gov/hepsim/

pa
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Possible areas for collaboration with FCC?

Software development
* Some synergies are already being exploited

FCC-ee experiment layout
* FCC-ee will be using a CLIC-like experiment layout, based on elements of our new
optimised CLIC detector (parametrised version for physics simulation with Delphes).

FCC-hh
* Possibility for common developments of tracking and vertex detector technologies:
e Hybrid detectors with very small pixel pitches
* HV-CMOS detector development towards full depletion and very small pitches
* Fine-grained calorimetry and PFA
* Tagging of multi-TeV boosted objects (jet sub-structures)

Physics
* Ongoing exchanges of information. Realistic to exploit further?
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thank you
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FCC-hh target beam parameters

Luminosity [103*cm2s]

Bunch distance [ns] 25 25 25 (5) 25 (5)
Background events/bx 27 135 170 (34) 680 (136)
Bunch charge [10'!] 1.15 2.2 1(0.2) 1(0.2)
Norm. emitt. [um] 3.75 2.5 2.2(0.44) 2.2(0.44)
IP beta-function [m] 0.55 0.15 1.1 0.3

IP beam size [um] 16.7 7.1 6.8 (3) 3.5(1.6)
RMS bunch length [cm] 7.55 7.55 8 8
Turn-around time [h] 5 4
Crossing angle [ol]] 12 Crab. Cav.

Values in brackets for 5ns spacing, would be good for background
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FCC-ee baseline

parameter FCC-ee baseline (2 IPs)

Z w H t
RF frequency [MHz] 400 400 400 400
RF voltage [GV] 2.5 4 5.5 11
circumference [km] 100 100 100 100
momentum compaction [10-5] 18 2 0.5 0.5
synchrotron tune 0.458 0.145 0.068 0.070
C,sg [MmM] 3.29 2.02 1.62 2.31
Oy 10t [MM] (W beamstr.) 3.84 2.29 1.81 2.46
Ossr L[] 0.052 0.092 0.139 0.202
0310t [%0] (W beamstr.) 0.061 0.105 0.155 0.216
hourglass factor £, 0.53 0.67 0.73 0.65
beam-beam par. £ /IP (2IPs) 0.040,0.070 0.077 0.121 0.118
L/IP [10% cm2s1] (2 Ips) @
Tpeam LMiN] (2 IPs) 620 130 50 39
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FCC-ee parameters (with crab waist)

parameter

RF frequency [MHZz]

RF voltage [GV]
circumference [km]
momentum compaction [10-5]
synchrotron tune

C,sr [MM]

O, 10t [MM] (W beamstr.)

Cs,sr L[70]

O 10t [ /o] (W beamstr.)

hourglass factor £,

beam-beam par. £//IP (2 IPs)
L/IP [10%* cm™s1] (2 IPs)
Tpeam LMIN] (2 IPS)

Frank Zimmermann

Z
400
0.3
100
0.5

0.030
0.97
3.33

0.037

0.127
0.94

0.06,0.21

w
400
1.0
100
0.5
0.035
2.08
3.12
0.092
0.139
0.87

0.04,0.16

60

41
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FCC-ee crab waist (2 IPs)

H
400
3.6
100
0.5

0.053
2.08
2.61

0.139

0.174
0.81

0.03,.124

t
400
1
100
0.5
0.070
2.31
2.83
0.202
0.248
0.75

0.04,0.118

31

28
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Collaboration Status

« 51 Institutes
« 19 countries
- EC participation
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Nlawre froam ECC winrlkkchnn

51 FCC collaboration members & CERN as host institute,

22 March 2015

ALBA/CELLS, Spain
Ankara U., Turkey

U Bern, Switzerland
BINP, Russia

CASE (SUNY/BNL), USA
CBPF, Brazil

CEA Grenoble, France
CEA Saclay, France
CIEMAT, Spain

CNRS, France
Cockcroft Institute, UK
U Colima, Mexico
CSICI/IFIC, Spain

TU Darmstadt, Germany
DESY, Germany

TU Dresden, Germany
Duke U, USA

Michael Benedikt

EPFL, Switzerland
GWNU, Korea
U Geneva, Switzerland

Goethe U Frankfurt, Germany

GSI, Germany

Hellenic Open U, Greece
HEPHY, Austria

IFJ PAN Krakow, Poland
INFN, Italy

INP Minsk, Belarus

U lowa, USA

IPM, Iran

UC Irvine, USA

Istanbul Aydin U., Turkey
JAI/Oxford, UK

JINR Dubna, Russia

FZ Julich, Germany
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KAIST, Korea
KEK, Japan
KIAS, Korea

King’s College London, UK

KIT Karlsruhe, Germany
Korea U Sejong, Korea
MEPhHI, Russia

MIT, USA

NBI, Denmark

Northern lllinois U., USA
NC PHEP Minsk, Belarus
U. Liverpool, UK

PSI, Switzerland
Sapienza/Roma, Italy
UC Santa Barbara, USA
U Silesia, Poland

TU Tampere, Finland
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News from FCC workshop

CERN Circular Colliders + FCC

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

‘ ‘ ‘ ‘ ‘ ‘ ‘ |< | 20 y:aars | )
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Future Collider

--
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