

The first long spallation source (ESS) and continuous spallation source (PSI)

for Mats Lindroos

Head of ESS Accelerator

Eugene Tanke

Science Drivers for Spallation Sources

chemistry of materials

archeology & heritage conservation

life sciences

magnetism & superconductivity

energy research

fundamental & particle physics

soft condensed matter

engineering & geo-sciences

Example: Better drugs from detailed protein maps

This enzyme transports CO₂ and regulates blood pH and is a major player in some cancers, glaucoma, obesity and high blood pressure. Neutron crystallography pinpoints protons and waters, showing how the drug Acetazolamide binds.

Source: Fisher, S. Z. et al. 2012 JACS

10⁻⁹ m

Example: Engineering materials

Non-destructive analysis of a steel armed concrete block with neutron imaging and X-ray tomography.

Source: PSI, CEMNET workshop 2007

Neutrons well suited as probe!

Wave Particle Magnetic moment Neutral

Diffractometers - Measure structures - Where atoms and molecules are

1 - 10 Ångström

Spectrometers - Measure dynamics - What atoms and molecules do

1 - 80 meV

Spallation* sources

Spallation sources come in at least three types of time structures:

- short pulse sources (a few μs) -> ISIS, JPARC, SNS
- long pulse sources (a few ms) -> ESS
- continuous sources -> PSI

In general, synchrotrons or accumulator (compressor) rings provide short neutron pulses, linear accelerators provide long neutron pulses, and cyclotrons provide continuous beams of neutrons.

Table 11.11. The number of fast neutrons produced per joule of heat energy where the energy in joule is taken as heat produced over energy consumed. [2].

Fission reactors	$\sim 10^9$	in ~ 50 liter volume
Spallation	$\sim 10^{10}$	in ~ 1 liter volume
Fusion	$\sim 2{\times}10^{10}$	in huge volume
Photo neutrons	$\sim 10^9$	in ~ 0.01 liter volume
Nuclear reaction (p, Be):	$\sim 10^{8}$	in ~ 0.001 liter volume
Laser induced fusion	$\sim 10^4$	in $\sim 10^{-9}$ liter volume

* In nuclear physics, spallation is the process in which a heavy nucleus emits a large number of nucleons as a result of being hit by a high-energy particle, thus greatly reducing its atomic weight

Neutron evolution

- Many of the reactor based neutron sources are being phased out = decline in the availability of neutrons = decline in competence and competitiveness
- The vast majority of users will profit from a pulsed structure

 Existing short pulse sources (ISIS, JPARC and SNS) can supply the present and imminent future need of short pulse users
 - large fraction of users are fully satisfied by a long pulse source
 - Long pulse for physics flexibility (cold and thermal neutrons available)

The road to realizing the world's leading facility for research using long pulse neutrons

effort of ESS completed

Accelerator Selected technologies

Update from the ESS site

Accelerator Technical performances

Target Station incorporates unique features

Rotating W target

 He gas cooling for target

 High brightness neutron moderators

The reference suite – a guide

Fundamental & Particle Physics

Pulsed Monochromatic Powder Diffractometer

Overview PSI-HIPA*

slides provided by Ch.Rüegg, M.Seidel/PSI

PSI-HIPA: Why Cyclotrons?

Advantages:

- continuous acceleration, low losses 10⁻⁴, high beam power possible
- repetitive use of resonators, compact and cost effective
 - high energy efficiency (PSI RF, Grid-tobeam: 32%)

→ These arguments hold also today, 80 years after the invention of the concept.

PSI-HIPA: Secondary Particles

• Muons: Graphite targets 5/40mm; max: $5\cdot10^8\mu$ +/s; p =28MeV/c; $\Delta p/p=9.5\%_{FWHM}$; $\epsilon_{x/v}=5/10\cdot10^{-3}m\cdot rad$

T. Prokscha, et al., Nucl. Instr. and Meth. A (2008), doi:10.1016/j.nima.2008.07.081

• Neutrons: water-cooled solid lead target; CW - not pulsed!; flux typically 1/10...1/2 × ILL(reactor); at source ≈10¹³ n/s·cm²; at exp. ≈10^{8..9} n/s·cm²; monochrome ≈10^{5..6} n/s·cm²;

 $\lambda_{\text{cold}} \approx 3...20 \text{ Å}; \ \lambda_{\text{therm}} \approx 0.8...2.5 \text{ Å}$

Spallation Neutron Source SINQ - Science

Magnetic and atomic structures
Neutron diffraction

Elementary excitations
Neutron spectroscopy

Large-scale structures
Neutron SANS and reflectometry

Applied scienceNeutron imaging

Research on Materials for ...

Energy storage: battery materials, materials for H-storage

Energy conversion: fuel-cell membranes

Information technology: molecular magnets, magnetic thin films, nano-structured materials

New technologies: superconductors, multiferroics, soft matter,

metals, ceramics, metal foams, ionic liquids

Health care: membrane structures, novel drug delivery systems, food science

Spallation Neutron Source SINQ - Instruments

Spallation Neutron Source SINQ - Upgrade

Neutron Source

Reliable operation of HIPA and SINQ (95%)

Neutron Optics

Optimized beam extraction, neutron transport and focusing
Only useful neutrons are transported, optimum focusing, signal-to-noise

Comprehensive upgrade of super-mirror neutron guide system

New Instruments and Major Instrument Upgrades

Modernization and upgrade projects:

Small samples and extreme conditions

- 1) Small sample, extreme conditions spectrometer (CAMEA)
- 2) Small sample single-crystal diffractometer (**ZEBRA**)
- 3) High-resolution neutron microscope (N-Microscope)
- 1) Fully focusing reflectometer on dedicated guide (**SELENE**)
- 2) Extreme conditions instrument for high-fields and pressure (Xtreme)
- 3) Optimized small sample SANS (SANS-X)

Thank you for your attention!

