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Abstract Over the past five or so years a large number of1

observables have been proposed in the literature, and ex-2

plored at the LHC experiments, that attempt to utilise the in-3

ternal structure of highly boosted jets in order to distinguish4

those that have been initiated by a quark, a gluon or by a5

heavier particle, such as a Top quark or W boson. This report6

of the BOOST2013 workshop presents original particle-level7

studies that attempt to improve our understanding of the re-8

lationship between these observables, their complementarity9

and overlap, and the dependence of this on the underlying jet10

parameters, especially the jet radius R and jet pT . This is ex-11

plored in the context of quark/gluon discrimination, boosted12

W-boson tagging and boosted Top quark tagging.13

Keywords boosted objects · jet substructure · beyond-14

the-Standard-Model physics searches · Large Hadron15

Collider16

1 Introduction17

A characteristic feature of the proton-proton collisions at the18

LHC is a center-of-mass energy, 7 TeV in 2010 and 2011,19

8 TeV in 2012, and 13TeV with the start of the second phase20

of operation in 2015, that, even after accounting for par-21

ton desity functions, is large compared to the heaviest of22

the known particles. Thus these particles (and potentially23

also previously unknown ones) will often be produced at24

the LHC with substantial boosts. As a result, when decaying25

hadronically, these particles will not be observed as multi-26

ple jets in the detector, but rather as a single hadronic jet27

with distinctive internal substructure. This realization has28

led to a new era of sophistication in our understanding of29

both standard QCD jets and jets containing the decay of a30

heavy particle, with an array of new jet observables and de-31

tection techniques introduced and studies. To allow the ef-32

ficient sharing of results from these jet substructure studies33

a series of BOOST Workshops have been held on a yearly34

basis: SLAC (2009, [1]), Oxford University (2010, [2]),35

Princeton University University (2011, [3]), IFIC Valencia36

(2012 [4]), University of Arizona (2013 [5]), and, most re-37

cently, University College London (2014 [6]). After each of38

these meetings Working Groups have functioned during the39

following year to generate reports highlighting the most in-40

teresting new results, including studies of ever maturing de-41

tails. Previous BOOST reports can be found at [7–9].42

This report from BOOST 2013 thus views the study and43

implementation of jet substructure techniques as a fairly ma-44

ture field, and focuses on the question of the correlations45

between the plethora of observables that have been devel-46

oped and employed, and their dependence on the underly-47

ing jet parameters, especially the jet radius R and jet pT .48

Samples of quark-, gluon-, W- and Top-initiated jets are re-49

constructed at the particle-level using FASTJET [10], and the50

performance, in terms of separating signal from background,51

of various groomed jet masses and jet substructure observ-52

ables investigated through Receiver Operating Characteris-53

tic (ROC) curves, which show the efficiency to “tag” the sig-54

nal as a function of the efficiency (or rejection, being 1/effi-55

ciency) to “tag” the background. In new analyses developed56

for the report, we investigate the separation of a quark sig-57

nal from a gluon background (q/g tagging), a W signal from58

a gluon background (W-tagging) and a Top signal from a59

mixed quark/gluon QCD background (Top-tagging). In the60

case of Top-tagging, we also investigate the performance of61

dedicated Top-tagging algorithms, the HepTopTagger [11]62

and the Johns Hopkins Tagger [12]. Using multivariate tech-63

niques, we study the degree to which the discriminatory in-64

formation provided by the observables and taggers overlaps,65

by examining in particular the extent to which the signal-66

background separation performance increases when two or67

more variables/taggers are combined, via a Boosted Deci-68

sion Tree (BDT), into a single discriminant. Where possible,69

we provide a discussion of the physics behind the structure70

of the correlations and the pT and R scaling that we observe.71

We present the performance of observables in ideal-72

ized simulations without pile-up and detector resolution73

effects, with the primary goal of studying the correla-74

tions between observables and the dependence on jet ra-75

dius and pT . The relationship between substructure observ-76

ables, their correlations, and how these depend on the jet ra-77

dius R and jet pT should not be too sensitive to pile-up and78

resolution effects; conducting studies using idealized sim-79

ulations allows us to more clearly elucidate the underlying80

physics behind the observed performance, and also provides81

benchmarks for the development of techniques to mitigate82

pile-up and detector effects. A full study of the performance83

of pile-up and detector mitigation strategies is beyond the84

scope of the current report, and will be the focus of upcom-85

ing studies.86

The report is organized as follows. In Section 2 we de-87

scribe the generation of the Monte Carlo event samples that88

we use in the studies that follow. In Section 3 we detail89

the jet algorithms, observables and taggers investigated in90

each section of the report, and in Section 4 the multivariate91

techniques used to combine the one or more of the observ-92

ables into single discriminants. In Section 5 we describe the93

q/g-tagging studies, in Section 6 we describe the W-tagging94

studies, and in Section 7 we describe the Top-tagging stud-95

ies. Finally we offer some summary of the studies and gen-96

eral conclusions in Section 8.97

98

This report presents original analyses and discussions99

pertaining to the performance of and correlations between100

various jet substructure techniques applied to quark/gluon101

discrimination, W-boson tagging, and Top tagging. The prin-102

cipal organizers of and contributors to the analyses pre-103
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sented in the report are: B. Cooper, S. D. Ellis, M. Freyt-104

sis, A. Hornig, A. Larkoski, D. Lopez Mateos, B. Shuve, and105

N. V. Tran.106

2 Monte Carlo Samples107

In the below sections the Monte Carlo samples used in the108

q/g tagging, W tagging and Top tagging sections of this re-109

port are described. Note that in all cases the samples used110

contain no additional proton-proton interactions beyond the111

hard scatter (no pile-up), and there is no attempt to emulate112

the degradation in angular and pT resolution that would re-113

sult when reconstructing the jets inside a real detector.114

2.1 Quark/gluon and W tagging115

Samples were generated at
√

s = 8 TeV for QCD dijets, and116

for W+W− pairs produced in the decay of a (pseudo) scalar117

resonance and decaying hadronically. The QCD events were118

split into subsamples of gg and qq̄ events, allowing for tests119

of discrimination of hadronic W bosons, quarks, and gluons.120

Individual gg and qq̄ samples were produced at leading121

order (LO) using MADGRAPH5 [13], while W+W− sam-122

ples were generated using the JHU GENERATOR [14–16]123

to allow for separation of longitudinal and transverse polar-124

izations. Both were generated using CTEQ6L1 PDFs [17].125

The samples were produced in exclusive pT bins of width126

100 GeV, with the slicing parameter chosen to be the pT of127

any final state parton or W at LO. At the parton-level the128

pT bins investigated were 300-400 GeV, 500-600 GeV and129

1.0-1.1 TeV. The samples were then all showered through130

PYTHIA8 (version 8.176) [18] using the default tune 4C131

[19]. For each of the various samples (W,q,g) and pT bins,132

500,000 events were simulated.133

2.2 Top tagging134

Samples were generated at
√

s = 14 TeV. Standard Model135

dijet and top pair samples were produced with SHERPA 2.0.0136

[20–25], with matrix elements of up to two extra partons137

matched to the shower. The top samples included only hadronic138

decays and were generated in exclusive pT bins of width139

100 GeV, taking as slicing parameter the maximum of the140

top/anti-top pT . The QCD samples were generated with a141

cut on the leading parton-level jet pT , where parton-level142

jets are clustered with the anti-kt algorithm and jet radii of143

R= 0.4, 0.8, 1.2. The matching scale is selected to be Qcut =144

40,60,80 GeV for the pT min = 600,1000, and 1500 GeV bins,145

respectively. For the top samples, 100k events were gener-146

ated in each bin, while 200k QCD events were generated in147

each bin.148

3 Jet Algorithms and Substructure Observables149

In this section, we define the jet algorithms and observables150

used in our analysis. Over the course of our study, we con-151

sidered a larger set of observables, but for the final analysis,152

we eliminated redundant observables for presentation pur-153

poses. In Sections 3.1, 3.2, 3.3 and 3.4 we first describe the154

various jet algorithms, groomers, taggers and other substruc-155

ture variables used in these studies.156

3.1 Jet Clustering Algorithms157

Jet clustering: Jets were clustered using sequential jet clus-158

tering algorithms [26] implemented in FASTJET 3.0.3. Final159

state particles i, j are assigned a mutual distance di j and a160

distance to the beam, diB. The particle pair with smallest di j161

are recombined and the algorithm repeated until the small-162

est distance is instead the distance to the beam, diB, in which163

case i is set aside and labelled as a jet. The distance metrics164

are defined as165

di j = min(p2γ

Ti , p2γ

T j)
∆R2

i j

R2 , (1)

diB = p2γ

Ti , (2)

where ∆R2
i j = (∆η)2 +(∆φ)2. In this analysis, we use the166

anti-kt algorithm (γ =−1) [27], the Cambridge/Aachen (C/A)167

algorithm (γ = 0) [28, 29], and the kt algorithm (γ = 1)168

[30, 31], each of which has varying sensitivity to soft ra-169

diation in defining the jet.170

171

Qjets: We also perform non-deterministic jet clustering [32,
33]. Instead of always clustering the particle pair with small-
est distance di j, the pair selected for combination is chosen
probabilistically according to a measure

Pi j ∝ e−α (di j−dmin)/dmin , (3)

where dmin is the minimum distance for the usual jet clus-172

tering algorithm at a particular step. This leads to a differ-173

ent cluster sequence for the jet each time the Qjet algorithm174

is used, and consequently different substructure properties.175

The parameter α is called the rigidity and is used to control176

how sharply peaked the probability distribution is around the177

usual, deterministic value. The Qjets method uses statistical178

analysis of the resulting distributions to extract more infor-179

mation from the jet than can be found in the usual cluster180

sequence.181

3.2 Jet Grooming Algorithms182

Pruning: Given a jet, re-cluster the constituents using the
C/A algorithm. At each step, proceed with the merger as
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usual unless both

min(pTi, pT j)

pTi j
< zcut and ∆Ri j >

2m j

pT j
Rcut, (4)

in which case the merger is vetoed and the softer branch183

discarded. The default parameters used for pruning [34] in184

this study are zcut = 0.1 and Rcut = 0.5. One advantage of185

pruning is that the thresholds used to veto soft, wide-angle186

radiation scale with the jet kinematics, and so the algorithm187

is expected to perform comparably over a wide range of mo-188

menta.189

190

Trimming: Given a jet, re-cluster the constituents into sub-
jets of radius Rtrim with the kt algorithm. Discard all subjets
i with

pTi < fcut pT J . (5)

The default parameters used for trimming [35] in this study191

are Rtrim = 0.2 and fcut = 0.03.192

193

Filtering: Given a jet, re-cluster the constituents into sub-194

jets of radius Rfilt with the C/A algorithm. Re-define the jet195

to consist of only the hardest N subjets, where N is deter-196

mined by the final state topology and is typically one more197

than the number of hard prongs in the resonance decay (to198

include the leading final-state gluon emission) [36]. While199

we do not independently use filtering, it is an important step200

of the HEPTopTagger to be defined later.201

202

Soft drop: Given a jet, re-cluster all of the constituents using
the C/A algorithm. Iteratively undo the last stage of the C/A
clustering from j into subjets j1, j2. If

min(pT 1, pT 2)

pT 1 + pT 2
< zcut

(
∆R12

R

)β

, (6)

discard the softer subjet and repeat. Otherwise, take j to be203

the final soft-drop jet [37]. Soft drop has two input param-204

eters, the angular exponent β and the soft-drop scale zcut,205

with default value zcut = 0.1.206

3.3 Jet Tagging Algorithms207

Modified Mass Drop Tagger: Given a jet, re-cluster all of
the constituents using the C/A algorithm. Iteratively undo
the last stage of the C/A clustering from j into subjets j1, j2
with m j1 > m j2 . If either

m j1 > µ m j or
min(p2

T 1, p2
T 2)

m2
j

∆R2
12 < ycut, (7)

then discard the branch with the smaller transverse mass208

mT =
√

m2
i + p2

Ti, and re-define j as the branch with the209

larger transverse mass. Otherwise, the jet is tagged. If de-210

clustering continues until only one branch remains, the jet211

is considered to have failed the tagging criteria [38]. In this212

study we use by default µ = 1.0 (i.e. implement no mass213

drop criteria) and ycut = 0.1.214

215

Johns Hopkins Tagger: Re-cluster the jet using the C/A al-216

gorithm. The jet is iteratively de-clustered, and at each step217

the softer prong is discarded if its pT is less than δp pTjet.218

This continues until both prongs are harder than the pT thresh-219

old, both prongs are softer than the pT threshold, or if they220

are too close (|∆ηi j|+ |∆φi j| < δR); the jet is rejected if ei-221

ther of the latter conditions apply. If both are harder than the222

pT threshold, the same procedure is applied to each: this re-223

sults in 2, 3, or 4 subjets. If there exist 3 or 4 subjets, then the224

jet is accepted: the top candidate is the sum of the subjets,225

and W candidate is the pair of subjets closest to the W mass226

[12]. The output of the tagger is mt , mW , and θh, a helicity227

angle defined as the angle, measured in the rest frame of the228

W candidate, between the top direction and one of the W229

decay products. The two free input parameters of the John230

Hopkins tagger in this study are δp and δR, defined above.231

232

HEPTopTagger: Re-cluster the jet using the C/A algorithm.233

The jet is iteratively de-clustered, and at each step the softer234

prong is discarded if m1/m12 > µ (there is not a significant235

mass drop). Otherwise, both prongs are kept. This continues236

until a prong has a mass mi < m, at which point it is added to237

the list of subjets. Filter the jet using Rfilt = min(0.3,∆Ri j),238

keeping the five hardest subjets (where ∆Ri j is the distance239

between the two hardest subjets). Select the three subjets240

whose invariant mass is closest to mt [11]. The output of the241

tagger is mt , mW , and θh (defined above). The two free input242

parameters of the HEPTopTagger in this study are m and µ ,243

defined above.244

245

Top Tagging with Pruning or Trimming: For comparison246

with the other top taggers, we add a W reconstruction step247

to the pruning and trimming algorithms described above.248

A W candidate is found as follows: if there are two sub-249

jets, the highest-mass subjet is the W candidate (because250

the W prongs end up clustered in the same subjet); if there251

are three subjets, the two subjets with the smallest invariant252

mass comprise the W candidate. In the case of only one sub-253

jet, no W is reconstructed.254

255

3.4 Other Jet Substructure Observables256

Jet substructure observables are calculated using jet con-257

stituents prior to any grooming.258

259
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Qjet mass volatility: As described above, Qjet algorithms
re-cluster the same jet non-deterministically to obtain a col-
lection of interpretations of the jet. For each jet interpreta-
tion, the pruned jet mass is computed with the default prun-
ing parameters. The mass volatility, ΓQjet, is defined as [32]

ΓQjet =

√
〈m2

J〉−〈mJ〉2

〈mJ〉
, (8)

where averages are computed over the Qjet interpretations.260

We use a rigidity parameter of α = 0.1 (although other stud-261

ies suggest a smaller value of α may be optimal [32, 33]),262

and 25 trees per event for all of the studies presented here.263

264

N-subjettiness: N-subjettiness [39] quantifies how well the
radiation in the jet is aligned along N directions. To compute
N-subjettiness, τ

(β )
N , one must first identify N axes within

the jet. Then,

τN =
1
d0

∑
i

pTi min
(

∆Rβ

1i, . . . ,∆Rβ

Ni

)
, (9)

where distances are between particles i in the jet and the
axes,

d0 = ∑
i

pTi Rβ (10)

and R is the jet clustering radius. The exponent β is a free265

parameter. There is also some choice in how the axes used to266

compute N-subjettiness are determined. The optimal config-267

uration of axes is the one that minimizes N-subjettiness; re-268

cently, it was shown that the “winner-takes-all” (WTA) axes269

can be easily computed and have superior performance com-270

pared to other minimization techniques [40]. We use both271

the WTA and one-pass kt optimization axes in our analyses.272

A more powerful discriminant is often the ratio,

τN,N−1 ≡
τN

τN−1
. (11)

While this is not an infrared-collinear (IRC) safe observable,273

it is calculable [41] and can be made IRC safe with a loose274

lower cut on τN−1.275

276

Energy correlation functions: The transverse momentum
version of the energy correlation functions are defined as
[42]:

ECF(N,β )= ∑
i1<i2<...<iN∈ j

(
N

∏
a=1

pTia

)(
N−1

∏
b=1

N

∏
c=b+1

∆Ribic

)β

,

(12)

where i is a particle inside the jet. It is preferable to work
in terms of dimensionless quantities, particularly the energy
correlation function double ratio:

C(β )
N =

ECF(N +1,β )ECF(N−1,β )
ECF(N,β )2 . (13)

This observable measures higher-order radiation from leading-277

order substructure. Note that C(0)
2 is identical to the variable278

PTD introduced by CMS in [43].279

4 Multivariate Analysis Techniques280

Multivariate techniques are used to combine variables281

into an optimal discriminant, and the extent to which the282

discrimination power increases when this is done is used to283

indicate how much the discriminatory information present284

in the variables overlaps. An alternative strategy for study-285

ing correlations in discrimination power that is not explored286

here is “truth matching” [44].287

In all cases the multivariate technique used to combine288

variables is a boosted decision tree (BDT) as implemented in289

the TMVA package [45]. We use the BDT implementation290

including gradient boost. An example of the BDT settings291

are as follows:292

– NTrees=1000293

– BoostType=Grad294

– Shrinkage=0.1295

– UseBaggedGrad=F296

– nCuts=10000297

– MaxDepth=3298

– UseYesNoLeaf=F299

– nEventsMin=200300

Exact parameter values are chosen to best reduce the effect301

of overtraining. Additionally, the simulated data were split302

into training and testing samples and comparisons of the303

BDT output were compared to reduced the effect of over-304

training as well.305

5 Quark-Gluon Discrimination306

In this section, we examine the differences between quark-307

and gluon-initiated jets in terms of substructure variables,308

and to determine to what extent these variables are corre-309

lated. Along the way, we provide some theoretical under-310

standing of these observables and their performance. The311

motivation for these studies comes not only from the desire312

to “tag” a jet as originating from a quark or gluon, but also313

to improve our understanding of the quark and gluon com-314

ponents of the QCD backgrounds relative to boosted reso-315

nances. While recent studies have suggested that quark/gluon316
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tagging efficiencies depend highly on the Monte Carlo gen-317

erator used[46, 47], we are more interested in understanding318

the scaling performance with pT and R, and the correlations319

between observables, which are expected to be treated con-320

sistently within a single shower scheme.321

5.1 Methodology322

These studies use the qq and gg MC samples, described pre-323

viously in Section 2. The showered events were clustered324

with FASTJET 3.03 using the anti-kT algorithm with jet radii325

of R = 0.4, 0.8, 1.2. In both signal (quark) and background326

(gluon) samples, an upper and lower cut on the leading jet327

pT is applied after showering/clustering, to ensure similar328

pT spectra for signal and background in each pT bin. The329

bins in leading jet pT that are considered are 300-400 GeV,330

500-600 GeV, 1.0-1.1 TeV, for the 300-400 GeV, 500-600331

GeV, 1.0-1.1 TeV parton pT slices respectively. Various jet332

grooming approaches are applied to the jets, as described in333

Section 3.4. Only leading and subleading jets in each sam-334

ple are used. The following observables are studied in this335

section:336

– The number of constituents (Nconstits) in the jet.337

– The pruned Qjet mass volatility, ΓQjet.338

– 1-point energy correlation functions, Cβ

1 with β = 0, 1, 2.339

– 1-subjettiness, τ
β

1 with β = 1, 2. The N-subjettiness axes340

are computed using one-pass kt axis optimization.341

– The ungroomed jet mass, m.342

We will see below that, in terms of their jet-by-jet corre-343

lations and their ability to separate quark initiated jets from344

gluon initiated jets (hereafter called simply quark jets and345

gluon jets), these observables fall into five classes. The first346

three, Nconstits, ΓQjet and Cβ=0
1 , form classes by themselves347

(Classes I to III) in the sense that they each carry some inde-348

pendent information about a jet and, when combined, pro-349

vide substantially better quark jet and gluon jet separation350

than either observable by itself. Of the remaining observ-351

ables, Cβ=1
1 and τ

β=1
1 comprise a single class (Class IV)352

in the sense that they exhibit similar distributions when ap-353

plied to a sample of jets, their jet-by-jet values are highly354

correlated, they exhibit very similar power to separate quark355

jets and gluon jets (with very similar dependence on the jet356

parameters R and pT ) and this separation power is essen-357

tially unchanged when they are combined. The fifth class358

(Class V) is composed of Cβ=2
1 , τ

β=2
1 and the (ungroomed)359

jet mass. Again the issue is that jet-by-jet correlations are360

strong (even though the individual observable distributions361

are somewhat different), quark versus gluon separation power362

is very similar (including the R and pT dependence) and lit-363

tle is achieved by combining more than one of these ob-364

servables. This class structure is not surprising given that365

within a class the observables exhibit very similar depen-366

dence on the kinematics of the underlying jet constituents.367

For example, the members of Class V are constructed from368

of a sum over pairs of constituents using products of the en-369

ergy of each member of the pair times the angular separation370

squared for the pair (for the mass case think in terms of mass371

squared with small angular separations). By the same argu-372

ment the Class IV and Class V observables will be seen to373

be more similar than any other pair of classes, differing only374

in the power (β ) of the dependence on the angular separa-375

tions, which will produce small but detectable differences.376

We will return to a more complete discussion of jet masses377

at the end of Section 5.378

5.2 Single Variable Discrimination379

The quark and gluon distributions of different substructure380

observables are shown in Figure 1, which already illustrates381

at least some of the points about the Classes made above. At382

a fundamental level the primary difference between quark383

jets and gluon jets is the color charge of the initiating parton,384

typically expressed in terms of the ratio of the correspond-385

ing Casimir factors CF/CA = 4/9. Since the quark has the386

smaller color charge, it will radiate less than a corresponding387

gluon and the resulting jet will contain fewer constituents.388

This difference is clearly indicated in Figure 1(a), suggest-389

ing that simply counting constituents will provide good sep-390

aration between quark and gluon jets. In fact, among the ob-391

servables considered, one can see by eye that Nconstits should392

provide the highest separation power, i.e., the quark and gluon393

distributions are most distinct, as was originally noted in394

[47, 48]. Figure 1 further suggests that Cβ=0
1 should pro-395

vide the next best separation followed by Cβ=1
1 , as was also396

found by the CMS and ATLAS Collaborations[46, 49].397

To more quantitatively study the power of each observ-398

able as a discriminator for quark/gluon tagging, ROC curves399

are built by scanning each distribution and plotting the back-400

ground efficiency (to select gluon jets) vs. the signal ef-401

ficiency (to select quark jets). Figure 2 shows these ROC402

curves for all of the substructure variables shown in Fig-403

ure 1, along with the ungroomed mass, representing the best404

performing mass variable, for R=0.4, 0.8 and 1.2 jets in405

the pT = 300− 400 GeV bin. In addition, the ROC curve406

for a tagger built from a BDT combination of all the vari-407

ables (see Section 4) is shown. Clearly, and as suggested ear-408

lier, nconstits is the best performing variable for all Rs, even409

though Cβ=0
1 is close, particularly for R=0.8. Most other410

variables have similar performance, except ΓQjet, which shows411

significantly worse discrimination (this may be due to our412

choice of rigidity α = 0.1, with other studies suggesting that413

a smaller value, such as α = 0.01, produces better results[32,414

33]). The combination of all variables shows somewhat bet-415
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(a) Nconstits (b) ΓQ jet (c) Cβ=0
1

(d) Cβ=1
1 (e) τ

β=1
1

(f) Cβ=2
1 (g) τ

β=2
1 (h) Ungroomed mass

Fig. 1 Comparisons of quark and gluon distributions of different substructure variables (organized by Class) for leading jets in the pT = 500−
600 GeV bin using the anti-kT R = 0.8 algorithm.

ter discrimination, and we will discuss in more detail below416

the correlations between the observables and their impact on417

the combined discrimination power.418

We now examine how the performance of the substruc-419

ture observables changes with pT and R. To present the re-420

sults in a “digestible” fashion we will focus on the gluon421

jet “rejection” factor, 1/εbkg, for a quark signal efficiency,422

εsig, of 50%. We can use the values of 1/εbkg generated for423

the 9 kinematic points introduced above (R = 0.4,0.8,1.2424

and the 100 GeV pT bins with lower limits pT = 300GeV,425

500GeV, 1000GeV) to generate surface plots. The surface426

plots in Figure 3 indicate both the level of gluon rejection427

and the variation with pT and R for each of the studied sin-428

gle observable. The color shading is defined so that a change429

in color corresponds to a change of about 0.4 in 1/εbkg.430

The colors have the same correlation with the magnitude of431

1/εbkg in all of the plots, but repeat after a change of about432

4. Thus “blue” corresponds to a value of about 2.5 in Fig-433
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Fig. 2 The ROC curve for all single variables considered for quark-gluon discrimination in the pT 300-400 GeV bin using the anti-kT R=0.4, 0.8
and 1.2 algorithm.

ure 3(b) and the values 6.5 and 10.5 in Figure 3(a), while434

”yellow” corresponds to about 5 in Figures 3(c) to (h) and435

about 9 in Figure 3(a).436

We see, as expected, that the numerically largest rejec-437

tion rates occur for the observable Nconstits in Figure 3(a),438

where the rejection factor is in the range 6 to 11 and varies439

rather dramatically with R. As R increases the jet collects440

more constituents from the underlying event, which are the441

same for quark and gluon jets, and the separation power de-442

creases. At large R, there is some improvement with increas-443

ing pT due to the enhanced radiation, which does distinguish444

quarks from gluons. Figure 3(b) confirms the limited effi-445

cacy of the single observable ΓQ jet (at least for our parame-446

ter choices) with a rejection rate only in the range 2.5 to 2.8.447

On the other hand, this observable probes a very different448

property of jet substructure, i.e., the sensitivity to detailed449

changes in the grooming procedure, and this difference is450

suggested by the distinct R and pT dependence illustrated451

in Figure 3(b). The rejection rate increases with increasing452

R and decreasing pT , since the distinction between quark453

and gluon jets for this observable arises from the relative454

importance of the one “hard” gluon emission configuration.455

The role of this contribution is enhanced for both decreasing456

pT and increasing R. Figure 3(c) indicates that the observ-457

able Cβ=0
1 can, by itself, provide a rejection rate in the range458

7.8 to 8.6 (intermediate between the two previous observ-459

ables) and again with distinct R and pT dependence. In this460

case the rejection rate decreases slowly with increasing R461

(β = 0 explicitly means that the angular dependence is much462

reduced), while the rejection rate peaks at intermediate pT463

values (an effect visually enhanced by the limited number of464

pT values included). Both the distinct values of the rejection465

rates and the differing R and pT dependence serve to con-466

firm that these three observables tend to probe independent467

features of the quark and gluon jets.468

Figures 3(d) and (e) serve to confirm the very similar469

properties of the Class IV observables Cβ=1
1 and τ

β=1
1 (as470

already suggested in Figures 1(d) and (e)) with essentially471

identical rejection rates (4.1 to 5.4) and identical R and pT472

dependence (a slow decrease with increasing R and an even473

slower increase with increasing pT ). A similar conclusion474

for the Class V observables Cβ=2
1 , τ

β=2
1 and m with simi-475

lar rejection rates in the range 3.5 to 5.3 and very similar476

R and pT dependence (a slow decrease with increasing R477

and an even slower increase with increasing pT ). Arguably,478

drawing a distinction between the Class IV and Class V ob-479

servables, is a fine point, but the color shading does sug-480

gest some distinction from the slightly smaller rejection rate481

in Class V. Again the strong similarities between the plots482
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(a) Nconstits (b) ΓQ jet (c) Cβ=0
1

(d) Cβ=1
1 (e) τ

β=1
1

(f) Cβ=2
1 (g) τ

β=2
1 (h) Ungroomed mass

Fig. 3 Surface plots of 1/εbkg for all single variables considered for quark-gluon discrimination as functions of R and pT .

within the second and third rows in Figure 3 speaks to the483

common properties of the observables within the two classes.484

In summary, the overall discriminating power between485

quark and gluon jets tends to decrease with increasing R,486

except for the ΓQ jet observable, presumably primarily due487

to the increasing contamination from the underlying event.488

Since the construction of the ΓQ jet observable explicitly in-489

volves pruning away the soft, large angle constituents, it is490

not surprising that it exhibits different R dependence. In gen-491

eral the discriminating power increases slowly and mono-492

tonically with pT (except for the ΓQ jet and Cβ=0
1 observ-493

ables) presumably because there is overall more (color charge494

related) radiation as pT increasing providing some increase495

in discrimination (except for the ΓQ jet observable). We turn496

now to the question of the impact of employing more than497

one observable at a time.498

5.3 Combined Performance and Correlations499

The quark/gluon tagging performance can be further im-500

proved over cuts on single observables by combining mul-501

tiple observables in a BDT; due to the challenging nature502

of q/g-tagging, any improvement in performance with mul-503

tivariable techniques could be critical for certain analyses,504

and the improvement could be more substantial in data than505

the marginal benefit found in MC and shown in Fig. 2. Fur-506

thermore, insight can be gained into the features allowing507

for quark/gluon discrimination if the origin of the improve-508

ment is understood. To quantitatively study this improve-509

ment, we build quark/gluon taggers from every pair-wise510

combination of variables studied in the previous section for511

comparison with the all-variable combination. To illustrate512

the results achieved in this way we will exhibit the same513

sort 2D of surface plots as in Figure 3. Based on our dis-514

cussion of the correlated properties of observables within a515

single class, we expect little improvement in the rejection516
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(a) Cβ=1
1 + τ

β=1
1 (b) Cβ=2

1 + τ
β=2
1

Fig. 4 Surface plots of 1/εbkg for the indicated pairs of variables from Classes IV and V considered for quark-gluon discrimination as functions
of R and pT .

rate when combining observables from the same class and517

substantial improvement when combining observables from518

different classes.519

Figure 4 shows pairwise plots for (a) Class IV and (b)520

Class V. Comparing to the corresponding plots in Figure 3521

we see that combining Cβ=1
1 + τ

β=1
1 provides a small im-522

provement in the rejection rate of about 10% (0.5 out of523

5) with essentially no change in the R and pT dependence,524

while combining Cβ=2
1 + τ

β=2
1 yields a rejection rate that is525

essentially identical to the single observable rejection rate526

for all R and pT values (with a similar conclusion if one of527

these observables is replaced with the ungroomed jet mass528

m). This again confirms that expectation that the observables529

within a single class effectively probe the same jet proper-530

ties.531

Next we consider the cross-class pairs of observables in-532

dicated in Figure 5, where only one member of Classes IV533

and V is included. As expected the largest rejection rates are534

obtained from combining another observable with Nconstits535

(Figures 5(a) to (d)). In general, the rates are larger than536

for the single variable case with similar R and pT depen-537

dence. In particular, the pair Nconstits+Cβ=1
1 yields rejection538

rates in the range 6.4 to 14.7 (6.4 to 15 for the similar case539

Nconstits + τ
β=1
1 ) with the largest values at small R and large540

pT . The other pairings with Nconstits (except with τ
β=1
1 ) yield541

smaller rejection rates and smaller dynamic range. The pair542

Nconstits +Cβ=0
1 (Figure 5(d)) exhibits the smallest range of543

rates (8.3 to 11.3) suggesting that the differences between544

these two observables serve to substantially reduce the R545

and pT dependence for the pair, but this also reduces the546

possible optimization. The other pairs indicated exhibit sim-547

ilar behavior. The pair rejection rates are somewhat better548

than either observable alone (since we are always combin-549

ing from different classes), and the R and pT dependence is550

generally similar to the more variant single observable case.551

The smallest R and pT variation always occurs when pairing552

with Cβ=0
1 . Changing any of the observables in these pairs553

with a different observable in the same class (e.g., Cβ=2
1 for554

τ
β=2
1 produces very similar results (at the few percent level).555

Figure 5(k) shows the result of a BDT analysis including all556

of the current observables with rejection rates in the range557

10.5 to 17.1. This is a somewhat narrower range than in Fig-558

ure 5(b) but with somewhat larger maximum values.559

Another way to present the same data but by fixing R560

and pT and showing all single observables and pairs of ob-561

servables at once is in terms of the “matrices” indicated in562

Figures 6 and 7. The numbers in each cell are the now famil-563

iar rejection factor values of 1/εbkg (gluons) for εsig = 50%564

(quarks). Figure 6 corresponds pT = 1− 1.1 TeV and R =565

0.4,0.8,1.2, while Figure 7 is for R = 0.4 and the 3 pT bins.566

The actual numbers should be familiar from the discussion567

above with the single observable rejections rates appearing568

on the diagonal and the pairwise results off the diagonal.569

The correlations indicated by the shading should be largely570

understood as indicating the organization of the observables571

into the now familiar classes. The all-observable (BDT) re-572

sult appears as the number at the lower right in each plot.573

5.4 QCD Jet Masses574

To close the discussion of the tagging of jets as either quark575

jets or gluon jets we provide some insight into the behav-576

ior of the masses of such QCD jets, both with and without577

grooming. Recall that, in practice, an identified jet is simply578

a list of constituents, i.e., final state particles. To the extent579

that the masses of these individual constituents are irrele-580

vant, typically because the detected constituents are rela-581

tivistic, each constituent has a “well” defined 4-momentum.582

It follows that the 4-momentum of the jet is simply the sum583

of the 4-momenta of the constituents and its square is the584

jet mass squared. We have already seen one set of jet mass585

distributions in Figure 1(h) for quark and gluon jets found586

with the anti-kT algorithm with R = 0.8 and pT in the bin587

500-600 GeV. If we consider the mass distributions for other588

kinematic points (other values of R and pT ), we observe589

considerable variation but that variation can largely be re-590

moved by plotting versus the scaled variable m/pT/R. Sim-591

ply on dimensional grounds we know that jet mass must592

scale essentially linearly with pT , with the remaining pT593
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(a) Nconstits +ΓQjet (b) Nconstits +Cβ=1
1 (c) Nconstits +Cβ=2

1

(d) Nconstits +Cβ=0
1 (e) ΓQ jet +Cβ=0

1 (f) ΓQ jet +Cβ=1
1

(g) ΓQ jet +Cβ=2
1 (h) Cβ=0

1 +Cβ=1
1 (i) Cβ=0

1 +Cβ=2
1

(j) Cβ=1
1 +Cβ=2

1 (k) All

Fig. 5 Surface plots of 1/εbkg for the indicated pairs of variables from different classes considered for quark-gluon discrimination as functions of
R and pT .
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Fig. 6 Gluon rejection defined as 1/εgluon when using each 2-variable combination as a tagger with 50% acceptance for quark jets. Results are
shown for jets with pT = 1− 1.1 TeV and for (top left) R = 0.4; (top right) R = 0.8; (bottom) R = 1.2. The rejection obtained with a tagger that
uses all variables is also shown in the plots.

dependence arising predominantly from the running of the594

coupling, αs(pT ). The R dependence is also crudely lin-595

ear as the mass scales approximately with the largest an-596

gular opening between any 2 constituents and that is set597

by R. The mass distributions for quark and gluon jets ver-598

sus m/pT/R for all of our kinematic points are indicated in599

Figure 8, where we use a logarithmic scale on the y-axis600

to clearly exhibit the behavior of these distributions over a601

large dynamic range. We observe that the distributions for602

the different kinematic points do approximately scale, i.e.,603

the simple arguments above do capture most of the variation604

with R and pT . We will consider shortly an explanation of605

the residual non-scaling. A more quantitative understanding606

of jet mass distributions requires all-orders calculations in607

QCD, which have been performed for ungroomed jet mass608

spectra at high logarithmic accuracy, both in the context of609

direct QCD resummation [50, 51] and Soft Collinear Effec-610

tive Theory [52, 53].611

Several features of Figure 8 can be easily understood.612

The distributions all cut-off rapidly for m/pT/R> 0.5, which613

is understood as the precise limit (maximum mass) for a614

jet composed of just 2 constituents. As expected from the615

soft and collinear singularities in QCD, the mass distribu-616

tion peaks at small mass values. The actual peak is “pushed”617

away from the origin by the so-called Sudakov form fac-618

tor. Summing the corresponding logarithmic structure (sin-619

gular in both pT and angle) to all orders in perturbation the-620

ory yields a distribution that is highly damped as the mass621

vanishes. In words, there is precisely zero probability that a622

color parton emits no radiation (and the resulting jet has zero623

mass). The large mass “shoulder" (0.3 < m/pT/R < 0.5) is624

driven largely by the presence of a single large angle, en-625

ergetic emission in the underlying QCD shower, i.e., this626

regime is quite well described by low-order perturbation the-627

ory. (The shoulder label will be more clear after we groom628

the jet.) In contrast, we should think of the peak region as629

corresponding to multiple soft emissions. This simple (ap-630
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Fig. 7 Gluon rejection defined as 1/εgluon when using each 2-variable combination as a tagger with 50% acceptance for quark jets. Results are
shown for R=0.4 jets with (top left) pT = 300−400 GeV, (top right) pT = 500−600 GeV and (bottom) pT = 1−1.1 TeV. The rejection obtained
with a tagger that uses all variables is also shown in the plots.

(a) Quark jets (b) Gluon jets

Fig. 8 Comparisons of quark and gluon ungroomed mass distributions versus the scaled variable m/pT /R.



14

(a) Quark jets (b) Gluon jets

Fig. 9 Comparisons of quark and gluon pruned mass distributions versus the scaled variable mpr/pT /R.

proximate) picture provides an understanding of the bulk of631

the differences between the quark and gluon jet mass distri-632

butions. Since the probability of the single large angle, ener-633

getic emission is proportional to the color charge, the gluon634

distribution should be enhanced in this region by a factor635

of about CA/CF = 9/4, consistent with what is observed in636

Figure 8. Similarly the exponent in the Sudakov damping637

factor for the gluon jet mass distribution is enhanced by the638

same factor, leading to a peak “pushed” further from the639

origin. So the gluon jet mass distribution exhibits a larger640

average jet mass than the quark jet, with a larger relative641

contribution arising from the perturbative shoulder region.642

Recall also that the number of constituents in the jet is also643

larger (on average) for the gluon jet simply because a gluon644

will radiate more than a quark. These features explain much645

of what we observed earlier in terms of the effectiveness646

of the various observable to separate quark jets from gluons647

jets. Note in particular that the enhanced role of the shoulder648

for gluon jet explains, at least qualitatively, the difference in649

the distributions for the observable ΓQ jet . Since the shoul-650

der is dominated by a single large angle, hard emission, ii651

is minimally impacted by pruning, which removes the large652

angle, soft constituents (as illustrated just below). Thus jets653

in the shoulder exhibit small volatility and they are a larger654

component in the gluon jet distribution. Hence gluon jets,655

on average, have smaller values of ΓQ jet than quark jets as656

in Figure 1(b). Further this feature of gluon jets is distinct657

from fact that there are more constituents, which explains658

why ΓQ jet and Nconstits supply largely independent informa-659

tion for distinguishing quark and gluon jets.660

To illustrate some of these points in more detail, Fig-661

ure 9 exhibits the jet mass distributions (of Figure 8) af-662

ter pruning [34, 54]. Removing the large angle, soft con-663

stituents moves the peak in both of the distributions from664

m/pT/R ∼ 0.1− 0.2 to the region around m/pT/R ∼ 0.05.665

This explains why pruning works to reduce the QCD back-666

ground when looking for a signal in a specific jet mass bin.667

The “shoulder” feature is much more apparent after pruning,668

as is the larger shoulder for the gluon jets. A quantitative669

(all-orders) understanding of groomed mass distributions is670

also possible. For instance, resummation of the pruned mass671

distribution was achieved in [38, 55].672

Our final topic in this section is the residual R and pT673

dependence exhibited in Figures 8 and 9, where we are us-674

ing the scaled variable m/pT/R. As already suggested, the675

residual pT dependence can be understood as arising primar-676

ily from the slow decrease of the strong coupling αs(pT ) as677

pT increases. This will lead to a corresponding decrease in678

the (largely perturbative) shoulder regime for both distribu-679

tions as pT increases. At the same time, and for the same680

reason, the Sudakov damping is less strong with increasing681

pT and the peak moves towards the origin. Thus the over-682

all impact of increasing pT for both distributions is a (slow)683

shift to smaller values of m/pT/R. This is just what is ob-684

served in Figures 8 and 9, although the numerical size of685

the effect is reduced in the pruned case. The R dependence686

is more complicated as there are effectively three different687

contributions to the mass distribution. The perturbative large688

angle, energetic single emission contribution largely scales689

in the variable m/pT/R, which is why we see little resid-690

ual R dependence in either figure for m/pT/R > 0.4. The691

large angle soft emissions can both contribute at mass val-692

ues that scale like R and increase in number as R increases693

(i.e., as the area of the jet grows as R2). Such contributions694

can yield a distribution that moves to the right as R increases695

and presumably explain the behavior at small pT in Figure 8.696

Since pruning largely removes this contribution, we observe697

no such behavior in Figure 9. The contribution of small an-698

gle, soft emissions will be at fixed m values and thus shift to699

the left versus the scaled variable as R increases. This pre-700

sumably explains the small shifts in this direction observed701

in both figures.702
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5.5 Conclusions703

In Section 5 we have seen that a variety of jet observables704

provide information about the jet that can be employed ef-705

fectively to separately tag quark and gluon jets. Further, when706

used in combination, these observables can provide even707

better separation. We saw that the best performing single708

observable is simply the number of constituents in the jet,709

Nconstits, while the largest further improvement comes from710

combining with Cβ=1
1 (or τ

β=1
1 ), but the smallest R and pT711

dependence arises from combining with Cβ=0
1 . On the other712

hand, some of the commonly used observables are highly713

correlated and do not provide extra information and enhanced714

tagging when used together. We have both demonstrated these715

correlations and provided a discussion of the physics behind716

the structure of the correlation. In particular, using the jet717

mass as a specific example observable we have tried to ex-718

plicitly explain the differences between jets initiated by both719

quarks and gluons.720

6 Boosted W -Tagging721

In this section, we study the discrimination of a boosted722

hadronically decaying W signal against a gluon background,723

comparing the performance of various groomed jet masses,724

substructure variables, and BDT combinations of groomed725

mass and substructure. A range of different distance param-726

eters R for the anti-kT jet algorithm are explored, as well as727

a variety of kinematic regimes (lead jet pT 300-400 GeV,728

500-600 GeV, 1.0-1.1 TeV). This allows us to determine729

the performance of observables as a function of jet radius730

and jet boost, and to see where different approaches may731

break down. The groomed mass and substructure variables732

are then combined in a BDT as described in Section 4, and733

the performance of the resulting BDT discriminant explored734

through ROC curves to understand the degree to which vari-735

ables are correlated, and how this changes with jet boost and736

jet radius.737

6.1 Methodology738

These studies use the WW samples as signal and the dijet739

gg as background, described previously in Section 2. Whilst740

only gluonic backgrounds are explored here, the conclusions741

as to the dependence of the performance and correlations on742

the jet boost and radius are not expected to be substantially743

different for quark backgrounds; we will see that the dif-744

ferences in the substructure properties of quark- and gluon-745

initiated jets, explored in the last section, are significantly746

smaller than the differences between W-initiated and gluon-747

initiated jets.748

As in the q/g tagging studies, the showered events were749

clustered with FASTJET 3.03 using the anti-kT algorithm750

with jet radii of R = 0.4, 0.8, 1.2. In both signal and back-751

ground samples, an upper and lower cut on the leading jet752

pT is applied after showering/clustering, to ensure similar753

pT spectra for signal and background in each pT bin. The754

bins in leading jet pT that are considered are 300-400 GeV,755

500-600 GeV, 1.0-1.1 TeV, for the 300-400 GeV, 500-600756

GeV, 1.0-1.1 TeV parton pT slices respectively. The jets then757

have various grooming approaches applied and substructure758

observables reconstructed as described in Section 3.4. The759

substructure observables studied in this section are:760

– The ungroomed, trimmed (mtrim), and pruned (mprun) jet761

masses.762

– The mass output from the modified mass drop tagger763

(mmmdt).764

– The soft drop mass with β =−1, 2 (msd).765

– 2-point energy correlation function ratio Cβ=1
2 (we also766

studied β = 2 but do not show its results because it showed767

poor discrimination power).768

– N-subjettiness ratio τ2/τ1 with β = 1 (τβ=1
21 ) and with769

axes computed using one-pass kt axis optimization (we770

also studied β = 2 but did not show its results because it771

showed poor discrimination power).772

– The pruned Qjet mass volatility, ΓQjet.773

6.2 Single Variable Performance774

In this section we will explore the performance of the var-775

ious groomed jet mass and substructure variables in terms776

of discriminating signal and background. Since we have not777

attempted to optimise the grooming parameter settings of778

each grooming algorithm, we do not want to place too much779

emphasis here on the relative performance of the groomed780

masses, but instead concentrate on how their performance781

changes depending on the kinematic bin and jet radius con-782

sidered.783

Figure 10 the compares the signal and background in784

terms of the different groomed masses explored for the anti-785

kT R=0.8 algorithm in the pT 500-600 bin. One can clearly786

see that in terms of separating signal and background the787

groomed masses will be significantly more performant than788

the ungroomed anti-kT R=0.8 mass. Figure 11 compares sig-789

nal and background in the different substructure variables790

explored for the same jet radius and kinematic bin.791

Figures 12, 13 and 14 show the single variable ROC792

curves compared to the ROC curve for a BDT combination793

of all the variables (labelled “allvars”), for each of the anti-794

kT distance parameters considered in each of the kinematic795

bins. One can see that, in all cases, the “allvars” option is796

considerably better performant than any of the individual797
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(a) Ungroomed mass (b) Pruned mass (c) Trimmed mass

(d) mMDT mass (e) Soft-drop β = 2 mass

Fig. 10 Comparisons of the QCD background to the WW signal in the pT 500-600 GeV bin using the anti-kT R=0.8 algorithm: leading jet mass
distributions.

single variables considered, indicating that there is consid-798

erable complementarity between the variables, and this will799

be explored further in the next section.800

Although the ROC curves give all the relevant informa-801

tion, it is hard to compare performance quantitatively. In802

Figures 15, 16 and 17 are shown matrices which give the803

background rejection for a signal efficiency of 70% when804

two variables (that on the x-axis and that on the y-axis) are805

combined in a BDT. These are shown separately for each806

pT bin and jet radius considered. In the final column of807

these plots are shown the background rejection performance808

for three-variable BDT combinations of mβ=2
sd +Cβ=1

2 +X .809

These results will be discussed later in Section 6.3.3. The810

diagonal of these plots correspond to the background rejec-811

tions for a single variable BDT, and can thus be examined to812

get a quantitative measure of the individual single variable813

performance, and to study how this changes with jet radius814

and momenta.815

One can see that in general the most performant single816

variables are the groomed masses. However, in certain kine-817

matic bins and for certain jet radii, Cβ=1
2 has a background818

rejection that is comparable to or better than the groomed819

masses.820

By comparing Figures 15(a), 16(a) and 17(b), we can see821

how the background rejection performance evolves as we in-822

crease momenta whilst keeping the jet radius fixed to R=0.8.823

Similarly, by comparing Figures 15(b), 16(b) and 17(c) we824

can see how performance evolves with pT for R=1.2. For825

both R=0.8 and R=1.2 the background rejection power of826

the groomed masses increases with increasing pT , with a827

factor 1.5-2.5 increase in rejection in going from the 300-828

400 GeV to 1.0-1.1 TeV bins. In Figure 18 we show the829

Soft-drop β = 2 groomed mass and the pruned mass for sig-830

nal and background in the pT 300-400 and pT 1.0-1.1 TeV831

bins for R=1.2 jets. Two effects result in the improved per-832

formance of the groomed mass at high pT . Firstly, as is833

evident from the figure, the resolution of the signal peak af-834

ter grooming improves, because the groomer finds it easier835

to pick out the hard signal component of the jet against the836

softer components of the underlying event when the signal837

is boosted. Secondly, one can see from Figure 9 that as pT838

increases the perturbative shoulder of the gluon distribution839

decreases in size, as discussed in Section 5.4, and thus there840

is a slight decrease (or at least no increase) in the level of841

background in the signal mass region (m/pT /R ∼ 0.5).842
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(a) Cβ=1
2 (b) Cβ=2

2 (c) ΓQ jet

(d) τ
β=1
21 (e) τ

β=2
21

Fig. 11 Comparisons of the QCD background to the WW signal in the pT 500-600 GeV bin using the anti-kT R=0.8 algorithm: substructure
variables.

(a) anti-kT R=0.8, pT 300-400 GeV bin (b) anti-kT R=1.2, pT 300-400 GeV bin

Fig. 12 The ROC curve for all single variables considered for W tagging in the pT 300-400 GeV bin using the anti-kT R=0.8 algorithm and R=1.2
algorithm.
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(a) anti-kT R=0.8, pT 500-600 GeV bin (b) anti-kT R=1.2, pT 500-600 GeV bin

Fig. 13 The ROC curve for all single variables considered for W tagging in the pT 500-600 GeV bin using the anti-kT R=0.8 algorithm and R=1.2
algorithm.

(a) anti-kT R=0.4, pT 1.0-1.1 TeV bin (b) anti-kT R=0.8, pT 1.0-1.1 TeV bin

(c) anti-kT R=1.2, pT 1.0-1.1 TeV bin

Fig. 14 The ROC curve for all single variables considered for W tagging in the pT 1.0-1.1 TeV bin using the anti-kT R=0.4 algorithm, anti-kT
R=0.8 algorithm and R=1.2 algorithm.
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(a) anti-kT R=0.8, pT 300-400 GeV bin (b) anti-kT R=1.2, pT 300-400 GeV bin

Fig. 15 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables considered, in the pT
300-400 GeV bin using the anti-kT R=0.8 algorithm and R=1.2 algorithm. Also shown is the background rejection for a BDT combination of all
of the variables considered.

(a) anti-kT R=0.8, pT 500-600 GeV bin (b) anti-kT R=1.2, pT 500-600 GeV bin

Fig. 16 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables considered, in the pT
500-600 GeV bin using the anti-kT R=0.8 algorithm and R=1.2 algorithm. Also shown is the background rejection for a BDT combination of all
of the variables considered.

However, one can see from the Figures 15(b), 16(b) and 17(c)843

that the Cβ=1
2 , ΓQ jet and τ

β=1
21 substructure variables behave844

somewhat differently. The background rejection power of845

the ΓQ jet and τ
β=1
21 variables both decrease with increasing846

pT , by up to a factor two in going from the 300-400 GeV847

to 1.0-1.1 TeV bins. Conversely the rejection power of Cβ=1
2848

dramatically increases with increasing pT for R=0.8, but849

does not improve with pT for the larger jet radius R=1.2.850

In Figure 19 we show the τ
β=1
21 and Cβ=1

2 distributions for851

signal and background in the pT 300-400 and pT 1.0-1.1852

TeV bins for R=0.8 jets. For τ
β=1
21 one can see that in mov-853

ing from the lower to the higher pT bin, the signal peak re-854

mains fairly unchanged, whereas the background peak shifts855

to smaller τ
β=1
21 values, reducing the discrimination power of856

the variable. This is expected, since jet substructure methods857

explicitly relying on identifying hard prongs would expect to858

work better at low pT , where the prongs would tend to be859

more separated. However, Cβ=1
2 does not rely on the explicit860

identification of subjets, and one can see from Figure 19 that861

the discrimination power visibly increases with increasing862

pT . This is in line with the observation in [42] that Cβ=1
2863

performs best when m/pT is small.864
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(a) anti-kT R=0.4, pT 1.0-1.1 TeV bin (b) anti-kT R=0.8, pT 1.0-1.1 TeV bin

(c) anti-kT R=1.2, pT 1.0-1.1 TeV bin

Fig. 17 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables considered, in the pT
1.0-1.1 TeV bin using the anti-kT R=0.4, R=0.8 and R=1.2 algorithm. Also shown is the background rejection for a BDT combination of all of the
variables considered.

By comparing the individual sub-figures of Figures 15, 16865

and 17 we can see how the background rejection perfor-866

mance depends on jet radius within the same pT bin. To867

within∼ 25%, the background rejection power of the groomed868

masses remains constant with respect to the jet radius. Fig-869

ure 20 shows how the groomed mass changes for varying870

jet radius in the pT 1.0-1.1 TeV bin. One can see that the871

signal mass peak remains unaffected by the increased ra-872

dius, as expected, since grooming removes the soft contam-873

ination which could otherwise increase the mass of the jet874

as the radius increased. The gluon background in the sig-875

nal mass region also remains largely unaffected, as expected876

from Figure 9, which shows very little dependence of the877

groomed gluon mass distribution on R in the signal region878

(m/pT /R ∼ 0.5). This is discussed further in Section 5.4.879

However, we again see rather different behaviour versus880

R for the substructure variables. In all pT bins considered the881

most performant substructure variable, Cβ=1
2 , performs best882

for an anti-kT distance parameter of R=0.8. The performance883

of this variable is dramatically worse for the larger jet radius884

of R=1.2 (a factor seven worse background rejection in the885

1.0-1.1 TeV bin), and substantially worse for R=0.4. For the886

other jet substructure variables considered, ΓQ jet and τ
β=1
21 ,887

their background rejection power also reduces for larger jet888

radius, but not to the same extent. Figure 21 shows the τ
β=1
21889

and Cβ=1
2 distributions for signal and background in the 1.0-890

1.1 TeV pT bin for R=0.8 and R=1.2 jet radii. One can891

clearly see that for the larger jet radius the Cβ=1
2 distribu-892

tion of both signal and background get wider, and conse-893

quently the discrimination power decreases. For τ
β=1
21 there894
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(a) anti-kT R=1.2, pT 300-400 GeV bin (b) anti-kT R=1.2, pT 1.0-1.1 TeV bin

(c) anti-kT R=1.2, pT 300-400 GeV bin (d) anti-kT R=1.2, pT 1.0-1.1 TeV bin

Fig. 18 The Soft-drop β = 2 and pruned groomed mass distribution for signal and background R=1.2 jets in two different pT bins.

is comparitively little change in the distributions with in-895

creasing jet radius. The increased sensitivity of C2 to soft896

wide angle radiation in comparison to τ21 is a known feature897

of this variable [42], and a useful feature in discriminating898

coloured versus colour singlet jets. However, at very large899

jet radii (R∼1.2), this feature becomes disadvantageous; the900

jet can pick up a significant amount of initial state or other901

uncorrelated radiation, and C2 is more sensitive to this than902

is τ21. This uncorrelated radiation has no (or very little) de-903

pendence on whether the jet is W- or gluon-initiated, and904

so sensitivity to this radiation means that the discrimination905

power will decrease.906

6.3 Combined Performance907

The off-diagonal entries in Figures 15, 16 and 17 can be used908

to compare the performance of different BDT two-variable909

combinations, and see how this varies as a function of pT910

and R. By comparing the background rejection achieved for911

the two-variable combinations to the background rejection912

of the “all variables” BDT, one can understand how much913

more discrimination is possible by adding further variables914

to the two-variable BDTs.915

One can see that in general the most powerful two-variable916

combinations involve a groomed mass and a non-mass sub-917

structure variable (Cβ=1
2 , ΓQ jet or τ

β=1
21 ). Two-variable com-918

binations of the substructure variables are not powerful in919

comparison. Which particular mass + substructure variable920
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(a) anti-kT R=0.8, pT 300-400 GeV bin (b) anti-kT R=0.8, pT 1.0-1.1 TeV bin

(c) anti-kT R=0.8, pT 300-400 GeV bin (d) anti-kT R=0.8, pT 1.0-1.1 TeV bin

Fig. 19 The τ
β=1
21 and Cβ=1

2 distributions for signal and background R=0.8 jets in two different pT bins.

combination is the most powerful depends strongly on the921

pT and R of the jet, as discussed in the sections that follow.922

There is also modest improvement in the background re-923

jection when different groomed masses are combined, com-924

pared to the single variable groomed mass performance, in-925

dicating that there is complementary information between926

the different groomed masses. In addition, there is an im-927

provement in the background rejection when the groomed928

masses are combined with the ungroomed mass, indicating929

that grooming removes some useful discriminatory informa-930

tion from the jet. These observations are explored further in931

the section below.932

Generally one can see that the R=0.8 jets offer the best933

two-variable combined performance in all pT bins explored934

here. This is despite the fact that in the highest 1.0-1.1 GeV935

pT bin the average separation of the quarks from the W936

decay is much smaller than 0.8, and well within 0.4. This937

conclusion could of course be susceptible to pile-up, which938

is not considered in this study.939

6.3.1 Mass + Substructure Performance940

As already noted, the largest background rejection at 70%941

signal efficiency are in general achieved using those two942

variable BDT combinations which involve a groomed mass943

and a non-mass substructure variable. For both R=0.8 and944

R=1.2 jets, the rejection power of these two variable combi-945

nations increases substantially with increasing pT , at least946

within the pT range considered here.947

For a jet radius of R=0.8, across the full pT range con-948

sidered, the groomed mass + substructure variable combina-949

tions with the largest background rejection are those which950
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(a) anti-kT R=0.4, pT 1.0-1.1 TeV bin (b) anti-kT R=1.2, pT 1.0-1.1 TeV bin

(c) anti-kT R=0.4, pT 1.0-1.1 TeV bin (d) anti-kT R=1.2, pT 1.0-1.1 TeV bin

Fig. 20 The Soft-drop β = 2 and pruned groomed mass distribution for signal and background R=0.4 and R=1.2 jets in the 1.0-1.1 TeV pT bin.

involve Cβ=1
2 . For example, in combination with mβ=2

sd , this951

produces a five-, eight- and fifteen-fold increase in back-952

ground rejection compared to using the groomed mass alone.953

In Figure 22 the low degree of correlation between mβ=2
sd954

versus Cβ=1
2 that leads to these large improvements in back-955

ground rejection can be seen. One can also see that what956

little correlation exists is rather non-linear in nature, chang-957

ing from a negative to a positive correlation as a function of958

the groomed mass, something which helps to improve the959

background rejection in the region of the W mass peak.960

However, when we switch to a jet radius of R=1.2 the961

picture for Cβ=1
2 combinations changes dramatically. These962

become significantly less powerful, and the most powerful963

variable in groomed mass combinations becomes τ
β=1
21 for964

all jet pT considered. Figure 23 shows the correlation be-965

tween mβ=2
sd and Cβ=1

2 in the pT 1.0 - 1.2 TeV bin for the966

various jet radii considered. Figure 24 is the equivalent set of967

distributions for mβ=2
sd and τ

β=1
21 . One can see from Figure 23968

that, due to the sensitivity of the observable to to soft, wide-969

angle radiation, as the jet radius increases Cβ=1
2 increases970

and becomes more and more smeared out for both signal and971

background, leading to worse discrimination power. This972

does not happen to the same extent for τ
β=1
21 . We can see973

from Figure 24 that the negative correlation between mβ=2
sd974

and τ
β=1
21 that is clearly visible for R=0.4 decreases for larger975

jet radius, such that the groomed mass and substructure vari-976

able are far less correlated and τ
β=1
21 offers improved dis-977

crimination within a mβ=2
sd mass window.978
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(a) anti-kT R=0.8, pT 1.0-1.1 TeV bin (b) anti-kT R=1.2, pT 1.0-1.1 TeV bin

(c) anti-kT R=0.8, pT 1.0-1.1 TeV bin (d) anti-kT R=1.2, pT 1.0-1.1 TeV bin

Fig. 21 The τ
β=1
21 and Cβ=1

2 distributions for signal and background R=0.8 and R=1.2 jets in the 1.0-1.1 TeV pT bin.

6.3.2 Mass + Mass Performance979

The different groomed masses and the ungroomed mass are980

of course not fully correlated, and thus one can always see981

some kind of improvement in the background rejection (rel-982

ative to the single mass performance) when two different983

mass variables are combined in the BDT. However, in some984

cases the improvement can be dramatic, particularly at higher985

pT , and particularly for combinations with the ungroomed986

mass. For example, in Figure 17 we can see that in the pT987

1.0-1.1 TeV bin the combination of pruned mass with un-988

groomed mass produces a greater than eight-fold improve-989

ment in the background rejection for R=0.4 jets, a greater990

than five-fold improvement for R=0.8 jets, and a factor∼two991

improvement for R=1.2 jets. A similar behaviour can be seen992

for mMDT mass. In Figures 25, 26 and 27 is shown the 2-D993

correlation plots of the pruned mass versus the ungroomed994

mass separately for the WW signal and gg background sam-995

ples in the pT 1.0-1.1 TeV bin, for the various jet radii996

considered. For comparison, the correlation of the trimmed997

mass with the ungroomed mass, a combination that does not998

improve on the single mass as dramatically, is shown. In all999

cases one can see that there is a much smaller degree of cor-1000

relation between the pruned mass and the ungroomed mass1001

in the backgrounds sample than for the trimmed mass and1002

the ungroomed mass. This is most obvious in Figure 25,1003

where the high degree of correlation between the trimmed1004

and ungroomed mass is expected, since with the parameters1005

used (in particular Rtrim = 0.2) we cannot expect trimming1006

to have a significant impact on an R=0.4 jet. The reduced1007

correlation with ungroomed mass for pruning in the back-1008

ground means that, once we have made the requirement that1009
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(a) pT 300-400 GeV

(b) pT 500-600 GeV

(c) pT 1.0-1.1 TeV

Fig. 22 2-D plots showing mβ=2
sd versus Cβ=1

2 for R=0.8 jets in the various pT bins considered.
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(a) pT R=0.4

(b) pT R=0.8

(c) pT R=1.2

Fig. 23 2-D plots showing mβ=2
sd versus Cβ=1

2 for R=0.4, 0.8 and 1.2 jets in the pT 1.0-1.1 TeV bin.
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(a) pT R=0.4

(b) pT R=0.8

(c) pT R=1.2

Fig. 24 2-D plots showing mβ=2
sd versus τ

β=1
21 for R=0.4, 0.8 and 1.2 jets in the pT 1.0-1.1 TeV bin.
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the pruned mass is consistent with a W (i.e. ∼80 GeV), a1010

relatively large difference between signal and background1011

in the ungroomed mass still remains, and can be exploited1012

to improve the background rejection further. In other words,1013

many of the background events which pass the pruned mass1014

requirement do so because they are shifted to lower mass (to1015

be within a signal mass window) by the grooming, but these1016

events still have the property that they look very much like1017

background events before the grooming. A single require-1018

ment on the groomed mass only does not exploit this. Of1019

course, the impact of pile-up, not considered in this study,1020

could significantly limit the degree to which the ungroomed1021

mass could be used to improve discrimination in this way.1022

6.3.3 “All Variables” Performance1023

As well as the background rejection at a fixed 70% sig-1024

nal efficiency for two-variable combinations, Figures 15, 161025

and 17 also report the background rejection achieved by1026

a combination of all the variables considered into a single1027

BDT discriminant. One can see that, in all cases, the re-1028

jection power of this “all variables” BDT is significantly1029

larger than the best two-variable combination. This indicates1030

that beyond the best two-variable combination there is still1031

significant complementary information availiable in the re-1032

maining variables in order to improve the discrimination of1033

signal and background. How much complementary informa-1034

tion is available appears to be pT dependent. In the lower pT1035

300-400 and 500-600 GeV bins the background rejection of1036

the “all variables” combination is a factor∼ 1.5 greater than1037

the best two-variable combination, but in the highest pT bin1038

it is a factor ∼ 2.5 greater.1039

The final column in Figures 15, 16 and 17 allows us1040

to explore the all variables performance a little further. It1041

shows the background rejection for three variable BDT com-1042

binations of mβ=2
sd +Cβ=1

2 +X , where X is the variable on1043

the y-axis. For jets with R=0.4 and R=0.8, the combination1044

mβ=2
sd +Cβ=1

2 is the best performant (or very close to the best1045

performant) two-variable combination in every pT bin con-1046

sidered. For R=1.2 this is not the case, as Cβ=1
2 is superceded1047

by τ
β=1
21 in performance, as discussed earlier. Thus, in con-1048

sidering the three-variable combination results it is best to1049

focus on the R=0.4 and R=0.8 cases. Here we see that, for1050

the lower pT 300-400 and 500-600 GeV bins, adding the1051

third variable to the best two-variable combination brings us1052

to within∼ 15% of the “all variables” background rejection.1053

However, in the highest pT 1.0-1.1 TeV bin, whilst adding1054

the third variable does improve the performance consider-1055

ably, we are still ∼ 40% from the observed “all variables”1056

background rejection, and clearly adding a fourth or maybe1057

even fifth variable would bring considerable gains. In terms1058

of which variable offers the best improvement when added1059

to the mβ=2
sd +Cβ=1

2 combination, it is hard to see an obvious1060

pattern; the best third variable changes depending on the pT1061

and R considered.1062

In conclusion, it appears that there is a rich and com-1063

plex structure in terms of the degree to which the discrimina-1064

tory information provided by the set of variables considered1065

overlaps, with the degree of overlap apparently decreasing at1066

higher pT . This suggests that in all pT ranges, but especially1067

at higher pT , there are substantial performance gains to be1068

made by designing a more complex multivariate W tagger.1069

6.4 Conclusions1070

We have studied the performance, in terms of the degree to1071

which a hadronically decaying W boson can be separated1072

from a gluonic background, of a number of groomed jet1073

masses, substructure variables, and BDT combinations of1074

the above. We have used this to build a picture of how the1075

discriminatory information contained in the variables over-1076

laps, and how this complementarity between the variables1077

changes with pT and anti-kT distance parameter R.1078

In terms of the performance of individual variables, we1079

find that, in agreement with other studies [56], in general the1080

groomed masses perform best, with a background rejection1081

power that increases with increasing pT , but which is more1082

constant with respect to changes in R. We have explained1083

the dependence of the groomed mass performance on pT1084

and R using the understanding of the QCD mass distribu-1085

tion gleaned in Section 5.4. Conversely, the performance of1086

other substructure variables, such as Cβ=1
2 and τ

β=1
21 is more1087

susceptible to changes in radius, with background rejection1088

power decreasing with increasing R. This is due to the in-1089

herent sensitivity of these observables to soft, wide angle1090

radiation.1091

The best two-variable performance is obtained by com-1092

bining a groomed mass with a substructure variable. Which1093

particular substructure variable works best in combination1094

is strongly dependent on pT and R. Cβ=1
2 offers significant1095

complimentarity to groomed mass at smaller R, owing to the1096

small degree of correlation between the variables. However,1097

the sensitivity of Cβ=1
2 to soft, wide-angle radiation leads to1098

worse discrimination power at large R, where τ
β=1
21 performs1099

better in combination. Our studies also demonstrate the po-1100

tential for enhanced discrmination by combining groomed1101

and ungroomed mass information, although the use of un-1102

groomed mass in this may in practice be limited by the pres-1103

ence of pile-up that is not considered in these studies.1104

By examining the performance of a BDT combination of1105

all the variables considered, it is clear that there are poten-1106

tially substantial performance gains to be made by designing1107

a more complex multivariate W tagger, especially at higher1108

pT .1109
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(a) Pruned mass vs ungroomed mass

(b) Trimmed mass vs ungroomed mass

Fig. 25 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pT 1.0-1.1 TeV bin using the
anti-kT R=0.4 algorithm.

7 Top Tagging1110

In this section, we study the identification of boosted top1111

quarks at Run II of the LHC. Boosted top quarks result in1112

large-radius jets with complex substructure, containing a b-1113

subjet and a boosted W . The additional kinematic handles1114

coming from the reconstruction of the W mass and b-tagging1115

allow a very high degree of discrimination of top quark jets1116

from QCD backgrounds. We study fully hadronic decays of1117

the top quark.1118

We consider top quarks with moderate boost (600-10001119

GeV), and perhaps most interestingly, at high boost (& 15001120

GeV). Top tagging faces several challenges in the high-pT1121

regime. For such high-pT jets, the b-tagging efficiencies are1122

no longer reliably known. Also, the top jet can also accom-1123

panied by additional radiation with pT ∼mt , leading to com-1124

binatoric ambiguities of reconstructing the top and W , and1125

the possibility that existing taggers or observables shape the1126

background by looking for subjet combinations that recon-1127

struct mt /mW . To study this, we examine the performance of1128

both mass-reconstruction variables, as well as shape observ-1129

ables that probe the three-pronged nature of the top jet and1130

the accompanying radiation pattern.1131

We use the top quark MC samples for each bin described1132

in Section 2.2. The analysis relies on FASTJET 3.0.3 for jet1133

clustering and calculation of jet substructure observables.1134

Jets are clustered using the anti-kt algorithm. An upper and1135

lower pT cut are applied after jet clustering to each sample1136

to ensure similar pT spectra in each bin. The bins in lead-1137

ing jet pT that are investigated for top tagging are 600-7001138

GeV, 1-1.1 TeV, and 1.5-1.6 TeV. Jets are clustered with radii1139

R= 0.4, 0.8, and 1.2; R= 0.4 jets are only studied in the 1.5-1140
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(a) Pruned mass vs ungroomed mass

(b) Trimmed mass vs ungroomed mass

Fig. 26 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pT 1.0-1.1 TeV bin using the
anti-kT R=0.8 algorithm.

1.6 TeV bin because for top quarks with this boost, the top1141

decay products are all contained within an R = 0.4 jet.1142

7.1 Methodology1143

We study a number of top-tagging strategies, in particular:1144

1. HEPTopTagger1145

2. Johns Hopkins Tagger (JH)1146

3. Trimming1147

4. Pruning1148

The top taggers have criteria for reconstructing a top and1149

W candidate, and a corresponding top and W mass, as de-1150

scribed in Section 3.3, while the grooming algorithms (trim-1151

ming and pruning) do not incorporate a W -identification step.1152

For a level playing field, where grooming is used we con-1153

struct a W candidate mass, mW , from the three leading sub-1154

jets by taking the mass of the pair of subjets with the smallest1155

invariant mass; in the case that only two subjets are recon-1156

structed, we take the mass of the leading subjet. The top1157

mass, mt , is the mass of the groomed jet. All of the above1158

taggers and groomers incorporate a step to remove pile-up1159

and other soft radiation.1160

We also consider the performance of the following jet1161

shape observables:1162

– The ungroomed jet mass.1163

– N-subjettiness ratios τ2/τ1 and τ3/τ2 with β = 1 and the1164

“winner-takes-all” axes.1165

– 2-point energy correlation function ratios Cβ=1
2 and Cβ=1

3 .1166

– The pruned Qjet mass volatility, ΓQjet.1167
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(a) Pruned mass vs ungroomed mass

(b) Trimmed mass vs ungroomed mass

Fig. 27 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pT 1.0-1.1 TeV bin using the
anti-kT R=1.2 algorithm.

In addition to the jet shape performance, we combine the1168

jet shapes with the mass-reconstruction methods described1169

above to determine the optimal combined performance.1170

For determining the performance of multiple variables,1171

we combine the relevant tagger output observables and/or jet1172

shapes into a boosted decision tree (BDT), which determines1173

the optimal cut. Additionally, because each tagger has two1174

input parameters, as described in Section 3.3, we scan over1175

reasonable values of the parameters to determine the optimal1176

value that gives the largest background rejection for each top1177

tagging signal efficiency. This allows a direct comparison1178

of the optimized version of each tagger. The input values1179

scanned for the various algorithms are:1180

– HEPTopTagger: m ∈ [30,100] GeV, µ ∈ [0.5,1]1181

– JH Tagger: δp ∈ [0.02,0.15], δR ∈ [0.07,0.2]1182

– Trimming: fcut ∈ [0.02,0.14], Rtrim ∈ [0.1,0.5]1183

– Pruning: zcut ∈ [0.02,0.14], Rcut ∈ [0.1,0.6]1184

7.2 Single-observable performance1185

We start by investigating the behaviour of individual jet sub-1186

structure observables. Because of the rich, three-pronged struc-1187

ture of the top decay, it is expected that combinations of1188

masses and jet shapes will far outperform single observables1189

in identifying boosted tops. However, a study of the top-1190

tagging performance of single variables facilitates a direct1191

comparison with the W tagging results in Section 6, and also1192

allows a straightforward examination of the performance of1193

each observable for different pT and jet radius.1194

Fig. 28 shows the ROC curves for each of the top-tagging1195

observables, with the bare (ungroomed) jet mass also plotted1196

for comparison. The jet shape observables all perform sub-1197
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stantially worse than jet mass, unlike W tagging for which1198

several observables are competitive with or perform better1199

than jet mass (see, for example, Fig. 10). To understand1200

why this is the case, consider N-subjettiness. The W is two-1201

pronged and the top is three-pronged; therefore, we expect1202

τ21 and τ32 to be the best-performant N-subjettiness ratio, re-1203

spectively. However, τ21 also contains an implicit cut on the1204

denominator, τ1, which is strongly correlated with jet mass.1205

Therefore, τ21 combines both mass and shape information1206

to some extent. By contrast, and as is clear in Fig.28(a), the1207

best shape for top tagging is τ32, which contains no informa-1208

tion on the mass. Therefore, it is unsurprising that the shapes1209

most useful for top tagging are less sensitive to the jet mass,1210

and under-perform relative to the corresponding observables1211

for W tagging.1212

Of the two top tagging algorithms, we can see from Fig-1213

ure 28 that the Johns Hopkins (JH) tagger out-performs the1214

HEPTopTagger in terms of its signal-to-background separa-1215

tion power in both the top and W candidate masses; this is1216

expected, as the HEPTopTagger was designed to reconstruct1217

moderate pT top jets in ttH events (for a proposal for a high-1218

pT variant of the HEPTopTagger, see [57]). In Figure 29 we1219

show the histograms for the top mass output from the JH1220

and HEPTopTagger for different R in the pT 1.5-1.6 TeV1221

bin, and in Figure 30 for different pT at at R =0.8, optimized1222

at a signal efficiency of 30%. One can see from these fig-1223

ures that the likely reason for the better performance of the1224

JH tagger is that, in the HEPTopTagger algorithm, the jet is1225

filtered to select the five hardest subjets, and then three sub-1226

jets are chosen which reconstruct the top mass. This require-1227

ment tends to shape a peak in the QCD background around1228

mt for the HEPTopTagger, while the JH tagger has no such1229

requirement. It has been suggested [58] that performance in1230

the HEPTopTagger may be improved by selecting the three1231

subjets reconstructing the top only among those that pass the1232

W mass constraints, which somewhat reduces the shaping of1233

the background. The discrepancy between the JH and HEP-1234

TopTaggers is more pronounced at higher pT and larger jet1235

radius (see Figs. 33 and 36).1236

We also see in Figure 28(b) that the top mass from the1237

JH tagger and the HEPTopTagger has superior performance1238

relative to either of the grooming algorithms; this is because1239

the pruning and trimming algorithms do not have inherent1240

W -identification steps and are not optimized for this pur-1241

pose. Indeed, because of the lack of a W -identification step,1242

grooming algorithms are forced to strike a balance between1243

under-grooming the jet, which broadens the signal peak due1244

to UE contamination and features a larger background rate,1245

and over-grooming the jet, which occasionally throws out1246

the b-jet and preserves only the W components inside the1247

jet. We demonstrate this effect in Figures 29 and 30, show-1248

ing that with εsig = 0.3− 0.35, the optimal performance of1249

the tagger over-grooms a substantial fraction of the jets (∼1250

20−30%), leading to a spurious second peak at the W mass.1251

This effect is more pronounced at large R and pT , since more1252

aggressive grooming is required in these limits to combat the1253

increased contamination from UE and QCD radiation.1254

In Figures 31 and 33 we directly compare ROC curves1255

for jet shape observable performance and top mass perfor-1256

mance respectively in the three different pT bins considered1257

whilst keeping the jet radius fixed at R=0.8. The input pa-1258

rameters of the taggers, groomers and shape variables are1259

separately optimized in each pT bin. One can see from Fig-1260

ure 31 that the tagging performance of jet shapes do not1261

change substantially with pT . The observables τ
(β=1)
32 and1262

Qjet volatility Γ have the most variation and tend to degrade1263

with higher pT , as can be seen in Figure 32. This makes1264

sense, as higher-pT QCD jets have more, harder emissions1265

within the jet, giving rise to substructure that fakes the sig-1266

nal. By contrast, from Figure 33 we can see that most of the1267

top mass observables have superior performance at higher1268

pT due to the radiation from the top quark becoming more1269

collimated. The notable exception is the HEPTopTagger, which1270

degrades at higher pT , likely in part due to the background-1271

shaping effects discussed earlier.1272

In Figures 34 and 36 we directly compare ROC curves1273

for jet shape observable performance and top mass perfor-1274

mance respectively for the three different jet radii considered1275

within the pT 1.5-1.6 TeV bin. Again, the input parameters1276

of the taggers, groomers and shape variables are separately1277

optimized for each jet radius. We can see from these figures1278

that most of the top tagging variables, both shape and recon-1279

structed top mass, perform best for smaller radius. This is1280

likely because, at such high pT , most of the radiation from1281

the top quark is confined within R = 0.4, and having a larger1282

jet radius makes the observable more susceptible to contam-1283

ination from the underlying event and other uncorrelated ra-1284

diation. In Figure 35, we compare the individual top signal1285

and QCD background distributions for each shape variable1286

considered in the pT 1.5-1.6 TeV bin for the various jet radii.1287

One can see that the distributions for both signal and back-1288

ground broaden with increasing R, degrading the discrimi-1289

nating power. For C(β=1)
2 and C(β=1)

3 , the background distri-1290

butions are shifted upward as well. Therefore, the discrim-1291

inating power generally gets worse with increasing R. The1292

main exception is for C(β=1)
3 , which performs optimally at1293

R = 0.8; in this case, the signal and background coinciden-1294

tally happen to have the same distribution around R = 0.4,1295

and so R = 0.8 gives better discrimination.1296

7.3 Performance of multivariable combinations1297

We now consider various BDT combinations of the observ-1298

ables from Section 7.2, using the techniques described in1299

Section 4. In particular, we consider the performance of in-1300
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Fig. 28 Comparison of single-variable top-tagging performance in the pT = 1−1.1 GeV bin using the anti-kT, R=0.8 algorithm.

dividual taggers such as the JH tagger and HEPTopTagger,1301

which output information about the top and W candidate1302

masses and the helicity angle; groomers, such as trimming1303

and pruning, which remove soft, uncorrelated radiation from1304

the top candidate to improve mass reconstruction, and to1305

which we have added a W reconstruction step; and the com-1306

bination of the outputs of the above taggers/groomers, both1307

with each other, and with shape variables such as N-subjettiness1308

ratios and energy correlation ratios. For all observables with1309

tuneable input parameters, we scan and optimize over real-1310

istic values of such parameters, as described in Section 7.1.1311

In Figure 37, we directly compare the performance of1312

the HEPTopTagger, the JH tagger, trimming, and pruning,1313

in the pT = 1− 1.1 TeV bin using jet radius R=0.8, where1314

both mt and mW are used in the groomers. Generally, we1315

find that pruning, which does not naturally incorporate sub-1316

jets into the algorithm, does not perform as well as the oth-1317

ers. Interestingly, trimming, which does include a subjet-1318

identification step, performs comparably to the HEPTopTag-1319

ger over much of the range, possibly due to the background-1320

shaping observed in Section 7.2. By contrast, the JH tag-1321

ger outperforms the other algorithms. To determine whether1322

there is complementary information in the mass outputs from1323

different top taggers, we also consider in Figure 37 a mul-1324

tivariable combination of all of the JH and HEPTopTagger1325

outputs. The maximum efficiency of the combined JH and1326

HEPTopTaggers is limited, as some fraction of signal events1327

inevitably fails either one or other of the taggers. We do see1328

a 20-50% improvement in performance when combining all1329

outputs, which suggests that the different algorithms used to1330

identify the top and W for different taggers contains com-1331

plementary information.1332

In Figure 38 we present the results for multivariable com-1333

binations of the top tagger outputs with and without shape1334

variables. We see that, for both the HEPTopTagger and the1335

JH tagger, the shape observables contain additional infor-1336

mation uncorrelated with the masses and helicity angle, and1337

give on average a factor 2-3 improvement in signal discrimi-1338

nation. We see that, when combined with the tagger outputs,1339

both the energy correlation functions C2 +C3 and the N-1340

subjettiness ratios τ21 + τ32 give comparable performance,1341

while the Qjet mass volatility is slightly worse; this is un-1342

surprising, as Qjets accesses shape information in a more1343

indirect way from other shape observables. Combining all1344
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Fig. 29 Comparison of top mass reconstruction with the Johns Hopkins (JH), HEPTopTaggers (HEP), pruning, and trimming at different R using
the anti-kT algorithm, pT = 1.5−1.6 TeV. Each histogram is shown for the working point optimized for best performance with mt in the 0.3−0.35
signal efficiency bin, and is normalized to the fraction of events passing the tagger. In this and subsequent plots, the HEPTopTagger distribution
cuts off at 500 GeV because the tagger fails to tag jets with a larger mass.
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(a) JH, pT = 600−700 GeV
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(c) JH, pT = 1.5−1.6 TeV
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Fig. 30 Comparison of top mass reconstruction with the Johns Hopkins (JH), HEPTopTaggers (HEP), pruning, and trimming at different pT using
the anti-kT algorithm, R = 0.8. Each histogram is shown for the working point optimized for best performance with mt in the 0.3− 0.35 signal
efficiency bin, and is normalized to the fraction of events passing the tagger.
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Fig. 31 Comparison of individual jet shape performance at different pT using the anti-kT R=0.8 algorithm.

shape observables with a single top tagger provides even1345

greater enhancement in discrimination power. We directly1346

compare the performance of the JH and HEPTopTaggers in1347

Figure 38(c). Combining the taggers with shape informa-1348

tion nearly erases the difference between the tagging meth-1349

ods observed in Figure 37; this indicates that combining the1350

shape information with the HEPTopTagger identifies the dif-1351

ferences between signal and background missed by the tag-1352

ger alone. This also suggests that further improvement to1353

discriminating power may be minimal, as various multivari-1354

able combinations are converging to within a factor of 20%1355

or so.1356

In Figure 39 we present the results for multivariable com-1357

binations of groomer outputs with and without shape vari-1358

ables. As with the tagging algorithms, combinations of groomers1359

with shape observables improves their discriminating power;1360
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Fig. 32 Comparison of ΓQjet and τ
β=1
32 at R = 0.8 and different values of the pT . These shape observables are the most sensitive to varying pT .
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Fig. 33 Comparison of top mass performance of different taggers at different pT using the anti-kT R=0.8 algorithm.

combinations with τ32 + τ21 perform comparably to those1361

with C3 +C2, and both of these are superior to combina-1362

tions with the mass volatility, Γ . Substantial improvement is1363

further possible by combining the groomers with all shape1364

observables. Not surprisingly, the taggers that lag behind1365

in performance enjoy the largest gain in signal-background1366

discrimination with the addition of shape observables. Once1367

again, in Figure 39(c), we find that the differences between1368

pruning and trimming are erased when combined with shape1369

information.1370

Finally, in Figure 40, we compare the performance of1371

each of the tagger/groomers when their outputs are com-1372

bined with all of the shape observables considered. One can1373

see that the discrepancies between the performance of the1374

different taggers/groomers all but vanishes, suggesting per-1375

haps that we are here utilising all available signal-background1376

discrmination information, and that this is the optimal top1377
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Fig. 34 Comparison of individual jet shape performance at different R in the pT = 1.5−1.6 TeV bin.

tagging performance that could be achieved in these condi-1378

tions.1379

Up to this point we have just considered the combined1380

multivariable performance in the pT 1.0-1.1 TeV bin with1381

jet radius R=0.8. We now compare the BDT combinations1382

of tagger outputs, with and without shape variables, at dif-1383

ferent pT . The taggers are optimized over all input parame-1384

ters for each choice of pT and signal efficiency. As with the1385

single-variable study, we consider anti-kT jets clustered with1386

R = 0.8 and compare the outcomes in the pT = 500− 6001387

GeV, pT = 1− 1.1 TeV, and pT = 1.5− 1.6 TeV bins. The1388

comparison of the taggers/groomers is shown in Figure 41.1389

The behaviour with pT is qualitatively similar to the be-1390

haviour of the mt observable for each tagger/groomer shown1391

in Figure 33; this suggests that the pT behaviour of the tag-1392

gers is dominated by the top mass reconstruction. As before,1393
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Fig. 35 Comparison of various shape observables in the pT = 1.5−1.6 TeV bin and different values of the anti-kT radius R.

the HEPTopTagger performance degrades slightly with in-1394

creased pT due to the background shaping effect, while the1395

JH tagger and groomers modestly improve in performance.1396

In Figure 42, we show the pT dependence of BDT com-1397

binations of the JH tagger output combined with shape ob-1398

servables. We find that the curves look nearly identical: the1399

pT dependence is dominated by the top mass reconstruc-1400

tion, and combining the tagger outputs with different shape1401

observables does not substantially change this behaviour.1402

The same holds true for trimming and pruning. By contrast,1403

HEPTopTagger ROC curves, shown in Figure 43, do change1404

somewhat when combined with different shape observables;1405

due to the suboptimal performance of the HEPTopTagger at1406

high pT , we find that combining the HEPTopTagger with1407

C(β=1)
3 , which in Figure 31(b) is seen to have some mod-1408

est improvement at high pT , can improve its performance.1409

Combining the HEPTopTagger with multiple shape observ-1410

ables gives the maximum improvement in performance at1411

high pT relative to at low pT .1412

1413

In Figure 44 we compare the BDT combinations of tag-1414

ger outputs, with and without shape variables, at different jet1415

radius R in the pT = 1.5−1.6 TeV bin. The taggers are opti-1416

mized over all input parameters for each choice of R and sig-1417

nal efficiency. We find that, for all taggers and groomers, the1418

performance is always best at small R; the choice of R is suf-1419

ficiently large to admit the full top quark decay at such high1420

pT , but is small enough to suppress contamination from ad-1421

ditional radiation. This is not altered when the taggers are1422

combined with shape observable. For example, in Figure 451423

is shown the depedence on R of the JH tagger when com-1424

bined with shape observables, where one can see that the1425
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Fig. 36 Comparison of top mass performance of different taggers at different R in the pT = 1.5−1.6 TeV bin.
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Fig. 37 The performance of the various taggers in the pT = 1− 1.1 TeV bin using the anti-kT R=0.8 algorithm. For the groomers a BDT com-
bination of the reconstructed mt and mW are used. Also shown is a multivariable combination of all of the JH and HEPTopTagger outputs. The
ungroomed mass performance is shown for comparison.
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Fig. 38 The performance of BDT combinations of the JH and HepTopTagger outputs with various shape observables in the pT = 1−1.1 TeV bin
using the anti-kT R=0.8 algorithm. Taggers are combined with the following shape observables: τ

(β=1)
21 + τ

(β=1)
32 , C(β=1)

2 +C(β=1)
3 , ΓQjet, and all of

the above (denoted “shape”).

R-dependence is identical for all combinations. The same1426

holds true for the HEPTopTagger, trimming, and pruning.1427

7.4 Performance at Sub-Optimal Working Points1428

Up until now, we have re-optimized our tagger and groomer1429

parameters for each pT , R, and signal efficiency working1430

point. In reality, experiments will choose a finite set of work-1431

ing points to use. How do our results hold up when this1432

is taken into account? To address this concern, we repli-1433

cate our analyses, but only optimize the top taggers for a1434

particular pT /R/efficiency and apply the same parameters1435

to other scenarios. This allows us to determine the extent1436

to which re-optimization is necessary to maintain the high1437

signal-background discrimination power seen in the top tag-1438

ging algorithms we study. The shape observables typically1439

do not have any input parameters to optimize. Therefore, we1440

focus on the taggers and groomers, and their combination1441

with shape observables, in this section.1442

Optimizing at a single pT : We show in Figure 46 the per-1443

formance of the top taggers, using just the reconstructed top1444

mass as the discriminating variable, with all input param-1445

eters optimized to the pT = 1.5− 1.6 TeV bin, relative to1446

the performance optimized at each pT . We see that while1447

the performance degrades by about 50% when the high-pT1448

optimized points are used at other momenta, this is only an1449

order-one adjustment of the tagger performance, with trim-1450

ming and the Johns Hopkins tagger degrading the most. The1451

jagged behaviour of the points is due to the finite resolu-1452

tion of the scan. We also observe a particular effect asso-1453

ciated with using suboptimal taggers: since taggers some-1454

times fail to return a top candidate, parameters optimized1455

for a particular efficiency εS at pT = 1.5− 1.6 TeV may1456

not return enough signal candidates to reach the same ef-1457

ficiency at a different pT . Consequently, no point appears1458

for that pT value. This is not often a practical concern, as1459

the largest gains in signal discrimination and significance1460

are for smaller values of εS, but it is something that must1461

be considered when selecting benchmark tagger parameters1462

and signal efficiencies.1463
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Fig. 39 The performance of the BDT combinations of the trimming and pruning outputs with various shape observables in the pT = 1−1.1 TeV bin
using the anti-kT R=0.8 algorithm. Groomer mass outputs are combined with the following shape observables: τ

(β=1)
21 + τ

(β=1)
32 , C(β=1)

2 +C(β=1)
3 ,

ΓQjet, and all of the above (denoted “shape”).
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Fig. 40 Comparison of the performance of the BDT combinations of all the groomer/tagger outputs with all the available shape observables in
the pT = 1− 1.1 TeV bin using the anti-kT R=0.8 algorithm. Tagger/groomer outputs are combined with all of the following shape observables:
τ
(β=1)
21 + τ
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2 +C(β=1)
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Fig. 41 Comparison of BDT combination of tagger performance at different pT using the anti-kT R=0.8 algorithm.

The degradation in performance is more pronounced for1464

the BDT combinations of the full tagger outputs, shown in1465

Figure 47), particularly at very low signal efficiency where1466

the optimization picks out a cut on the tail of some distri-1467

bution that depends precisely on the pT /R of the jet. Once1468

again, trimming and the Johns Hopkins tagger degrade more1469

markedly. Similar behaviour holds for the BDT combina-1470

tions of tagger outputs plus all shape observables.1471

1472

Optimizing at a single R: We perform a similar analysis,1473

optimizing tagger parameters for each signal efficiency at1474

R = 1.2, and then use the same parameters for smaller R, in1475

the pT 1.5-1.6 TeV bin. In Figure 48 we show the ratio of the1476

performance of the top taggers, using just the reconstructed1477

top mass as the discriminating variable, with all input pa-1478

rameters optimized to the R = 1.2 values compared to input1479

parameters optimized separately at each radius. While the1480

performance of each observable degrades at small εsig com-1481

pared to the optimized search, the HEPTopTagger fares the1482

worst as the observed is quite sensitive to the selected value1483

of R. It is not surprising that a tagger whose top mass recon-1484

struction is susceptible to background-shaping at large R and1485

pT would require a more careful optimization of parameters1486

to obtain the best performance.1487

The same holds true for the BDT combinations of the1488

full tagger outputs, shown in Figure 49). The performance1489

for the sub-optimal taggers is still within an O(1) factor1490

of the optimized performance, and the HEPTopTagger per-1491

forms better with the combination of all of its outputs rel-1492

ative to the performance with just mt . The same behaviour1493

holds for the BDT combinations of tagger outputs and shape1494

observables.1495

1496

Optimizing at a single efficiency: The strongest assump-1497

tion we have made so far is that the taggers can be reop-1498

timized for each signal efficiency point. This is useful for1499

making a direct comparison of the power of different top1500

tagging algorithms, but is not particularly practical for the1501

LHC analyses. We now consider the effects when the tagger1502

inputs are optimized once, in the εS = 0.3− 0.35 bin, and1503

then used to determine the full ROC curve. We do this in the1504

pT 1−1.1 TeV bin and with R = 0.8.1505

The performance of each tagger, normalized to its per-1506

formance optimized in each bin, is shown in Figure 50 for1507
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Fig. 42 Comparison of BDT combination of JH tagger + shape at different pT using the anti-kT R=0.8 algorithm.

cuts on the top mass and W mass, and in Figure 51 for BDT1508

combinations of tagger outputs and shape variables. In both1509

plots, it is apparent that optimizing the taggers in the 0.3-1510

0.35 efficiency bin gives comparable performance over ef-1511

ficiencies ranging from 0.2-0.5, although performance de-1512

grades at small and large signal efficiencies. Pruning appears1513

to give especially robust signal-background discrimination1514

without re-optimization, possibly due to the fact that there1515

are no absolute distance or pT scales that appear in the algo-1516

rithm. Figures 50 and 51 suggest that, while optimization at1517

all signal efficiencies is a useful tool for comparing differ-1518

ent algorithms, it is not crucial to achieve good top-tagging1519

performance in experiments.1520

7.5 Conclusions1521

We have studied the performance of various jet substructure1522

observables, groomed masses, and top taggers to study the1523

performance of top tagging at different pT and jet radius pa-1524

rameter. At each pT , R, and signal efficiency working point,1525

we optimize the parameters for those observables with tune-1526

able inputs. Overall, we have found that these techniques,1527

individually and in combination, continue to perform well1528

at high pT , which is important for future LHC running. In1529

general, the John Hopkins tagger performs best, while jet1530

grooming algorithms under-perform relative to the best top1531

taggers due to the lack of an optimized W -identification step;1532

as expected from its design, the HEPTopTagger performance1533

degrades at high pT . Tagger performance can be improved1534

by a further factor of 2-4 through combination with jet sub-1535

structure observables such as τ32, C3, and Qjet mass volatil-1536

ity; when combined with jet substructure observables, the1537

performance of various groomers and taggers becomes very1538

comparable, suggesting that, taken together, the observables1539

studied are sensitive to nearly all of the physical differences1540

between top and QCD jets. A small improvement is also1541

found by combining the Johns Hopkins and HEPTopTag-1542

gers, indicating that different taggers are not fully correlated.1543

Comparing results at different pT and R, top tagging per-1544

formance is generally better at smaller R due to less contam-1545

ination from uncorrelated radiation. Similarly, most observ-1546

ables perform better at larger pT due to the higher degree1547

of collimation of radiation. Some observables fare worse at1548

higher pT , such as the N-subjettiness ratio τ32 and the Qjet1549
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Fig. 43 Comparison of BDT combination of HEP tagger + shape at different pT using the anti-kT R=0.8 algorithm.

mass volatility Γ , as higher-pT QCD jets have more, harder1550

emissions that fake the top jet substructure. The HEPTop-1551

Tagger is also worse at large pT due to the tendency of1552

the tagger to shape backgrounds around the top mass. The1553

pT - and R-dependence of the multivariable combinations is1554

dominated by the pT - and R-dependence of the top mass re-1555

construction component of the tagger/groomer.1556

Finally, we consider the performance of various observ-1557

able combinations under the more realistic assumption that1558

the input parameters are only optimized at a single pT , R, or1559

signal efficiency, and then the same inputs are used at other1560

working points. Remarkably, the performance of all observ-1561

ables is typically within a factor of 2 of the fully optimized1562

inputs, suggesting that while optimization can lead to sub-1563

stantial gains in performance, the general behaviour found1564

in the fully optimized analyses extends to more general ap-1565

plications of each variable. In particular, the performance of1566

pruning typically varies the least when comparing subopti-1567

mal working points to the fully optimized tagger due to the1568

scale-invariant nature of the pruning algorithm.1569

8 Summary & Conclusions1570

Furthering our understanding of jet substructure is crucial1571

to improving our understanding of QCD and enhancing the1572

prospects for the discovery of new physical processes at Run1573

II of the LHC. In this report we have studied the perfor-1574

mance of jet substructure techniques over a wide range of1575

kinematic regimes that will be encountered in Run II of the1576

LHC. The performance of observables and their correlations1577

have been studied by combining the variables into BDT dis-1578

criminants, and comparing the background rejection power1579

of this discriminant to the rejection power achieved by the1580

individual variables. The performance of “all variables” BDT1581

discriminants has also been investigated, to understand the1582

potential of the “ultimate” tagger where “all” available in-1583

formation (at least, all of that provided by the variables con-1584

sidered) is used.1585

We focused on the discrimination of quark jets from gluon1586

jets, and the discrimination of boosted W bosons and top1587

quarks from the QCD backgrounds. For each, we have iden-1588

tified the best-performing jet substructure observables, both1589

individually and in combination with other observables. In1590
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Fig. 44 Comparison of tagger and jet shape performance at different radius at pT = 1.5-1.6 TeV.

doing so, we have also provided a physical picture of why1591

certain sets of observables are (un)correlated. Additionally,1592

we have investigated how the performance of jet substruc-1593

ture observables varies with R and pT , identifying observ-1594

ables that are particularly robust against or susceptible to1595

these changes. In the case of q/g tagging, it seems that close1596

to the ultimate performance can be achieved by combining1597

the most powerful discriminant, the number of constituents1598

of a jet, with just one other variable, Cβ=1
1 (or τ

β=1
1 ). Many1599

of the other variables considered are highly correlated and1600

provide little additional discrimination. For both top and W1601

tagging, the groomed mass is a very important discriminat-1602

ing variable, but one that can be substantially improved in1603

combination with other variables. There is clearly a rich1604

and complex relationship between the variables considered1605

for W and top tagging, and the performance and correla-1606

tions between these variables can change considerably with1607

changing jet pT and R. In the case of W tagging, even af-1608

ter combining groomed mass with two other substructure1609

observables, we are still some way short of the ultimate tag-1610

ger performance, indicating the complexity of the informa-1611

tion available, and the complementarity between the observ-1612

ables considered. In the case of top tagging, we have shown1613

that the performance of both the John Hopkins and Hep Top1614

Tagger can be improved when their outputs are combined1615

with substructure observables such as τ32 and C3, and that1616

the performance of a discriminant built from groomed mass1617

information plus substructure observables is very compara-1618

ble to the performance of the taggers. We have optimized1619

the top taggers for a particular value of pT , R, and sig-1620

nal efficiency, and studied their performance at other work-1621

ing points. We have found that the performance of observ-1622

ables remains within a factor of two of the optimized value,1623

suggesting that the performance of jet substructure observ-1624

ables is not significantly degraded when tagger parameters1625

are only optimized for a few select benchmark points.1626

Our analyses were performed with ideal detector and1627

pile-up conditions in order to most clearly elucidate the un-1628

derlying physical scaling with pT and R. At higher boosts,1629

detector resolution effects will become more important, and1630

with the higher pile-up expected at Run II of the LHC, pile-1631

up mitigation will be crucial for future jet substructure stud-1632

ies. Future studies will be needed to determine which of the1633

observables we have studied are most robust against pile-up1634
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Fig. 45 Comparison of BDT combination of JH tagger + shape at different radius at pT = 1.5-1.6 TeV.

and detector effects, and our analyses suggest particularly1635

useful combinations of observables to consider in such stud-1636

ies.1637

At the new energy frontier of Run II of the LHC boosted1638

jet substructure techniques will be more central to our searches1639

for new physics than ever before, and by achieving a deeper1640

understanding of the underlying structure of quark, gluon,1641

W and Top initiated jets, and how the observables that try1642

to elucidate this structure are related, the hope is that more1643

sophisticated taggers can be commissioned that will extend1644

the reach for new physics as far as possible.1645
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Fig. 47 Comparison of BDT combination of tagger performance at different pT using the anti-kT R=0.8 algorithm; the tagger inputs are set to the
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Fig. 48 Comparison of top mass performance of different taggers at different R in the pT = 1500−1600 GeV bin; the tagger inputs are set to the
optimum value for R = 1.2.
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Fig. 49 Comparison of BDT combination of tagger performance at different radius at pT = 1.5-1.6 TeV; the tagger inputs are set to the optimum
value for R = 1.2.
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Fig. 50 Comparison of single-variable top-tagging performance in the pT = 1− 1.1 GeV bin using the anti-kT, R=0.8 algorithm; the inputs for
each tagger are optimized for the εsig = 0.3−0.35 bin.
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(b) HEPTopTagger + Shape
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(d) HEP vs. JH comparison (incl. shape)
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Fig. 51 The BDT combinations in the pT = 1− 1.1 TeV bin using the anti-kT R=0.8 algorithm. Taggers are combined with the following shape
observables: τ

(β=1)
21 + τ

(β=1)
32 , C(β=1)

2 +C(β=1)
3 , ΓQjet, and all of the above (denoted “shape”). The inputs for each tagger are optimized for the

εsig = 0.3−0.35 bin.
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