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Abstract Over the past five or so years a large number ofs1
observables have been proposed in the literature, and ex-s:
plored at the LHC experiments, that attempt to utilise the in-ss
ternal structure of highly boosted jets in order to distinguishsa
those that have been initiated by a quark, a gluon or by ass
heavier particle, such as a Top quark or W boson. This reportse
of the BOOST2013 workshop presents original particle-levels»
studies that attempt to improve our understanding of the re-ss
lationship between these observables, their complementarity so
and overlap, and the dependence of this on the underlying jeteo
parameters, especially the jet radius R and jet p7. This is eX-e1
plored in the context of quark/gluon discrimination, boosteds=
W-boson tagging and boosted Top quark tagging. 63

Keywords boosted objects - jet substructure - beyond- *

the-Standard-Model physics searches - Large Hadron
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1 Introduction ::
A characteristic feature of the proton-proton collisions at the ™
LHC is a center-of-mass energy, 7 TeV in 2010 and 2011,
8 TeV in 2012, and 13TeV with the start of the second phase™
of operation in 2015, that, even after accounting for par-"
ton desity functions, is large compared to the heaviest of™®
the known particles. Thus these particles (and potentially™®
also previously unknown ones) will often be produced at™
the LHC with substantial boosts. As a result, when decaying™®
hadronically, these particles will not be observed as multi-"®
ple jets in the detector, but rather as a single hadronic jet®®
with distinctive internal substructure. This realization has®*
led to a new era of sophistication in our understanding of®?
both standard QCD jets and jets containing the decay of a**
heavy particle, with an array of new jet observables and de-®*
tection techniques introduced and studies. To allow the ef-%
ficient sharing of results from these jet substructure studies®®
a series of BOOST Workshops have been held on a yearlys?
basis: SLAC (2009, [1]), Oxford University (2010, [2]),ss
Princeton University University (2011, [3]), IFIC Valenciase
(2012 [4]), University of Arizona (2013 [5]), and, most re-ee
cently, University College London (2014 [6]). After each ofe:
these meetings Working Groups have functioned during thes2
following year to generate reports highlighting the most in-93
teresting new results, including studies of ever maturing de-9+
tails. Previous BOOST reports can be found at [7-9]. 95
This report from BOOST 2013 thus views the study andee
implementation of jet substructure techniques as a fairly ma-s7
ture field, and focuses on the question of the correlationses
between the plethora of observables that have been devel-oo
oped and employed, and their dependence on the underlyico
ing jet parameters, especially the jet radius R and jet prio
Samples of quark-, gluon-, W- and Top-initiated jets are rezoz
constructed at the particle-level using FASTJET [10], and thaos

performance, in terms of separating signal from background,
of various groomed jet masses and jet substructure observ-
ables investigated through Receiver Operating Characteris-
tic (ROC) curves, which show the efficiency to “tag” the sig-
nal as a function of the efficiency (or rejection, being 1/effi-
ciency) to “tag” the background. In new analyses developed
for the report, we investigate the separation of a quark sig-
nal from a gluon background (q/g tagging), a W signal from
a gluon background (W-tagging) and a Top signal from a
mixed quark/gluon QCD background (Top-tagging). In the
case of Top-tagging, we also investigate the performance of
dedicated Top-tagging algorithms, the HepTopTagger [11]
and the Johns Hopkins Tagger [12]. Using multivariate tech-
niques, we study the degree to which the discriminatory in-
formation provided by the observables and taggers overlaps,
by examining in particular the extent to which the signal-
background separation performance increases when two or
more variables/taggers are combined, via a Boosted Deci-
sion Tree (BDT), into a single discriminant. Where possible,
we provide a discussion of the physics behind the structure
of the correlations and the pr and R scaling that we observe.

We present the performance of observables in ideal-
ized simulations without pile-up and detector resolution
effects, with the primary goal of studying the correla-
tions between observables and the dependence on jet ra-
dius and p7 . The relationship between substructure observ-
ables, their correlations, and how these depend on the jet ra-
dius R and jet pr should not be too sensitive to pile-up and
resolution effects; conducting studies using idealized sim-
ulations allows us to more clearly elucidate the underlying
physics behind the observed performance, and also provides
benchmarks for the development of techniques to mitigate
pile-up and detector effects. A full study of the performance
of pile-up and detector mitigation strategies is beyond the
scope of the current report, and will be the focus of upcom-
ing studies.

The report is organized as follows. In Section 2 we de-
scribe the generation of the Monte Carlo event samples that
we use in the studies that follow. In Section 3 we detail
the jet algorithms, observables and taggers investigated in
each section of the report, and in Section 4 the multivariate
techniques used to combine the one or more of the observ-
ables into single discriminants. In Section 5 we describe the
q/g-tagging studies, in Section 6 we describe the W-tagging
studies, and in Section 7 we describe the Top-tagging stud-
ies. Finally we offer some summary of the studies and gen-
eral conclusions in Section 8.

This report presents original analyses and discussions
pertaining to the performance of and correlations between
various jet substructure techniques applied to quark/gluon
discrimination, W -boson tagging, and Top tagging. The prin-
cipal organizers of and contributors to the analyses pre-
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sented in the report are: B. Cooper, S. D. Ellis, M. Freytiao
sis, A. Hornig, A. Larkoski, D. Lopez Mateos, B. Shuve, and

N. V. Tran. 150
151
152
2 Monte Carlo Samples 153
154
In the below sections the Monte Carlo samples used in thgss
q/g tagging, W tagging and Top tagging sections of this reqse
port are described. Note that in all cases the samples used

contain no additional proton-proton interactions beyond the

hard scatter (no pile-up), and there is no attempt to emulatgs,
the degradation in angular and p7 resolution that would re-

sult when reconstructing the jets inside a real detector. 158
159
160
2.1 Quark/gluon and W tagging

Samples were generated at /s = 8 TeV for QCD dijets, and,,
for WTW ™ pairs produced in the decay of a (pseudo) scalar,,
resonance and decaying hadronically. The QCD events wereg,,
split into subsamples of gg and g4 events, allowing for tests
of discrimination of hadronic W bosons, quarks, and gluons.

Individual gg and ¢4 samples were produced at leading
order (LO) using MADGRAPHS [13], while WTW ™~ sam-
ples were generated using the JHU GENERATOR [14-16]
to allow for separation of longitudinal and transverse polar;
izations. Both were generated using CTEQG6L1 PDFs [17],
The samples were produced in exclusive pr bins of width
100 GeV, with the slicing parameter chosen to be the pr of
any final state parton or W at LO. At the parton-level the
pr bins investigated were 300-400 GeV, 500-600 GeV and
1.0-1.1 TeV. The samples were then all showered through
PYTHIAS (version 8.176) [18] using the default tune 4C
[19]. For each of the various samples (W,q,g) and pr bins,
500,000 events were simulated.

2.2 Top tagging

Samples were generated at /s = 14 TeV. Standard Model,,
dijet and top pair samples were produced with SHERPA 2.0.Q5
[20-25], with matrix elements of up to two extra partons,e
matched to the shower. The top samples included only hadropic
decays and were generated in exclusive pr bins of width,s
100 GeV, taking as slicing parameter the maximum of the,,
top/anti-top pr. The QCD samples were generated with g4,
cut on the leading parton-level jet pr, where parton-level,,
jets are clustered with the anti-k; algorithm and jet radii of
R=0.4,0.8, 1.2. The matching scale is selected to be Qcyt =
40,60, 80 GeV for the p7 min = 600, 1000, and 1500 GeV bing,.
respectively. For the top samples, 100k events were gener-
ated in each bin, while 200k QCD events were generated in
each bin.

3 Jet Algorithms and Substructure Observables

In this section, we define the jet algorithms and observables
used in our analysis. Over the course of our study, we con-
sidered a larger set of observables, but for the final analysis,
we eliminated redundant observables for presentation pur-
poses. In Sections 3.1, 3.2, 3.3 and 3.4 we first describe the
various jet algorithms, groomers, taggers and other substruc-
ture variables used in these studies.

3.1 Jet Clustering Algorithms

Jet clustering: Jets were clustered using sequential jet clus-
tering algorithms [26] implemented in FASTJET 3.0.3. Final
state particles 7, j are assigned a mutual distance d;; and a
distance to the beam, d;g. The particle pair with smallest d;;
are recombined and the algorithm repeated until the small-
est distance is instead the distance to the beam, d;g, in which
case i is set aside and labelled as a jet. The distance metrics
are defined as

AR?,
. 2 2 i
dij = min(pr), pr) 75" (1)
2
dis = py|, @)
where AR}, = (An)* + (A¢)?. In this analysis, we use the

anti-k; algorithm (y= —1) [27], the Cambridge/Aachen (C/A)
algorithm (y = 0) [28, 29], and the k; algorithm (y = 1)
[30, 31], each of which has varying sensitivity to soft ra-
diation in defining the jet.

Qjets: We also perform non-deterministic jet clustering [32,
33]. Instead of always clustering the particle pair with small-
est distance d;;, the pair selected for combination is chosen
probabilistically according to a measure

3)

P’J o< efa (dijfdmin)/dmin ,

where dpi, is the minimum distance for the usual jet clus-
tering algorithm at a particular step. This leads to a differ-
ent cluster sequence for the jet each time the Qjet algorithm
is used, and consequently different substructure properties.
The parameter « is called the rigidity and is used to control
how sharply peaked the probability distribution is around the
usual, deterministic value. The Qjets method uses statistical
analysis of the resulting distributions to extract more infor-
mation from the jet than can be found in the usual cluster
sequence.

3.2 Jet Grooming Algorithms

Pruning: Given a jet, re-cluster the constituents using the
C/A algorithm. At each step, proceed with the merger as
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usual unless both 210

min(pri, pr 2m; =

min(P7iP1) o and ARy > 2 R, (42
Prij pPTj

213

in which case the merger is vetoed and the softer brancles
discarded. The default parameters used for pruning [34] ires
this study are zcy = 0.1 and R.y = 0.5. One advantage ofie
pruning is that the thresholds used to veto soft, wide-anglesr
radiation scale with the jet kinematics, and so the algorithnis
is expected to perform comparably over a wide range of mo=1e
menta. 220

221
Trimming: Given a jet, re-cluster the constituents into sub=22
jets of radius Ryim with the k; algorithm. Discard all subjets=s
i with 224

225

i

The default parameters used for trimming [35] in this stud}?27
are Ryim = 0.2 and fcut =0.03. 228

pri < feu PTJ-

229

Filtering: Given a jet, re-cluster the constituents into sub>>
jets of radius Rgy with the C/A algorithm. Re-define the jef31
to consist of only the hardest N subjets, where N is deter>
mined by the final state topology and is typically one moré™
than the number of hard prongs in the resonance decay (t6™*
include the leading final-state gluon emission) [36]. Whilé™
we do not independently use filtering, it is an important step®
of the HEPTopTagger to be defined later. =7

238

Soft drop: Given a jet, re-cluster all of the constituents using
240

the C/A algorithm. Iteratively undo the last stage of the C/A

clustering from j into subjets jj, jo. If =
242

AR12 ﬁ 243

< Zeut ( R ) ) (6244
245

discard the softer subjet and repeat. Otherwise, take j to bg,,
the final soft-drop jet [37]. Soft drop has two input params,,

eters, the angular exponent 8 and the soft-drop scale Zcyty,s
with default value z¢, = 0.1. 240

min(pr1, pr2)
Pr1+Ppr2

3.3 Jet Tagging Algorithms ::
Modified Mass Drop Tagger: Given a jet, re-cluster all oij
the constituents using the C/A algorithm. Iteratively undo255
the last stage of the C/A clustering from j into subjets ji, ja
with m; > mj,. If either

min(p},, p},)
m;

56
mj, > [lm; or AR%z < Yeuts (75
257

then discard the branch with the smaller transverse mass,,

mr = \/mler p%i, and re-define j as the branch with these

larger transverse mass. Otherwise, the jet is tagged. If de-
clustering continues until only one branch remains, the jet
is considered to have failed the tagging criteria [38]. In this
study we use by default u© = 1.0 (i.e. implement no mass
drop criteria) and ycy = 0.1.

Johns Hopkins Tagger: Re-cluster the jet using the C/A al-
gorithm. The jet is iteratively de-clustered, and at each step
the softer prong is discarded if its pr is less than §, DTiet-
This continues until both prongs are harder than the pr thresh-
old, both prongs are softer than the pt threshold, or if they
are too close (|An;;| +[A¢;;| < Op); the jet is rejected if ei-
ther of the latter conditions apply. If both are harder than the
pr threshold, the same procedure is applied to each: this re-
sults in 2, 3, or 4 subjets. If there exist 3 or 4 subjets, then the
jet is accepted: the top candidate is the sum of the subjets,
and W candidate is the pair of subjets closest to the W mass
[12]. The output of the tagger is my,, my, and 6y, a helicity
angle defined as the angle, measured in the rest frame of the
W candidate, between the top direction and one of the W
decay products. The two free input parameters of the John
Hopkins tagger in this study are 6, and g, defined above.

HEPTopTagger: Re-cluster the jet using the C/A algorithm.
The jet is iteratively de-clustered, and at each step the softer
prong is discarded if m; /mi, > u (there is not a significant
mass drop). Otherwise, both prongs are kept. This continues
until a prong has a mass m; < m, at which point it is added to
the list of subjets. Filter the jet using R, = min(0.3,AR;;),
keeping the five hardest subjets (where AR;; is the distance
between the two hardest subjets). Select the three subjets
whose invariant mass is closest to m; [11]. The output of the
tagger is my, my, and 6y, (defined above). The two free input
parameters of the HEPTopTagger in this study are m and y,
defined above.

Top Tagging with Pruning or Trimming: For comparison
with the other top taggers, we add a W reconstruction step
to the pruning and trimming algorithms described above.
A W candidate is found as follows: if there are two sub-
jets, the highest-mass subjet is the W candidate (because
the W prongs end up clustered in the same subjet); if there
are three subjets, the two subjets with the smallest invariant
mass comprise the W candidate. In the case of only one sub-
jet, no W is reconstructed.

3.4 Other Jet Substructure Observables

Jet substructure observables are calculated using jet con-
stituents prior to any grooming.
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Qjet mass volatility: As described above, Qjet algorithms
re-cluster the same jet non-deterministically to obtain a col-
lection of interpretations of the jet. For each jet interpreta-
tion, the pruned jet mass is computed with the default prun-
ing parameters. The mass volatility, I;e, is defined as [32]

277
n . <m3> - <m-]>2 (8578
Qjet = <m ]> ’ 279
where averages are computed over the Qjet interpretations.
We use a rigidity parameter of & = 0.1 (although other studs,,
ies suggest a smaller value of o may be optimal [32, 33]),
and 25 trees per event for all of the studies presented here. 4,
N-subjettiness: N-subjettiness [39] quantifies how well thegs
radiation in the jet is aligned along N directions. To computgss
N-subjettiness, ‘L'(ﬁ ), one must first identify N axes withinss
the jet. Then, 286

287

(9?83

289

1
oy = — Y primin (arE,....ARE,).
0

290
where distances are between particles i in the jet and the,,

axes, 202

(10}93

204

do=Y pri RP
i

295
and R is the jet clustering radius. The exponent f§ is a freees
parameter. There is also some choice in how the axes used tQo;
compute N-subjettiness are determined. The optimal configzes
uration of axes is the one that minimizes N-subjettiness; resee
cently, it was shown that the “winner-takes-all” (WTA) axesqo
can be easily computed and have superior performance com-
pared to other minimization techniques [40]. We use botH®*
the WTA and one-pass k; optimization axes in our analyses:*?

A more powerful discriminant is often the ratio, 202
304

Ty = 2 an”
N-1

While this is not an infrared-collinear (IRC) safe observableses
it is calculable [41] and can be made IRC safe with a loose

lower cut on Ty_j. 307

308

Energy correlation functions: The transverse momentuinsos

version of the energy correlation functions are defined asio

[42]: s11

312

N P13
H ARW}-) 334

315

N N—1
ECF(N,B)= ) (Hpm> (

i1<ip<..<iy€j \a=1

(12)16

where i is a particle inside the jet. It is preferable to work
in terms of dimensionless quantities, particularly the energy
correlation function double ratio:

C(B) _ ECF(N+1aﬁ)ECF(N_ 1’ﬁ)
N ECE(N, )2

. (13)

This observable measures higher-order radiation from leading-

order substructure. Note that Céo)

PTD introduced by CMS in [43].

is identical to the variable

4 Multivariate Analysis Techniques

Multivariate techniques are used to combine variables
into an optimal discriminant, and the extent to which the
discrimination power increases when this is done is used to
indicate how much the discriminatory information present
in the variables overlaps. An alternative strategy for study-
ing correlations in discrimination power that is not explored
here is “truth matching” [44].

In all cases the multivariate technique used to combine
variables is a boosted decision tree (BDT) as implemented in
the TMVA package [45]. We use the BDT implementation
including gradient boost. An example of the BDT settings
are as follows:

NTrees=1000
BoostType=Grad
Shrinkage=0.1
UseBaggedGrad=F
nCuts=10000
MaxDepth=3
UseYesNoLeaf=F
nEventsMin=200

Exact parameter values are chosen to best reduce the effect
of overtraining. Additionally, the simulated data were split
into training and testing samples and comparisons of the
BDT output were compared to reduced the effect of over-
training as well.

5 Quark-Gluon Discrimination

In this section, we examine the differences between quark-
and gluon-initiated jets in terms of substructure variables,
and to determine to what extent these variables are corre-
lated. Along the way, we provide some theoretical under-
standing of these observables and their performance. The
motivation for these studies comes not only from the desire
to “tag” a jet as originating from a quark or gluon, but also
to improve our understanding of the quark and gluon com-
ponents of the QCD backgrounds relative to boosted reso-
nances. While recent studies have suggested that quark/gluon



tagging efficiencies depend highly on the Monte Carlo genses
erator used[46, 47], we are more interested in understandingez
the scaling performance with pr and R, and the correlationsses
between observables, which are expected to be treated consee
sistently within a single shower scheme. 370
371
372
5.1 Methodology

373

4

These studies use the gg and gg MC samples, described pre-: :5
viously in Section 2. The showered events were clustered
with FASTJET 3.03 using the anti-kr algorithm with jet radii__
of R =0.4,0.8, 1.2. In both signal (quark) and backgrouncl78
(gluon) samples, an upper and lower cut on the leading jet

pr is applied after showering/clustering, to ensure similar

pr spectra for signal and background in each pr bin. The

bins in leading jet pr that are considered are 300-400 GeV,m
500-600 GeV, 1.0-1.1 TeV, for the 300-400 GeV, 500-600380
GeV, 1.0-1.1 TeV parton pr slices respectively. Various jeg81
grooming approaches are applied to the jets, as described igsz
Section 3.4. Only leading and subleading jets in each sam-
ple are used. The following observables are studied in thism

section:
385

— The number of constituents (Nonstits) in the jet. 386

The pruned Qjet mass volatility, Ijes.

387

1-point energy correlation functions, CF with § =0, 1, 22*®
1-subjettiness, ‘L’lﬁ with = 1, 2. The N-subjettiness axes.
. . . . . 390
are computed using one-pass k; axis optimization.

The ungroomed jet mass, m.

301

392

We will see below that, in terms of their jet-by-jet correses
lations and their ability to separate quark initiated jets fronzes
gluon initiated jets (hereafter called simply quark jets andes
gluon jets), these observables fall into five classes. The first,,
three, Neonstits» Qjer and Cf =0, form classes by themselvesor
(Classes I to III) in the sense that they each carry some indeses
pendent information about a jet and, when combined, prosee
vide substantially better quark jet and gluon jet separationg,
than either observable by itself. Of the remaining observse,
ables, C? =1 and 7P~ comprise a single class (Class IV )o2
in the sense that they exhibit similar distributions when ap=os
plied to a sample of jets, their jet-by-jet values are highlyioa
correlated, they exhibit very similar power to separate quarkos
jets and gluon jets (with very similar dependence on the jetos
parameters R and pr) and this separation power is essensor
tially unchanged when they are combined. The fifth classos
(Class V) is composed of C{s =2 Tf =2 and the (ungroomedyos
jet mass. Again the issue is that jet-by-jet correlations areio
strong (even though the individual observable distributionsi
are somewhat different), quark versus gluon separation powa:
is very similar (including the R and pr dependence) and litais
tle is achieved by combining more than one of these Obaia
servables. This class structure is not surprising given thatis

within a class the observables exhibit very similar depen-
dence on the kinematics of the underlying jet constituents.
For example, the members of Class V are constructed from
of a sum over pairs of constituents using products of the en-
ergy of each member of the pair times the angular separation
squared for the pair (for the mass case think in terms of mass
squared with small angular separations). By the same argu-
ment the Class IV and Class V observables will be seen to
be more similar than any other pair of classes, differing only
in the power () of the dependence on the angular separa-
tions, which will produce small but detectable differences.
We will return to a more complete discussion of jet masses
at the end of Section 5.

5.2 Single Variable Discrimination

The quark and gluon distributions of different substructure
observables are shown in Figure 1, which already illustrates
at least some of the points about the Classes made above. At
a fundamental level the primary difference between quark
jets and gluon jets is the color charge of the initiating parton,
typically expressed in terms of the ratio of the correspond-
ing Casimir factors Cr/Cs = 4/9. Since the quark has the
smaller color charge, it will radiate less than a corresponding
gluon and the resulting jet will contain fewer constituents.
This difference is clearly indicated in Figure 1(a), suggest-
ing that simply counting constituents will provide good sep-
aration between quark and gluon jets. In fact, among the ob-
servables considered, one can see by eye that Nonstits Should
provide the highest separation power, i.e., the quark and gluon
distributions are most distinct, as was originally noted in
[47, 48]. Figure 1 further suggests that Cf =0 should pro-

vide the next best separation followed by C? = as was also
found by the CMS and ATLAS Collaborations[46, 49].

To more quantitatively study the power of each observ-
able as a discriminator for quark/gluon tagging, ROC curves
are built by scanning each distribution and plotting the back-
ground efficiency (to select gluon jets) vs. the signal ef-
ficiency (to select quark jets). Figure 2 shows these ROC
curves for all of the substructure variables shown in Fig-
ure 1, along with the ungroomed mass, representing the best
performing mass variable, for R=0.4, 0.8 and 1.2 jets in
the pr = 300 — 400 GeV bin. In addition, the ROC curve
for a tagger built from a BDT combination of all the vari-
ables (see Section 4) is shown. Clearly, and as suggested ear-
lier, neongtis 1 the best performing variable for all Rs, even
though C{5 s close, particularly for R=0.8. Most other
variables have similar performance, except I je;, which shows
significantly worse discrimination (this may be due to our
choice of rigidity o = 0.1, with other studies suggesting that
a smaller value, such as @ = 0.01, produces better results[32,
33]). The combination of all variables shows somewhat bet-
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Fig. 1 Comparisons of quark and gluon distributions of different substructure variables (organized by Class) for leading jets in the py = 500 —
600 GeV bin using the anti-kt R = 0.8 algorithm.

ter discrimination, and we will discuss in more detail belowizs
the correlations between the observables and their impact on:zs
the combined discrimination power.

4.
We now examine how the performance of the substruc;

427

28

29

ture observables changes with pr and R. To present the re-

sults in a “digestible” fashion we will focus on the gluon

jet “rejection” factor, 1/€yye, for a quark signal efﬁciency‘,‘32
&sig, of 50 %. We can use the values of 1 / €pkg generated fog133

the 9 kinematic points introduced above (R = 0.4,0.8,1.2

and the 100 GeV pr bins with lower limits pr = 300GeV,
500GeV, 1000GeV) to generate surface plots. The surface
plots in Figure 3 indicate both the level of gluon rejection
and the variation with pr and R for each of the studied sin-
gle observable. The color shading is defined so that a change
in color corresponds to a change of about 0.4 in 1/gp,.
The colors have the same correlation with the magnitude of
1/&pkg in all of the plots, but repeat after a change of about
4. Thus “blue” corresponds to a value of about 2.5 in Fig-
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ure 3(b) and the values 6.5 and 10.5 in Figure 3(a), whilese
“yellow” corresponds to about 5 in Figures 3(c) to (h) andseo
about 9 in Figure 3(a).

461

We see, as expected, that the numerically largest rejec”*”
tion rates occur for the observable N.onsiits in Figure 3(a)',‘63
where the rejection factor is in the range 6 to 11 and varies*
rather dramatically with R. As R increases the jet collects”
more constituents from the underlying event, which are thé®®
same for quark and gluon jets, and the separation power de*®”
creases. At large R, there is some improvement with increas-""
ing pr due to the enhanced radiation, which does distinguish
quarks from gluons. Figure 3(b) confirms the limited effi4ee
cacy of the single observable Ipj., (at least for our paramearo
ter choices) with a rejection rate only in the range 2.5 to 2.8471
On the other hand, this observable probes a very differentz=
property of jet substructure, i.e., the sensitivity to detailedrs
changes in the grooming procedure, and this difference isza
suggested by the distinct R and pr dependence illustrated.s
in Figure 3(b). The rejection rate increases with increasinge
R and decreasing pr, since the distinction between quark.,
and gluon jets for this observable arises from the relativg,s
importance of the one “hard” gluon emission configuration,e
The role of this contribution is enhanced for both decreasings,
pr and increasing R. Figure 3(c) indicates that the observqg,
able C? =0 can, by itself, provide a rejection rate in the ranges:

7.8 to 8.6 (intermediate between the two previous observ-
ables) and again with distinct R and pr dependence. In this
case the rejection rate decreases slowly with increasing R
(B = 0 explicitly means that the angular dependence is much
reduced), while the rejection rate peaks at intermediate pr
values (an effect visually enhanced by the limited number of
pr values included). Both the distinct values of the rejection
rates and the differing R and pr dependence serve to con-
firm that these three observables tend to probe independent
features of the quark and gluon jets.

Figures 3(d) and (e) serve to confirm the very similar
properties of the Class IV observables C? =l and 77" (as
already suggested in Figures 1(d) and (e)) with essentially
identical rejection rates (4.1 to 5.4) and identical R and pr
dependence (a slow decrease with increasing R and an even
slower increase with increasing pr). A similar conclusion
for the Class V observables Cf :2, ng =2 and m with simi-
lar rejection rates in the range 3.5 to 5.3 and very similar
R and pr dependence (a slow decrease with increasing R
and an even slower increase with increasing pr). Arguably,
drawing a distinction between the Class IV and Class V ob-
servables, is a fine point, but the color shading does sug-
gest some distinction from the slightly smaller rejection rate
in Class V. Again the strong similarities between the plots
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Fig. 3 Surface plots of 1/gy, for all single variables considered for quark-gluon discrimination as functions of R and pr.

within the second and third rows in Figure 3 speaks to theee
common properties of the observables within the two classes.

500

501

502

In summary, the overall discriminating power between,s
quark and gluon jets tends to decrease with increasing Rsos
except for the Ipj.; observable, presumably primarily dugos
to the increasing contamination from the underlying eventsee
Since the construction of the Ipj,; observable explicitly ing,,
volves pruning away the soft, large angle constituents, it ies
not surprising that it exhibits different R dependence. In genseo
eral the discriminating power increases slowly and monos,,
tonically with pr (except for the Ipj,; and Cf =0 observsa
ables) presumably because there is overall more (color charga=
related) radiation as pr increasing providing some increaseis
in discrimination (except for the Ipj.; observable). We turna
now to the question of the impact of employing more thanis

one observable at a time. 516

5.3 Combined Performance and Correlations

The quark/gluon tagging performance can be further im-
proved over cuts on single observables by combining mul-
tiple observables in a BDT; due to the challenging nature
of g/g-tagging, any improvement in performance with mul-
tivariable techniques could be critical for certain analyses,
and the improvement could be more substantial in data than
the marginal benefit found in MC and shown in Fig. 2. Fur-
thermore, insight can be gained into the features allowing
for quark/gluon discrimination if the origin of the improve-
ment is understood. To quantitatively study this improve-
ment, we build quark/gluon taggers from every pair-wise
combination of variables studied in the previous section for
comparison with the all-variable combination. To illustrate
the results achieved in this way we will exhibit the same
sort 2D of surface plots as in Figure 3. Based on our dis-
cussion of the correlated properties of observables within a
single class, we expect little improvement in the rejection
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Fig. 4 Surface plots of 1/gyg for the indicated pairs of variables from Classes IV and V considered for quark-gluon discrimination as functions

of R and pr.

rate when combining observables from the same class andse
substantial improvement when combining observables froms-
different classes. 558

Figure 4 shows pairwise plots for (a) Class IV and (bj*°
Class V. Comparing to the corresponding plots in Figure 3*°
we see that combining C? =1y Pt provides a small im=**
provement in the rejection rate of about 10% (0.5 out of
5) with essentially no change in the R and pr dependence.’
while combining C? =24 P2 yields a rejection rate that s
essentially identical to the single observable rejection rate::
for all R and pr values (with a similar conclusion if one o£67
these observables is replaced with the ungroomed jet mass
m). This again confirms that expectation that the observables5 69
within a single class effectively probe the same jet proper;

ties.
571

Next we consider the cross-class pairs of observables insz-
dicated in Figure 5, where only one member of Classes [Vszs
and V is included. As expected the largest rejection rates are
obtained from combining another observable with Nconstits
(Figures 5(a) to (d)). In general, the rates are larger thanza
for the single variable case with similar R and pr depen-
dence. In particular, the pair Nconstits + le =1 yields rejection?s
rates in the range 6.4 to 14.7 (6.4 to 15 for the similar casé7e
Neonstits + ‘L’fj =1) with the largest values at small R and largé™

pr- The other pairings with N¢ongits (€xcept with ’L’lﬁ =1) yiekf78
smaller rejection rates and smaller dynamic range. The pait
Neonstits + le =0 (Figure 5(d)) exhibits the smallest range of
rates (8.3 to 11.3) suggesting that the differences between
these two observables serve to substantially reduce the R
and pr dependence for the pair, but this also reduces the
possible optimization. The other pairs indicated exhibit sim>"
ilar behavior. The pair rejection rates are somewhat better
than either observable alone (since we are always combin-
ing from different classes), and the R and pr dependence is
generally similar to the more variant single observable case.
The smallest R and pr variation always occurs when pairing589

with Cf =0. Changing any of the observables in these pairs::z

with a different observable in the same class (e.g., Cf =2 for,,

B=

=2 produces very similar results (at the few percent level)sos

Figure 5(k) shows the result of a BDT analysis including all
of the current observables with rejection rates in the range
10.5 to 17.1. This is a somewhat narrower range than in Fig-
ure 5(b) but with somewhat larger maximum values.
Another way to present the same data but by fixing R
and pr and showing all single observables and pairs of ob-
servables at once is in terms of the “matrices” indicated in
Figures 6 and 7. The numbers in each cell are the now famil-
iar rejection factor values of 1/&y, (gluons) for &, = 50%
(quarks). Figure 6 corresponds pr =1 —1.1 TeV and R =
0.4,0.8,1.2, while Figure 7 is for R = 0.4 and the 3 p7 bins.
The actual numbers should be familiar from the discussion
above with the single observable rejections rates appearing
on the diagonal and the pairwise results off the diagonal.
The correlations indicated by the shading should be largely
understood as indicating the organization of the observables
into the now familiar classes. The all-observable (BDT) re-
sult appears as the number at the lower right in each plot.

5.4 QCD Jet Masses

To close the discussion of the tagging of jets as either quark
jets or gluon jets we provide some insight into the behav-
ior of the masses of such QCD jets, both with and without
grooming. Recall that, in practice, an identified jet is simply
a list of constituents, i.e., final state particles. To the extent
that the masses of these individual constituents are irrele-
vant, typically because the detected constituents are rela-
tivistic, each constituent has a “well” defined 4-momentum.
It follows that the 4-momentum of the jet is simply the sum
of the 4-momenta of the constituents and its square is the
jet mass squared. We have already seen one set of jet mass
distributions in Figure 1(h) for quark and gluon jets found
with the anti-kt algorithm with R = 0.8 and pr in the bin
500-600 GeV. If we consider the mass distributions for other
kinematic points (other values of R and pr), we observe
considerable variation but that variation can largely be re-
moved by plotting versus the scaled variable m/pr /R. Sim-
ply on dimensional grounds we know that jet mass must
scale essentially linearly with pr, with the remaining pr
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Fig. 5 Surface plots of 1/gye for the indicated pairs of variables from different classes considered for quark-gluon discrimination as functions of
R and pr.
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dependence arising predominantly from the running of thei=
coupling, o (pr). The R dependence is also crudely lineis
ear as the mass scales approximately with the largest ansia
gular opening between any 2 constituents and that is seéis
by R. The mass distributions for quark and gluon jets verse
sus m/pr /R for all of our kinematic points are indicated ira7
Figure 8, where we use a logarithmic scale on the y-aXisis
to clearly exhibit the behavior of these distributions over @10
large dynamic range. We observe that the distributions foszo
the different kinematic points do approximately scale, i.e.¢21
the simple arguments above do capture most of the variationz=
with R and pr. We will consider shortly an explanation of23
the residual non-scaling. A more quantitative understandingza
of jet mass distributions requires all-orders calculations im2s
QCD, which have been performed for ungroomed jet masszs
spectra at high logarithmic accuracy, both in the context ofzz
direct QCD resummation [50, 51] and Soft Collinear Effecszs
tive Theory [52, 53]. 620

630

Several features of Figure 8 can be easily understood.
The distributions all cut-off rapidly for m/py /R > 0.5, which
is understood as the precise limit (maximum mass) for a
jet composed of just 2 constituents. As expected from the
soft and collinear singularities in QCD, the mass distribu-
tion peaks at small mass values. The actual peak is “pushed”
away from the origin by the so-called Sudakov form fac-
tor. Summing the corresponding logarithmic structure (sin-
gular in both pr and angle) to all orders in perturbation the-
ory yields a distribution that is highly damped as the mass
vanishes. In words, there is precisely zero probability that a
color parton emits no radiation (and the resulting jet has zero
mass). The large mass “shoulder" (0.3 < m/pr/R < 0.5) is
driven largely by the presence of a single large angle, en-
ergetic emission in the underlying QCD shower, i.e., this
regime is quite well described by low-order perturbation the-
ory. (The shoulder label will be more clear after we groom
the jet.) In contrast, we should think of the peak region as
corresponding to multiple soft emissions. This simple (ap-
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proximate) picture provides an understanding of the bulk ofer
the differences between the quark and gluon jet mass distrises
butions. Since the probability of the single large angle, enerses
getic emission is proportional to the color charge, the gluomzo
distribution should be enhanced in this region by a factosn
of about C4 /Cp = 9/4, consistent with what is observed iz
Figure 8. Similarly the exponent in the Sudakov damping

factor for the gluon jet mass distribution is enhanced by thé”
same factor, leading to a peak “pushed” further from the”™
origin. So the gluon jet mass distribution exhibits a lalrgef’75
average jet mass than the quark jet, with a larger relative
contribution arising from the perturbative shoulder regiont.577
Recall also that the number of constituents in the jet is also
larger (on average) for the gluon jet simply because a gluon579
will radiate more than a quark. These features explain much”
of what we observed earlier in terms of the effectiveness
of the various observable to separate quark jets from gluoné“32
jets. Note in particular that the enhanced role of the shoulder”
for gluon jet explains, at least qualitatively, the difference in
the distributions for the observable Ip ;.. Since the shoul=™*
der is dominated by a single large angle, hard emission, i
is minimally impacted by pruning, which removes the largé’87
angle, soft constituents (as illustrated just below). Thus jets588
in the shoulder exhibit small volatility and they are a 1argef89
component in the gluon jet distribution. Hence gluon jets,
on average, have smaller values of Ip;., than quark jets as”
in Figure 1(b). Further this feature of gluon jets is distinct™”
from fact that there are more constituents, which explaing’93
why Ipje and Neongtits supply largely independent informa=""

tion for distinguishing quark and gluon jets. o
696

To illustrate some of these points in more detail, Figsor
ure 9 exhibits the jet mass distributions (of Figure 8) afess
ter pruning [34, 54]. Removing the large angle, soft conses
stituents moves the peak in both of the distributions fronzeo
m/pr/R ~ 0.1 —0.2 to the region around m/p7 /R ~ 0.0570:
This explains why pruning works to reduce the QCD back=o2

ground when looking for a signal in a specific jet mass bin.
The “shoulder” feature is much more apparent after pruning,
as is the larger shoulder for the gluon jets. A quantitative
(all-orders) understanding of groomed mass distributions is
also possible. For instance, resummation of the pruned mass
distribution was achieved in [38, 55].

Our final topic in this section is the residual R and pr
dependence exhibited in Figures 8 and 9, where we are us-
ing the scaled variable m/pr/R. As already suggested, the
residual pr dependence can be understood as arising primar-
ily from the slow decrease of the strong coupling o (pr) as
pr increases. This will lead to a corresponding decrease in
the (largely perturbative) shoulder regime for both distribu-
tions as pr increases. At the same time, and for the same
reason, the Sudakov damping is less strong with increasing
pr and the peak moves towards the origin. Thus the over-
all impact of increasing pr for both distributions is a (slow)
shift to smaller values of m/pr /R. This is just what is ob-
served in Figures 8 and 9, although the numerical size of
the effect is reduced in the pruned case. The R dependence
is more complicated as there are effectively three different
contributions to the mass distribution. The perturbative large
angle, energetic single emission contribution largely scales
in the variable m/pr /R, which is why we see little resid-
ual R dependence in either figure for m/pr/R > 0.4. The
large angle soft emissions can both contribute at mass val-
ues that scale like R and increase in number as R increases
(i.e., as the area of the jet grows as R?). Such contributions
can yield a distribution that moves to the right as R increases
and presumably explain the behavior at small pr in Figure 8.
Since pruning largely removes this contribution, we observe
no such behavior in Figure 9. The contribution of small an-
gle, soft emissions will be at fixed m values and thus shift to
the left versus the scaled variable as R increases. This pre-
sumably explains the small shifts in this direction observed
in both figures.
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5.5 Conclusions 749

750
In Section 5 we have seen that a variety of jet observabless.
provide information about the jet that can be employed efzs:
fectively to separately tag quark and gluon jets. Further, whens
used in combination, these observables can provide evenss
better separation. We saw that the best performing singless
observable is simply the number of constituents in the jetyse
Neonstits, While the largest further improvement comes froms:
combining with C?~! (or ©P="), but the smallest R and prrss

dependence arises from combining with C{3 =0, On the others®
hand, some of the commonly used observables are highly®°
correlated and do not provide extra information and enhanced

tagging when used together. We have both demonstrated the$&
correlations and provided a discussion of the physics behind®?
the structure of the correlation. In particular, using the jef®®
mass as a specific example observable we have tried to ex?**
plicitly explain the differences between jets initiated by botH®®

quarks and gluons. 766
767

768
6 Boosted W -Tagging 7ee
770
In this section, we study the discrimination of a boosted™
hadronically decaying W signal against a gluon background?”
comparing the performance of various groomed jet masses]”
substructure variables, and BDT combinations of groomed
mass and substructure. A range of different distance param-
eters R for the anti-kt jet algorithm are explored, as well asza
a variety of kinematic regimes (lead jet pr 300-400 GeV,
500-600 GeV, 1.0-1.1 TeV). This allows us to determiners
the performance of observables as a function of jet radiusre
and jet boost, and to see where different approaches may-»
break down. The groomed mass and substructure variableszs
are then combined in a BDT as described in Section 4, andze
the performance of the resulting BDT discriminant exploredso
through ROC curves to understand the degree to which varizsa
ables are correlated, and how this changes with jet boost ands:
jet radius. 783

6.1 Methodology 786

These studies use the WW samples as signal and the dijetss
gg as background, described previously in Section 2. Whilstse
only gluonic backgrounds are explored here, the conclusiongeo
as to the dependence of the performance and correlations orre:
the jet boost and radius are not expected to be substantiallys
different for quark backgrounds; we will see that the difzes
ferences in the substructure properties of quark- and gluonzea
initiated jets, explored in the last section, are significantlyes
smaller than the differences between W-initiated and gluon-oes
initiated jets. 707

As in the g/g tagging studies, the showered events were
clustered with FASTJET 3.03 using the anti-kt algorithm
with jet radii of R = 0.4, 0.8, 1.2. In both signal and back-
ground samples, an upper and lower cut on the leading jet
pr is applied after showering/clustering, to ensure similar
pr spectra for signal and background in each pr bin. The
bins in leading jet pr that are considered are 300-400 GeV,
500-600 GeV, 1.0-1.1 TeV, for the 300-400 GeV, 500-600
GeV, 1.0-1.1 TeV parton pr slices respectively. The jets then
have various grooming approaches applied and substructure
observables reconstructed as described in Section 3.4. The
substructure observables studied in this section are:

— The ungroomed, trimmed (i), and pruned (mprun) jet
masses.

— The mass output from the modified mass drop tagger
(Mmmat)-

— The soft drop mass with § = —1, 2 (mg).

— 2-point energy correlation function ratio Cg =! (we also
studied B = 2 but do not show its results because it showed
poor discrimination power).

— N-subjettiness ratio 7,/7; with B = 1 (Tflzl) and with
axes computed using one-pass k; axis optimization (we
also studied = 2 but did not show its results because it
showed poor discrimination power).

— The pruned Qjet mass volatility, Igjer.

6.2 Single Variable Performance

In this section we will explore the performance of the var-
ious groomed jet mass and substructure variables in terms
of discriminating signal and background. Since we have not
attempted to optimise the grooming parameter settings of
each grooming algorithm, we do not want to place too much
emphasis here on the relative performance of the groomed
masses, but instead concentrate on how their performance
changes depending on the kinematic bin and jet radius con-
sidered.

Figure 10 the compares the signal and background in
terms of the different groomed masses explored for the anti-
kt R=0.8 algorithm in the p7 500-600 bin. One can clearly
see that in terms of separating signal and background the
groomed masses will be significantly more performant than
the ungroomed anti-kt R=0.8 mass. Figure 11 compares sig-
nal and background in the different substructure variables
explored for the same jet radius and kinematic bin.

Figures 12, 13 and 14 show the single variable ROC
curves compared to the ROC curve for a BDT combination
of all the variables (labelled “allvars”), for each of the anti-
kt distance parameters considered in each of the kinematic
bins. One can see that, in all cases, the “allvars” option is
considerably better performant than any of the individual
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Fig. 10 Comparisons of the QCD background to the WW signal in the py 500-600 GeV bin using the anti-kT R=0.8 algorithm: leading jet mass

distributions.

single variables considered, indicating that there is considsz:
erable complementarity between the variables, and this wilkz2
be explored further in the next section.

Although the ROC curves give all the relevant informasza
tion, it is hard to compare performance quantitatively. Im2s
Figures 15, 16 and 17 are shown matrices which give theze
background rejection for a signal efficiency of 70% whemn27
two variables (that on the x-axis and that on the y-axis) arezs
combined in a BDT. These are shown separately for eachsae
pr bin and jet radius considered. In the final column ofso
these plots are shown the background rejection performances:
for three-variable BDT combinations of mfdzz + Cg =l 4 Xea2
These results will be discussed later in Section 6.3.3. Thess
diagonal of these plots correspond to the background rejecs3+
tions for a single variable BDT, and can thus be examined t@3s
get a quantitative measure of the individual single variabless
performance, and to study how this changes with jet radiugs”
and momenta. 838

One can see that in general the most performant singlé3®
variables are the groomed masses. However, in certain kine#4°

823

matic bins and for certain jet radii, Cf ' has a background**
rejection that is comparable to or better than the groomed*
masses.

By comparing Figures 15(a), 16(a) and 17(b), we can see
how the background rejection performance evolves as we in-
crease momenta whilst keeping the jet radius fixed to R=0.8.
Similarly, by comparing Figures 15(b), 16(b) and 17(c) we
can see how performance evolves with pr for R=1.2. For
both R=0.8 and R=1.2 the background rejection power of
the groomed masses increases with increasing pr , with a
factor 1.5-2.5 increase in rejection in going from the 300-
400 GeV to 1.0-1.1 TeV bins. In Figure 18 we show the
Soft-drop 8 = 2 groomed mass and the pruned mass for sig-
nal and background in the pr 300-400 and pr 1.0-1.1 TeV
bins for R=1.2 jets. Two effects result in the improved per-
formance of the groomed mass at high pr . Firstly, as is
evident from the figure, the resolution of the signal peak af-
ter grooming improves, because the groomer finds it easier
to pick out the hard signal component of the jet against the
softer components of the underlying event when the signal
is boosted. Secondly, one can see from Figure 9 that as pr
increases the perturbative shoulder of the gluon distribution
decreases in size, as discussed in Section 5.4, and thus there
is a slight decrease (or at least no increase) in the level of
background in the signal mass region (m/p7/R ~ 0.5).
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However, one can see from the Figures 15(b), 16(b) and si(c)ing from the lower to the higher pr bin, the signal peak re-

that the Cg I r 0jer and 7:51:1 substructure variables behavess
somewhat differently. The background rejection power ofse
the Ipj.; and ’L'gl:l variables both decrease with increasings?
pr , by up to a factor two in going from the 300-400 Ge\ess
to 1.0-1.1 TeV bins. Conversely the rejection power of Cg “hso
dramatically increases with increasing pr for R=0.8, buseo
does not improve with pr for the larger jet radius R=1.2se1
In Figure 19 we show the ’Lfl:l and Cg =! distributions fope?
signal and background in the pr 300-400 and pr 1.0-1.kes

TeV bins for R=0.8 jets. For ‘L'flzl one can see that in mov®e*

mains fairly unchanged, whereas the background peak shifts
to smaller Tg =! values, reducing the discrimination power of
the variable. This is expected, since jet substructure methods
explicitly relying on identifying hard prongs would expect to
work better at low pr , where the prongs would tend to be
more separated. However, Cg =! does not rely on the explicit
identification of subjets, and one can see from Figure 19 that
the discrimination power visibly increases with increasing
pr - This is in line with the observation in [42] that Cg =1
performs best when m/p7 is small.
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By comparing the individual sub-figures of Figures 15, 1o
and 17 we can see how the background rejection perforss:
mance depends on jet radius within the same pr bin. TQs.
within ~ 25%, the background rejection power of the groomgd
masses remains constant with respect to the jet radius. Figze,
ure 20 shows how the groomed mass changes for varyinges
jet radius in the pr 1.0-1.1 TeV bin. One can see that thgse
signal mass peak remains unaffected by the increased ra;,,
dius, as expected, since grooming removes the soft contams,,
ination which could otherwise increase the mass of the je{
as the radius increased. The gluon background in the sig-
nal mass region also remains largely unaffected, as expecte(fgo
from Figure 9, which shows very little dependence of the”
groomed gluon mass distribution on R in the signal region
(m/pr/R ~ 0.5). This is discussed further in Section 5.4. %

894

However, we again see rather different behaviour versus
R for the substructure variables. In all pr bins considered the
most performant substructure variable, Cg = performs best
for an anti-kt distance parameter of R=0.8. The performance
of this variable is dramatically worse for the larger jet radius
of R=1.2 (a factor seven worse background rejection in the
1.0-1.1 TeV bin), and substantially worse for R=0.4. For the
other jet substructure variables considered, Ipj.; and Tflzl,
their background rejection power also reduces for larger jet

radius, but not to the same extent. Figure 21 shows the Tzﬁl:l

and Cg =! distributions for signal and background in the 1.0-
1.1 TeV pr bin for R=0.8 and R=1.2 jet radii. One can
clearly see that for the larger jet radius the Czﬁ =! distribu-
tion of both signal and background get wider, and conse-
quently the discrimination power decreases. For Tf =! there
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Fig. 18 The Soft-drop 8 = 2 and pruned groomed mass distribution for signal and background R=1.2 jets in two different pr bins.

is comparitively little change in the distributions with ineor

6.3 Combined Performance

creasing jet radius. The increased sensitivity of C to soft
wide angle radiation in comparison to 7»; is a known feature
of this variable [42], and a useful feature in discriminating.ggos

The off-diagonal entries in Figures 15, 16 and 17 can be used

coloured versus colour singlet jets. However, at very largé”
jet radii (R~1.2), this feature becomes disadvantageous; the*®
jet can pick up a significant amount of initial state or othet ™
uncorrelated radiation, and C, is more sensitive to this than

is To1. This uncorrelated radiation has no (or very little) de-

913

pendence on whether the jet is W- or gluon-initiated, and™*
s0 sensitivity to this radiation means that the discrimination

power will decrease.

916

917

918

919

920

to compare the performance of different BDT two-variable
combinations, and see how this varies as a function of pr
and R. By comparing the background rejection achieved for
the two-variable combinations to the background rejection
of the “all variables” BDT, one can understand how much
more discrimination is possible by adding further variables
to the two-variable BDTs.

One can see that in general the most powerful two-variable
combinations involve a groomed mass and a non-mass sub-
structure variable (Cé3 “'r Qjet OF 751:1). Two-variable com-
binations of the substructure variables are not powerful in
comparison. Which particular mass + substructure variable
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Fig. 19 The rf ~!and Cg =! distributions for signal and background R=0.8 jets in two different pr bins.

combination is the most powerful depends strongly on thess
pr and R of the jet, as discussed in the sections that follow.ess
There is also modest improvement in the background reese
jection when different groomed masses are combined, com-
pared to the single variable groomed mass performance, ing,,
dicating that there is complementary information between
the different groomed masses. In addition, there is an imag,,
provement in the background rejection when the groomed..
masses are combined with the ungroomed mass, indicating,s
that grooming removes some useful discriminatory informas,,
tion from the jet. These observations are explored further in,s

the section below. 046

Generally one can see that the R=0.8 jets offer the besbar
two-variable combined performance in all pr bins exploredas
here. This is despite the fact that in the highest 1.0-1.1 GeVeao
pr bin the average separation of the quarks from the Weso

decay is much smaller than 0.8, and well within 0.4. This
conclusion could of course be susceptible to pile-up, which
is not considered in this study.

6.3.1 Mass + Substructure Performance

As already noted, the largest background rejection at 70%
signal efficiency are in general achieved using those two
variable BDT combinations which involve a groomed mass
and a non-mass substructure variable. For both R=0.8 and
R=1.2 jets, the rejection power of these two variable combi-
nations increases substantially with increasing pr , at least
within the pr range considered here.

For a jet radius of R=0.8, across the full p; range con-
sidered, the groomed mass + substructure variable combina-
tions with the largest background rejection are those which
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Fig. 20 The Soft-drop 8 = 2 and pruned groomed mass distribution for signal and background R=0.4 and R=1.2 jets in the 1.0-1.1 TeV pr bin.

involve Cf =! For example, in combination with mf3 d:z’ thises
produces a five-, eight- and fifteen-fold increase in backser
ground rejection compared to using the groomed mass aloneyes
In Figure 22 the low degree of correlation between m? d:2969

versus Cg =! that leads to these large improvements in backso
ground rejection can be seen. One can also see that whatn:
little correlation exists is rather non-linear in nature, change2
ing from a negative to a positive correlation as a function of-s
the groomed mass, something which helps to improve thg,,

background rejection in the region of the W mass peak. s

However, when we switch to a jet radius of R=1.2 thé”™®

picture for Cf =! combinations changes dramatically. Thes€””
become significantly less powerful, and the most powerfubzs
variable in groomed mass combinations becomes Tf =! for

all jet pr considered. Figure 23 shows the correlation be-

tween mfdzz and Cgil in the pr 1.0 - 1.2 TeV bin for the

various jet radii considered. Figure 24 is the equivalent set of
distributions for m? d=2 and ’L'f 1=1 . One can see from Figure 23
that, due to the sensitivity of the observable to to soft, wide-
angle radiation, as the jet radius increases Cf = increases
and becomes more and more smeared out for both signal and
background, leading to worse discrimination power. This
Tflzl. We can see
from Figure 24 that the negative correlation between mf d=2

and Tg =! thatis clearly visible for R=0.4 decreases for larger

jetradius, such that the groomed mass and substructure vari-

able are far less correlated and 1751:1 offers improved dis-

L . -2
crimination within a mf J

does not happen to the same extent for

mass window.
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Fig. 21 The rf ~!and Cg =! distributions for signal and background R=0.8 and R=1.2 jets in the 1.0-1.1 TeV pr bin.

6.3.2 Mass + Mass Performance

994

995

The different groomed masses and the ungroomed mass aré®®
of course not fully correlated, and thus one can always se&®”
some kind of improvement in the background rejection (rel#°®
ative to the single mass performance) when two different®®
mass variables are combined in the BDT. However, in son€°°
cases the improvement can be dramatic, particularly at high&*
pr , and particularly for combinations with the ungroomet°2
mass. For example, in Figure 17 we can see that in the p}°°?
1.0-1.1 TeV bin the combination of pruned mass with urte®*
groomed mass produces a greater than eight-fold improveé®°®
ment in the background rejection for R=0.4 jets, a greatéf°e
than five-fold improvement for R=0.8 jets, and a factor ~tw#3°?
improvement for R=1.2 jets. A similar behaviour can be seetf°®
for mMDT mass. In Figures 25, 26 and 27 is shown the 2-F°°

correlation plots of the pruned mass versus the ungroomed
mass separately for the WW signal and gg background sam-
ples in the pr 1.0-1.1 TeV bin, for the various jet radii
considered. For comparison, the correlation of the trimmed
mass with the ungroomed mass, a combination that does not
improve on the single mass as dramatically, is shown. In all
cases one can see that there is a much smaller degree of cor-
relation between the pruned mass and the ungroomed mass
in the backgrounds sample than for the trimmed mass and
the ungroomed mass. This is most obvious in Figure 25,
where the high degree of correlation between the trimmed
and ungroomed mass is expected, since with the parameters
used (in particular R, = 0.2) we cannot expect trimming
to have a significant impact on an R=0.4 jet. The reduced
correlation with ungroomed mass for pruning in the back-
ground means that, once we have made the requirement that
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the pruned mass is consistent with a W (i.e. ~80 GeV), @61
relatively large difference between signal and backgrounde:
in the ungroomed mass still remains, and can be exploitedes
to improve the background rejection further. In other wordsees
many of the background events which pass the pruned masges
requirement do so because they are shifted to lower mass (tQee
be within a signal mass window) by the grooming, but thesge,
events still have the property that they look very much likges
background events before the grooming. A single requirgpeo
ment on the groomed mass only does not exploit this. Of

course, the impact of pile-up, not considered in this study,

could significantly limit the degree to which the ungroomed

mass could be used to improve discrimination in this way. *°7°

1071

6.3.3 “All Variables” Performance
As well as the background rejection at a fixed 70% sigo?s
nal efficiency for two-variable combinations, Figures 15, 1674
and 17 also report the background rejection achieved by7s
a combination of all the variables considered into a single7e
BDT discriminant. One can see that, in all cases, the ree?7
jection power of this “all variables” BDT is significantly7e
larger than the best two-variable combination. This indicates7s
that beyond the best two-variable combination there is stilbso
significant complementary information availiable in the rees:
maining variables in order to improve the discrimination afsz
signal and background. How much complementary informaess
tion is available appears to be pr dependent. In the lower pyess
300-400 and 500-600 GeV bins the background rejection cfss
the “all variables” combination is a factor ~ 1.5 greater thasss
the best two-variable combination, but in the highest pr bifsz
it is a factor ~ 2.5 greater. 1088

The final column in Figures 15, 16 and 17 allows usse
to explore the all variables performance a little further. Isoo
shows the background rejection for three variable BDT comwooe:
binations of mf ;2 + Cg “lix , where X is the variable otve2
the y-axis. For jets with R=0.4 and R=0.8, the combinatiofwes
mf d:2 + Cg =1 is the best performant (or very close to the bestes
performant) two-variable combination in every pr bin conoes
sidered. For R=1.2 this is not the case, as Cg =lis supercededos
by Tf “in performance, as discussed earlier. Thus, in cor®®”
sidering the three-variable combination results it is best tyes
focus on the R=0.4 and R=0.8 cases. Here we see that, fases
the lower pr 300-400 and 500-600 GeV bins, adding thfeo
third variable to the best two-variable combination brings tso:
to within ~ 15% of the “all variables” background rejectionioz
However, in the highest pr 1.0-1.1 TeV bin, whilst addingos
the third variable does improve the performance considegzos
ably, we are still ~ 40% from the observed “all variables;;qs
background rejection, and clearly adding a fourth or maybge
even fifth variable would bring considerable gains. In terms,,
of which variable offers the best improvement when added,s

B=2

to the m', +C§3 = combination, it is hard to see an obviouises

pattern; the best third variable changes depending on the pr
and R considered.

In conclusion, it appears that there is a rich and com-
plex structure in terms of the degree to which the discrimina-
tory information provided by the set of variables considered
overlaps, with the degree of overlap apparently decreasing at
higher pr . This suggests that in all p7 ranges, but especially
at higher pr , there are substantial performance gains to be
made by designing a more complex multivariate W tagger.

6.4 Conclusions

We have studied the performance, in terms of the degree to
which a hadronically decaying W boson can be separated
from a gluonic background, of a number of groomed jet
masses, substructure variables, and BDT combinations of
the above. We have used this to build a picture of how the
discriminatory information contained in the variables over-
laps, and how this complementarity between the variables
changes with pr and anti-kt distance parameter R.

In terms of the performance of individual variables, we
find that, in agreement with other studies [56], in general the
groomed masses perform best, with a background rejection
power that increases with increasing pr , but which is more
constant with respect to changes in R. We have explained
the dependence of the groomed mass performance on pr
and R using the understanding of the QCD mass distribu-
tion gleaned in Section 5.4. Conversely, the performance of
other substructure variables, such as Cf = and Tf =1 is more
susceptible to changes in radius, with background rejection
power decreasing with increasing R. This is due to the in-
herent sensitivity of these observables to soft, wide angle
radiation.

The best two-variable performance is obtained by com-
bining a groomed mass with a substructure variable. Which
particular substructure variable works best in combination
is strongly dependent on p7 and R. Cg =" offers significant
complimentarity to groomed mass at smaller R, owing to the
small degree of correlation between the variables. However,
the sensitivity of Cg =! to soft, wide-angle radiation leads to
worse discrimination power at large R, where ’L’f =! performs
better in combination. Our studies also demonstrate the po-
tential for enhanced discrmination by combining groomed
and ungroomed mass information, although the use of un-
groomed mass in this may in practice be limited by the pres-
ence of pile-up that is not considered in these studies.

By examining the performance of a BDT combination of
all the variables considered, it is clear that there are poten-
tially substantial performance gains to be made by designing
a more complex multivariate W tagger, especially at higher

pr .
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Fig. 25 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pr 1.0-1.1 TeV bin using the

anti-kt R=0.4 algorithm.

7 Top Tagging

1125

1126

In this section, we study the identification of boosted top*”
quarks at Run II of the LHC. Boosted top quarks result itt*®
large-radius jets with complex substructure, containing a #**°
subjet and a boosted W. The additional kinematic handl&s*°
coming from the reconstruction of the W mass and b-taggin¥**
allow a very high degree of discrimination of top quark jetls132
from QCD backgrounds. We study fully hadronic decays 21:33
the top quark.

We consider top quarks with moderate boost (600-1000ss
GeV), and perhaps most interestingly, at high boost (= 150Q3e
GeV). Top tagging faces several challenges in the high-ppnsz
regime. For such high-pr jets, the b-tagging efficiencies arass
no longer reliably known. Also, the top jet can also accomase
panied by additional radiation with pr ~ m;, leading to comaao

binatoric ambiguities of reconstructing the top and W, and
the possibility that existing taggers or observables shape the
background by looking for subjet combinations that recon-
struct m,/my . To study this, we examine the performance of
both mass-reconstruction variables, as well as shape observ-
ables that probe the three-pronged nature of the top jet and
the accompanying radiation pattern.

We use the top quark MC samples for each bin described
in Section 2.2. The analysis relies on FASTJET 3.0.3 for jet
clustering and calculation of jet substructure observables.
Jets are clustered using the anti-k; algorithm. An upper and
lower pr cut are applied after jet clustering to each sample
to ensure similar pr spectra in each bin. The bins in lead-
ing jet pr that are investigated for top tagging are 600-700
GeV, 1-1.1 TeV, and 1.5-1.6 TeV. Jets are clustered with radii
R=0.4,0.8,and 1.2; R = 0.4 jets are only studied in the 1.5-
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Fig. 26 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pr 1.0-1.1 TeV bin using the

anti-kt R=0.8 algorithm.

1.6 TeV bin because for top quarks with this boost, the topss
decay products are all contained within an R = 0.4 jet.  11sa
1155
1156
7.1 Methodology e
1158

We study a number of top-tagging strategies, in particular:
1160

1. HEPTopTagger

2. Johns Hopkins Tagger (JH)
3. Trimming

4. Pruning

1161

1162

1163
The top taggers have criteria for reconstructing a top andes
W candidate, and a corresponding top and W mass, as daes
scribed in Section 3.3, while the grooming algorithms (trimaes
ming and pruning) do not incorporate a W-identification stepsz

For a level playing field, where grooming is used we con-
struct a W candidate mass, myy, from the three leading sub-
jets by taking the mass of the pair of subjets with the smallest
invariant mass; in the case that only two subjets are recon-
structed, we take the mass of the leading subjet. The top
mass, m,, is the mass of the groomed jet. All of the above
taggers and groomers incorporate a step to remove pile-up
and other soft radiation.

We also consider the performance of the following jet
shape observables:

The ungroomed jet mass.

N-subjettiness ratios 7,/7) and 73 /7, with § = 1 and the
“winner-takes-all” axes.

2-point energy correlation function ratios Cf =!and Cf =1
The pruned Qjet mass volatility, Igjer.
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Fig. 27 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pr 1.0-1.1 TeV bin using the

anti-kt R=1.2 algorithm.

In addition to the jet shape performance, we combine thasa
jet shapes with the mass-reconstruction methods described
above to determine the optimal combined performance.

For determining the performance of multiple variabled:®
we combine the relevant tagger output observables and/or jet
shapes into a boosted decision tree (BDT), which determinés®®
the optimal cut. Additionally, because each tagger has twd®”
input parameters, as described in Section 3.3, we scan ovér®®
reasonable values of the parameters to determine the optimal®®
value that gives the largest background rejection for each top*°
tagging signal efficiency. This allows a direct comparisot®
of the optimized version of each tagger. The input values®*

scanned for the various algorithms are: 1103
1194

— HEPTopTagger: m € [30,100] GeV, u € [0.5,1]
- JH Tagger: J, € [0.02,0.15], 6 € [0.07,0.2]
— Trimming: fuy € [0.02,0.14], Ryim € [0.1,0.5]

1195

1196

1197

— Pruning: z¢, € [0.02,0.14], Rey € [0.1,0.6]

7.2 Single-observable performance

We start by investigating the behaviour of individual jet sub-
structure observables. Because of the rich, three-pronged struc-
ture of the top decay, it is expected that combinations of
masses and jet shapes will far outperform single observables
in identifying boosted tops. However, a study of the top-
tagging performance of single variables facilitates a direct
comparison with the W tagging results in Section 6, and also
allows a straightforward examination of the performance of
each observable for different pr and jet radius.

Fig. 28 shows the ROC curves for each of the top-tagging
observables, with the bare (ungroomed) jet mass also plotted
for comparison. The jet shape observables all perform sub-
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stantially worse than jet mass, unlike W tagging for whiches:
several observables are competitive with or perform bettass=
than jet mass (see, for example, Fig. 10). To understangdss
why this is the case, consider N-subjettiness. The W is twazsa
pronged and the top is three-pronged; therefore, we expegtss
Tp1 and T3, to be the best-performant N-subjettiness ratio, razse
spectively. However, 7 also contains an implicit cut on thes-
denominator, 71, which is strongly correlated with jet masszss
Therefore, 7; combines both mass and shape informatiosse
to some extent. By contrast, and as is clear in Fig.28(a), theeo
best shape for top tagging is 73, which contains no informaze:
tion on the mass. Therefore, it is unsurprising that the shapegs,,
most useful for top tagging are less sensitive to the jet masg,e;
and under-perform relative to the corresponding observablegs,,
for W tagging. 1265

Of the two top tagging algorithms, we can see from Figzes
ure 28 that the Johns Hopkins (JH) tagger out-performs thes?
HEPTopTagger in terms of its signal-to-background separa=ss
tion power in both the top and W candidate masses; this iges
expected, as the HEPTopTagger was designed to reconstruatzo
moderate pr top jets in t#H events (for a proposal for a high=7
pr variant of the HEPTopTagger, see [57]). In Figure 29 wer2
show the histograms for the top mass output from the Jkbss
and HEPTopTagger for different R in the pr 1.5-1.6 Telera
bin, and in Figure 30 for different p7 at at R =0.8, optimizedrs
at a signal efficiency of 30%. One can see from these figze
ures that the likely reason for the better performance of therr
JH tagger is that, in the HEPTopTagger algorithm, the jet igs
filtered to select the five hardest subjets, and then three subaze
jets are chosen which reconstruct the top mass. This require=so
ment tends to shape a peak in the QCD background aroundsa
my for the HEPTopTagger, while the JH tagger has no suchs2
requirement. It has been suggested [58] that performance irss
the HEPTopTagger may be improved by selecting the threess
subjets reconstructing the top only among those that pass thess
W mass constraints, which somewhat reduces the shaping afse
the background. The discrepancy between the JH and HEB=s7
TopTaggers is more pronounced at higher pr and larger jatss
radius (see Figs. 33 and 36).

We also see in Figure 28(b) that the top mass from theese
JH tagger and the HEPTopTagger has superior performances:
relative to either of the grooming algorithms; this is becauses2
the pruning and trimming algorithms do not have inherensss
W-identification steps and are not optimized for this put=es
pose. Indeed, because of the lack of a W-identification stepzes
grooming algorithms are forced to strike a balance betweernss
under-grooming the jet, which broadens the signal peak due
to UE contamination and features a larger background rate,
and over-grooming the jet, which occasionally throws ouger
the b-jet and preserves only the W components inside the
jet. We demonstrate this effect in Figures 29 and 30, showizes
ing that with &g, = 0.3 — 0.35, the optimal performance atss
the tagger over-grooms a substantial fraction of the jets (aso0

1289

20 —30%), leading to a spurious second peak at the W mass.
This effect is more pronounced at large R and pr, since more
aggressive grooming is required in these limits to combat the
increased contamination from UE and QCD radiation.

In Figures 31 and 33 we directly compare ROC curves
for jet shape observable performance and top mass perfor-
mance respectively in the three different pr bins considered
whilst keeping the jet radius fixed at R=0.8. The input pa-
rameters of the taggers, groomers and shape variables are
separately optimized in each pr bin. One can see from Fig-
ure 31 that the tagging performance of jet shapes do not
change substantially with pr. The observables ’L'3<§ =D and
Qjet volatility I have the most variation and tend to degrade
with higher pr, as can be seen in Figure 32. This makes
sense, as higher-pr QCD jets have more, harder emissions
within the jet, giving rise to substructure that fakes the sig-
nal. By contrast, from Figure 33 we can see that most of the
top mass observables have superior performance at higher
pr due to the radiation from the top quark becoming more
collimated. The notable exception is the HEPTopTagger, which
degrades at higher pr, likely in part due to the background-
shaping effects discussed earlier.

In Figures 34 and 36 we directly compare ROC curves
for jet shape observable performance and top mass perfor-
mance respectively for the three different jet radii considered
within the p7 1.5-1.6 TeV bin. Again, the input parameters
of the taggers, groomers and shape variables are separately
optimized for each jet radius. We can see from these figures
that most of the top tagging variables, both shape and recon-
structed top mass, perform best for smaller radius. This is
likely because, at such high pr, most of the radiation from
the top quark is confined within R = 0.4, and having a larger
jet radius makes the observable more susceptible to contam-
ination from the underlying event and other uncorrelated ra-
diation. In Figure 35, we compare the individual top signal
and QCD background distributions for each shape variable
considered in the pr 1.5-1.6 TeV bin for the various jet radii.
One can see that the distributions for both signal and back-
ground broaden with increasing R, degrading the discrimi-
nating power. For Céﬁ =D and Céﬁ =D, the background distri-
butions are shifted upward as well. Therefore, the discrim-
inating power generally gets worse with increasing R. The
main exception is for Cgﬁ :1), which performs optimally at
R =0.8; in this case, the signal and background coinciden-
tally happen to have the same distribution around R = 0.4,
and so R = 0.8 gives better discrimination.

7.3 Performance of multivariable combinations

We now consider various BDT combinations of the observ-
ables from Section 7.2, using the techniques described in
Section 4. In particular, we consider the performance of in-
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Fig. 28 Comparison of single-variable top-tagging performance in the p7 = 1 — 1.1 GeV bin using the anti-kt, R=0.8 algorithm.

dividual taggers such as the JH tagger and HEPTopTagger;s=s
which output information about the top and W candidateza
masses and the helicity angle; groomers, such as trimmingzs
and pruning, which remove soft, uncorrelated radiation fromzs
the top candidate to improve mass reconstruction, and t@a7
which we have added a W reconstruction step; and the comszs
bination of the outputs of the above taggers/groomers, bothze
with each other, and with shape variables such as N-subjettingss
ratios and energy correlation ratios. For all observables withsa
tuneable input parameters, we scan and optimize over realss»

istic values of such parameters, as described in Section 7.11.333

In Figure 37, we directly compare the performance afsa
the HEPTopTagger, the JH tagger, trimming, and pruningsss
in the pr = 1 — 1.1 TeV bin using jet radius R=0.8, wherase
both m;, and my are used in the groomers. Generally, wasz
find that pruning, which does not naturally incorporate suhsss
jets into the algorithm, does not perform as well as the othsse
ers. Interestingly, trimming, which does include a subjetsao
identification step, performs comparably to the HEPTopTagsa:
ger over much of the range, possibly due to the backgroundsa:
shaping observed in Section 7.2. By contrast, the JH tagsas
ger outperforms the other algorithms. To determine whethagaa

there is complementary information in the mass outputs from
different top taggers, we also consider in Figure 37 a mul-
tivariable combination of all of the JH and HEPTopTagger
outputs. The maximum efficiency of the combined JH and
HEPTopTaggers is limited, as some fraction of signal events
inevitably fails either one or other of the taggers. We do see
a 20-50% improvement in performance when combining all
outputs, which suggests that the different algorithms used to
identify the top and W for different taggers contains com-
plementary information.

In Figure 38 we present the results for multivariable com-
binations of the top tagger outputs with and without shape
variables. We see that, for both the HEPTopTagger and the
JH tagger, the shape observables contain additional infor-
mation uncorrelated with the masses and helicity angle, and
give on average a factor 2-3 improvement in signal discrimi-
nation. We see that, when combined with the tagger outputs,
both the energy correlation functions C, + C3 and the N-
subjettiness ratios 7p; + 73, give comparable performance,
while the Qjet mass volatility is slightly worse; this is un-
surprising, as Qjets accesses shape information in a more
indirect way from other shape observables. Combining all
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Fig. 31 Comparison of individual jet shape performance at different p7 using the anti-kT R=0.8 algorithm.

shape observables with a single top tagger provides eveisss
greater enhancement in discrimination power. We directligsa
compare the performance of the JH and HEPTopTaggers inss
Figure 38(c). Combining the taggers with shape informasse
tion nearly erases the difference between the tagging meth-

ods observed in Figure 37; this indicates that combining th5”
shape information with the HEPTopTagger identifies the dif2*®

ferences between signal and background missed by the tag2s°
1360

ger alone. This also suggests that further improvement to
discriminating power may be minimal, as various multivari-
able combinations are converging to within a factor of 20%
or so.

In Figure 39 we present the results for multivariable com-
binations of groomer outputs with and without shape vari-
ables. As with the tagging algorithms, combinations of groomers
with shape observables improves their discriminating power;
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Fig. 33 Comparison of top mass performance of different taggers at different py using the anti-kT R=0.8 algorithm.

combinations with 73 4+ 721 perform comparably to thosgeo
with C3 + C;, and both of these are superior to combinaszo
tions with the mass volatility, I'". Substantial improvement is_
further possible by combining the groomers with all shapg_,
observables. Not surprisingly, the taggers that lag behind
in performance enjoy the largest gain in signal-background_
discrimination with the addition of shape observables. Oncg__
again, in Figure 39(c), we find that the differences betweep375

1377

pruning and trimming are erased when combined with shape
information.

Finally, in Figure 40, we compare the performance of
each of the tagger/groomers when their outputs are com-
bined with all of the shape observables considered. One can
see that the discrepancies between the performance of the
different taggers/groomers all but vanishes, suggesting per-
haps that we are here utilising all available signal-background
discrmination information, and that this is the optimal top



1378

1379

1380

1381

1382

1383

1384

1385

37

. l BOOST13W(E
u; ----------------- T E
,,,,,,,,,,, 1 R=1.2
107 =
102 =
F E R=0.8
10°E E
OTe £ N P U P PN T P T P —R=04
0.1 0.2 03 04 05 06 0.7 08 09 1
sig
@ ¢
T — Bogsmisne
o ]
----- ] R=1.2
10t E
102F =
F E R=0.8
10'3§ E
QoA L L —R=04
0.1 02 0.3 04 05 06 0.7 08 09 1

© 7"

. 1 BOOST13W(E1
] R=1.2
10* E
102 =
F E R=0.8
10°E E
O £ S P U I FUTEN TN PR S T —R=04
0.1 0.2 03 04 05 06 0.7 08 09 1
8sig
by ¢
o 1m 0TI
W F s 1
1 R=12
10" =
102 =
¢ E R=0.8
10'3§ E
QoAb b, —R=04
0.1 02 0.3 04 05 06 0.7 08 09 1

ssig
@ 7"

o lg “‘E?‘?C"S‘T‘l‘gwg
o’ E E
i ] R=1.2
10'1§ E
102 E
E E R=0.8
10° E
Qo L b —R=04
0.1 0.2 03 04 05 06 0.7 08 09 1

ssig

(e) Qjet mass volatility

Fig. 34 Comparison of individual jet shape performance at different R in the pr = 1.5 —1.6 TeV bin.

tagging performance that could be achieved in these condisse
tions. 1387

Up to this point we have just considered the combine}i::
multivariable performance in the pr 1.0-1.1 TeV bin with
jet radius R=0.8. We now compare the BDT combinationg,,
of tagger outputs, with and without shape variables, at dif;_,
ferent pr. The taggers are optimized over all input parame;

ters for each choice of pr and signal efficiency. As with the

single-variable study, we consider anti-kT jets clustered with
R = 0.8 and compare the outcomes in the pr = 500 — 600
GeV, pr =1—1.1TeV, and pr = 1.5— 1.6 TeV bins. The
comparison of the taggers/groomers is shown in Figure 41.
The behaviour with p7 is qualitatively similar to the be-
haviour of the m, observable for each tagger/groomer shown
in Figure 33; this suggests that the pr behaviour of the tag-
gers is dominated by the top mass reconstruction. As before,
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Fig. 35 Comparison of various shape observables in the pr = 1.5 — 1.6 TeV bin and different values of the anti-kt radius R.

the HEPTopTagger performance degrades slightly with insio
creased pr due to the background shaping effect, while thei.
JH tagger and groomers modestly improve in performanceisi=

In Figure 42, we show the pr dependence of BDT com-
binations of the JH tagger output combined with shape ohz,,
servables. We find that the curves look nearly identical: thg,,
pr dependence is dominated by the top mass reconstruGs,e
tion, and combining the tagger outputs with different shapg,,
observables does not substantially change this behavioug,,
The same holds true for trimming and pruning. By contrast,,,
HEPTopTagger ROC curves, shown in Figure 43, do changg,,,
somewhat when combined with different shape observables;,,
due to the suboptimal performance of the HEPTopTagger af..,
high pr , we find that combining the HEPTopTagger with,;
C§B =1>, which in Figure 31(b) is seen to have some modaza
est improvement at high pr , can improve its performanceazs

Combining the HEPTopTagger with multiple shape observ-
ables gives the maximum improvement in performance at
high pr relative to at low pr .

In Figure 44 we compare the BDT combinations of tag-
ger outputs, with and without shape variables, at different jet
radius R in the pr = 1.5— 1.6 TeV bin. The taggers are opti-
mized over all input parameters for each choice of R and sig-
nal efficiency. We find that, for all taggers and groomers, the
performance is always best at small R; the choice of R is suf-
ficiently large to admit the full top quark decay at such high
pr , but is small enough to suppress contamination from ad-
ditional radiation. This is not altered when the taggers are
combined with shape observable. For example, in Figure 45
is shown the depedence on R of the JH tagger when com-
bined with shape observables, where one can see that the
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Fig. 38 The performance of BDT combinations of the JH and HepTopTagger outputs with various shape observables in the pr = 1 — 1.1 TeV bin

using the anti-kt R=0.8 algorithm. Taggers are combined with the following shape observables: 7,;

the above (denoted ‘““shape”).

R-dependence is identical for all combinations. The same@as
holds true for the HEPTopTagger, trimming, and pruning. iasa

1445

1446

1447
7.4 Performance at Sub-Optimal Working Points 1428
1449
Up until now, we have re-optimized our tagger and groomesso
parameters for each pr, R, and signal efficiency workingsa
point. In reality, experiments will choose a finite set of workiss2
ing points to use. How do our results hold up when thigss
is taken into account? To address this concern, we replissa
cate our analyses, but only optimize the top taggers for @ss
particular pr/R/efficiency and apply the same parametensse
to other scenarios. This allows us to determine the extentsz
to which re-optimization is necessary to maintain the higlss
signal-background discrimination power seen in the top tag4se
ging algorithms we study. The shape observables typicallsso
do not have any input parameters to optimize. Therefore, wee:
focus on the taggers and groomers, and their combinationsz

with shape observables, in this section. 1463

(B=1) | L(B=1) ~(B=1)

B=1
+7 32 > 2 (jg )

s FQ]-et, and all of

Optimizing at a single p7 : We show in Figure 46 the per-
formance of the top taggers, using just the reconstructed top
mass as the discriminating variable, with all input param-
eters optimized to the pr = 1.5 — 1.6 TeV bin, relative to
the performance optimized at each pr. We see that while
the performance degrades by about 50% when the high-pr
optimized points are used at other momenta, this is only an
order-one adjustment of the tagger performance, with trim-
ming and the Johns Hopkins tagger degrading the most. The
jagged behaviour of the points is due to the finite resolu-
tion of the scan. We also observe a particular effect asso-
ciated with using suboptimal taggers: since taggers some-
times fail to return a top candidate, parameters optimized
for a particular efficiency €5 at pr = 1.5 — 1.6 TeV may
not return enough signal candidates to reach the same ef-
ficiency at a different pr. Consequently, no point appears
for that pr value. This is not often a practical concern, as
the largest gains in signal discrimination and significance
are for smaller values of &g, but it is something that must
be considered when selecting benchmark tagger parameters
and signal efficiencies.
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Fig. 41 Comparison of BDT combination of tagger performance at different pr using the anti-kt R=0.8 algorithm.

The degradation in performance is more pronounced fasss
the BDT combinations of the full tagger outputs, shown insz
Figure 47), particularly at very low signal efficiency wherg__
the optimization picks out a cut on the tail of some distri,
bution that depends precisely on the pr/R of the jet. Oncg
again, trimming and the Johns Hopkins tagger degrade morg,_
markedly. Similar behaviour holds for the BDT combina,,

tions of tagger outputs plus all shape observables. 1403

1494

Optimizing at a single R: We perform a similar analysiéjgs
optimizing tagger parameters for each signal efficiency at
R = 1.2, and then use the same parameters for smaller R, it®”
the pr 1.5-1.6 TeV bin. In Figure 48 we show the ratio of th¥¢°®
performance of the top taggers, using just the reconstructet?®®
top mass as the discriminating variable, with all input pd#°°
rameters optimized to the R = 1.2 values compared to inpd£®*
parameters optimized separately at each radius. While the&°?
performance of each observable degrades at small &, cont=®?
pared to the optimized search, the HEPTopTagger fares th¢°*
worst as the observed is quite sensitive to the selected valut®®
of R. It is not surprising that a tagger whose top mass reconsos
struction is susceptible to background-shaping at large R andor

pr would require a more careful optimization of parameters
to obtain the best performance.

The same holds true for the BDT combinations of the
full tagger outputs, shown in Figure 49). The performance
for the sub-optimal taggers is still within an O(1) factor
of the optimized performance, and the HEPTopTagger per-
forms better with the combination of all of its outputs rel-
ative to the performance with just m,. The same behaviour
holds for the BDT combinations of tagger outputs and shape
observables.

Optimizing at a single efficiency: The strongest assump-
tion we have made so far is that the taggers can be reop-
timized for each signal efficiency point. This is useful for
making a direct comparison of the power of different top
tagging algorithms, but is not particularly practical for the
LHC analyses. We now consider the effects when the tagger
inputs are optimized once, in the € = 0.3 — 0.35 bin, and
then used to determine the full ROC curve. We do this in the
prl—1.1TeV bin and with R = 0.8.

The performance of each tagger, normalized to its per-
formance optimized in each bin, is shown in Figure 50 for
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Fig. 42 Comparison of BDT combination of JH tagger + shape at different py using the anti-kT R=0.8 algorithm.

cuts on the top mass and W mass, and in Figure 51 for BD%2s
combinations of tagger outputs and shape variables. In botlzo
plots, it is apparent that optimizing the taggers in the 0.3s30
0.35 efficiency bin gives comparable performance over efiss
ficiencies ranging from 0.2-0.5, although performance dass:
grades at small and large signal efficiencies. Pruning appeassss
to give especially robust signal-background discriminatiozsa
without re-optimization, possibly due to the fact that thergss
are no absolute distance or pr scales that appear in the algasses
rithm. Figures 50 and 51 suggest that, while optimization ats»
all signal efficiencies is a useful tool for comparing diffessss
ent algorithms, it is not crucial to achieve good top-taggingse
performance in experiments. 1520
1541
1542
7.5 Conclusions 1543
We have studied the performance of various jet substructurgaa
observables, groomed masses, and top taggers to study theas
performance of top tagging at different pr and jet radius pasae
rameter. At each pr, R, and signal efficiency working pointsaz
we optimize the parameters for those observables with tunasas
able inputs. Overall, we have found that these techniquessao

individually and in combination, continue to perform well
at high pr, which is important for future LHC running. In
general, the John Hopkins tagger performs best, while jet
grooming algorithms under-perform relative to the best top
taggers due to the lack of an optimized W -identification step;
as expected from its design, the HEPTopTagger performance
degrades at high pr . Tagger performance can be improved
by a further factor of 2-4 through combination with jet sub-
structure observables such as 732, C3, and Qjet mass volatil-
ity; when combined with jet substructure observables, the
performance of various groomers and taggers becomes very
comparable, suggesting that, taken together, the observables
studied are sensitive to nearly all of the physical differences
between top and QCD jets. A small improvement is also
found by combining the Johns Hopkins and HEPTopTag-
gers, indicating that different taggers are not fully correlated.

Comparing results at different pr and R, top tagging per-
formance is generally better at smaller R due to less contam-
ination from uncorrelated radiation. Similarly, most observ-
ables perform better at larger pr due to the higher degree
of collimation of radiation. Some observables fare worse at
higher pr, such as the N-subjettiness ratio 73, and the Qjet
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Fig. 43 Comparison of BDT combination of HEP tagger + shape at different pr using the anti-kt R=0.8 algorithm.

mass volatility I', as higher-p7 QCD jets have more, hardagzo
emissions that fake the top jet substructure. The HEPTop-

Tagger is also worse at large pr due to the tendency of |
the tagger to shape backgrounds around the top mass. The
pr- and R-dependence of the multivariable combinations is_
dominated by the pr- and R-dependence of the top mass re,

construction component of the tagger/groomer.
1575

1576

1577

Finally, we consider the performance of various observ-"-
able combinations under the more realistic assumption thaf™
the input parameters are only optimized at a single pr, R, Of
signal efficiency, and then the same inputs are used at othéf*"
working points. Remarkably, the performance of all observ=""
ables is typically within a factor of 2 of the fully optimized®
inputs, suggesting that while optimization can lead to sub=**
stantial gains in performance, the general behaviour found®
in the fully optimized analyses extends to more general apsse
plications of each variable. In particular, the performance afs-
pruning typically varies the least when comparing suboptisss
mal working points to the fully optimized tagger due to these

scale-invariant nature of the pruning algorithm. 1500

8 Summary & Conclusions

Furthering our understanding of jet substructure is crucial
to improving our understanding of QCD and enhancing the
prospects for the discovery of new physical processes at Run
II of the LHC. In this report we have studied the perfor-
mance of jet substructure techniques over a wide range of
kinematic regimes that will be encountered in Run II of the
LHC. The performance of observables and their correlations
have been studied by combining the variables into BDT dis-
criminants, and comparing the background rejection power
of this discriminant to the rejection power achieved by the
individual variables. The performance of “all variables” BDT
discriminants has also been investigated, to understand the
potential of the “ultimate” tagger where “all” available in-
formation (at least, all of that provided by the variables con-
sidered) is used.

We focused on the discrimination of quark jets from gluon
jets, and the discrimination of boosted W bosons and top
quarks from the QCD backgrounds. For each, we have iden-
tified the best-performing jet substructure observables, both
individually and in combination with other observables. In
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Fig. 44 Comparison of tagger and jet shape performance at different radius at pr = 1.5-1.6 TeV.

doing so, we have also provided a physical picture of whigis
certain sets of observables are (un)correlated. Additionallysia
we have investigated how the performance of jet substrugses
ture observables varies with R and pr , identifying observsie
ables that are particularly robust against or susceptible t®iz
these changes. In the case of g/g tagging, it seems that closeis
to the ultimate performance can be achieved by combiningie
the most powerful discriminant, the number of constituentszo
of a jet, with just one other variable, Cf = (or ‘Clﬁ =!). Manspa:
of the other variables considered are highly correlated and=2
provide little additional discrimination. For both top and W23
tagging, the groomed mass is a very important discriminats2s
ing variable, but one that can be substantially improved is2s
combination with other variables. There is clearly a riclss
and complex relationship between the variables considered

for W and top tagging, and the performance and correld®*”
tions between these variables can change considerably wittf>®
changing jet pr and R. In the case of W tagging, even af®*
ter combining groomed mass with two other substructur*®
observables, we are still some way short of the ultimate tag®**
ger performance, indicating the complexity of the informd**?

tion available, and the complementarity between the observe*?
1634

ables considered. In the case of top tagging, we have shown
that the performance of both the John Hopkins and Hep Top
Tagger can be improved when their outputs are combined
with substructure observables such as 73 and C3, and that
the performance of a discriminant built from groomed mass
information plus substructure observables is very compara-
ble to the performance of the taggers. We have optimized
the top taggers for a particular value of pr , R, and sig-
nal efficiency, and studied their performance at other work-
ing points. We have found that the performance of observ-
ables remains within a factor of two of the optimized value,
suggesting that the performance of jet substructure observ-
ables is not significantly degraded when tagger parameters
are only optimized for a few select benchmark points.

Our analyses were performed with ideal detector and
pile-up conditions in order to most clearly elucidate the un-
derlying physical scaling with pr and R. At higher boosts,
detector resolution effects will become more important, and
with the higher pile-up expected at Run II of the LHC, pile-
up mitigation will be crucial for future jet substructure stud-
ies. Future studies will be needed to determine which of the
observables we have studied are most robust against pile-up
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Fig. 45 Comparison of BDT combination of JH tagger + shape at different radius at py = 1.5-1.6 TeV.

and detector effects, and our analyses suggest particularlissa
useful combinations of observables to consider in such studess
ies. 1656
At the new energy frontier of Run II of the LHC boosteds?
jet substructure techniques will be more central to our searckees
for new physics than ever before, and by achieving a deepepse
understanding of the underlying structure of quark, gluongeo
W and Top initiated jets, and how the observables that trsse
to elucidate this structure are related, the hope is that moree2
sophisticated taggers can be commissioned that will extenges

the reach for new physics as far as possible. 1664
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