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Finite temperature

• The zero temperature background is AdSd+1

ds2 = L2

(
−dt2

r2
+

dr2

r2
+

dx idx i

r2

)
.

• Which is a solution to the theory

S =
1

2κ2

∫
dd+1x

√
−g

(
R +

d(d − 1)

L2

)
.

• Want relevant deformations, break scale invariance in the IR.

• Therefore expect geometry of the form

ds2 = L2

(
− f (r)dt2

r2
+

g(r)dr2

r2
+

h(r)dx idx i

r2

)
.

• Most universal deformation: temperature.
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Finite temperature

• Only one nontrivial solution to Einstein equations of this form:

ds2 =
L2

r2

(
−f (r)dt2 +

dr2

f (r)
+ dx idx i

)
,

where

f (r) = 1−
(

r

r+

)d

.

• Asymptotically AdS as r → 0. (UV)

• Horizon at r = r+. (IR)

• Corresponds to a temperature (from e.g. Euclidean solution)

T =
d

4πr+
.

• All T 6= 0 equivalent: (r , t, x i )→ r+(r , t, x i ) eliminates r+.
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Finite temperature

• By computing the action of the Euclidean solution

F = −T log Z = TSE [g?] = −(4π)dLd−1

2κ2dd
Vd−1T

d .

• Characterised by one number (‘central charge’):

(4π)dLd−1

2κ2dd
∼ N# .

• Can then compute: Energy, Entropy, etc.
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Finite chemical potential

• Want physics of a U(1) symmetry. E.g. electricity!

• In nature U(1) is gauged. In many condensed matter setups,
sufficient to work with global symmetry.

• Photons are screened in a charged medium.
• Sufficient to consider external sources (no virtual photons).

• What is the dual to a global U(1) in field theory?

• Take cue from global Lorentz invariance. Dual to part of the
diffeomorphism invariance of the bulk. Suggests:

Global symmetry (field theory)
d spacetime dimensions

!
Gauged symmetry (gravity)
d + 1 spacetime dimensions.

• Natural: QFT global symmetry are ‘large’ gauge symmetries in bulk.
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• Therefore: Need bulk Maxwell field. Minimal action

S =

∫
dd+1x

√
−g

[
1

2κ2

(
R +

d(d − 1)

L2

)
− 1

4g2
F 2

]
.

• Symmetries allow (magnetic term in d = 2 + 1 only)

A = At(r)dt + B(r)x dy .

• Put B = 0 for the moment. Metric solution

ds2 =
L2

r2

(
−f (r)dt2 +

dr2

f (r)
+ dx idx i

)
,

where

f (r) = 1−
(

1 +
r2
+µ

2

γ2

)(
r

r+

)d

+
r2
+µ

2

γ2

(
r

r+

)2(d−1)

.

• Scalar potential is (At(r+) = 0 for regularity)

At = µ

[
1−

(
r

r+

)d−2
]
.
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• Dimensionless constant

γ2 =
(d − 1)g2L2

(d − 2)κ2
, .

• Temperature

T =
1

4πr+

(
d −

(d − 2)r2
+µ

2

γ2

)
.

• Near the boundary

Aµ(r) = A(0)µ + · · · as r → 0 .

(cf. gµν(r) = L2

r2 g(0)µν + · · · as r → 0 .)

• A(0)µ is background gauge field. A(0)t = µ is the chemical potential.
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• There is now a physical dimensionless temperature T/µ.

• Limit T/µ→ 0 can be taken continuously. Extremal black hole.

• Free energy

Ω = −T log Z = F
(

T

µ

)
Vd−1T

d .

• F
(

T
µ

)
is a nontrivial function that is an output of AdS/CFT.

• Entropy: S = − ∂Ω
∂T , charge density: ρ = − 1

V2

∂Ω
∂µ .

• At low temperature: Ω ∼ aµd + bµd−1T + cµd−2T 2 + · · · . Implies
entropy → constant as T → 0. Discomforting:

• Large N effect?
• Weak gravity conjecture → should be unstable?
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Relevant operators

• What is dual to adding a relevant operator to the theory?
• Take inspiration from metric. If g → g(0) + δg(0):

δS =

∫
ddx

√
−g(0)δg(0)µνT

µν .

.• Equality of bulk and boundary partition functions should remains:

Zbulk[g → g(0) + δg(0)] = 〈exp

(
i

∫
ddx

√
−g(0)δg(0)µνT

µν

)
〉F.T. .

• Similarly for the gauge field. If A→ δA(0):

δS =

∫
ddx

√
−g(0)δA(0)µJ

µ .

• Thus

Zbulk[A→ δA(0)] = 〈exp

(
i

∫
ddx

√
−g(0)δA(0)µJ

µ

)
〉F.T. .
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• Suggests a general correspondence

operator O
(field theory)

!
dynamical field φ

(bulk) ,

such that

Zbulk[φ→ δφ(0)] = 〈exp

(
i

∫
ddx

√
−g(0)δφ(0)O

)
〉F.T. .

where

φ(r) =
( r

L

)d−∆
φ(0) + · · · as r → 0 ,

• I.e. Boundary value of field → source for dual operator.

• ∆ is the scaling dimension of the operator O.

• Can see that if O is relevant, ∆ < d , then φ→ 0 near the boundary.
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Expectation values

• From previous formula clear that

〈O〉 = −i
δZbulk[φ(0)]

δφ(0)
=
δS [φ(0)]

δφ(0)
.

• Useful to make a Hamilton-Jacobi-esque identification

δS [φ(0)]

δφ(0)
= − lim

r→0

δS [φ(0)]

δ∂rφ(0)
≡ lim

r→0
Π[φ(0)] .

• Straightforward to check (adding appropriate counterterms) that if

φ(r) =
( r

L

)d−∆
φ(0) +

( r

L

)∆
φ(1) + · · · as r → 0 .

• Then

〈O〉 =
2∆− d

L
φ(1) .
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Part II: Away from equilibrium

1 Retarded Green’s functions

2 Example: Electrical conductivity

3 Example: Thermal conductivity
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Retarded Green’s functions

• Basic object describing perturbations away from equilibrium

δ〈OA〉(ω, k) = GR
OAOB

(ω, k)δφB(0)(ω, k) .

• From previous expression

GR
OAOB

=
δ〈OA〉
δφB(0)

∣∣∣∣
δφ=0

= lim
r→0

δΠA

δφB(0)

∣∣∣∣
δφ=0

=
2∆A − d

L

δφA(1)

δφB(0)
.

• Near the boundary require: δφA(r) = rd−∆δφA(0) + · · · .
• Regularity on the future horizon → ingoing boundary conditions

δφA(r) = CAe−i4πω/T log(r−r+) + · · · as r → r+ .
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Example: Electrical and Thermal conductivity

• Leave this for next time!
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Summary for today

• Break scale invariance by introducting temperature, chemical
potential, relevant operators.

• This 3 cases treated on an equal footing in AdS/CFT.

• Boundary values of bulk fields ↔ sources for dual operators.

• Global symmetry of field theory ↔ gauge symmetry of boundary.

• Compute expectation values á la Hamilton-Jacobi.

• Green’s functions are a ratio of normalisable by non-normalisable
mode.
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