F-theory phenomenology

Fernando Marchesano

F-theory phenomenology Fernando Marchesano

> Block II: From GUTs to the **MSSM**

Monday, February 16, 2009

GUT's from F-theory

✤ We have just seen how to engineer a 4D GUT local model via F-theory, and to achieve a number of essential model building ingredients

GUT's from F-theory

- ✤ We have just seen how to engineer a 4D GUT local model via F-theory, and to achieve a number of essential model building ingredients
- ✤ However, it remains to be seen if we can obtain acceptable physics **below M_{GUT}**
- \cdot In particular, in the range M_{SUSY} $<< M <<$ M_{GUT} we would like to have

SM gauge group MSSM matter content No exotic matter Acceptable Yukawas and μ-term Acceptable proton lifetime R-parity No 5D & 6D operators (No Higgs triplets)

MSSM from GUT's

- ✤ In the following we will see how F-theory GUT's can realize all these phenomenological features
- ✤ We will also see that each item in our "wish list" translates into a topological or geometrical condition to be satisfied by our model
- ✤ In fact, such geometrical picture will provide new mechanisms to deal with typical problems that arise in classical 4D field theory GUT models

Bibliography:

Beasley, Heckman, Vafa - 0806.0102 Donagi & Wijnholt - 0808.2223 $Font & Ibáñez - O811.2157$

Basic Assumptions

$\cdot \cdot$ M_{GUT} << M_{Planck}, and in principle there is the limit M_{GUT}/M_{Planck} $\rightarrow 0$

Hence, we can formally decouple gravity from our gauge theory, as usually assumed in 4D field theory GUT model building

$\cdot \cdot \cdot$ Mgut >> Mgusy (~ TeV)

At this level of the construction everything is supersymmetric (see next block for SUSY-breaking)

Decoupling Limit

 $\cdot \cdot$ M_{GUT} << M_{Planck}, and in principle there is the limit M_{GUT}/M_{Planck} $\rightarrow 0$

Hence, we can formally decouple gravity from our gauge theory, as usually assumed in 4D field theory GUT model building

✦ This implies that the volume of the 4-cycle S and the volume of the compact manifold B₃ are not linked, so that we can take M_{Planck} $\rightarrow \infty$ while keeping M_{GUT} fixed

✦ This imposes a strong constraint on S, namely that it should be a del Pezzo surface dP_N

✤ An important question is how the gauge group GGUT is broken down to $G_{MSSM} = SU(3) \times SU(2) \times U(1)$ below M_{GUT}

✤ In usual 4D GUT's this is essentially realized via adjoint Higgssing

$$
SU(5) \longrightarrow SU(3) \times SU(2) \times U(1) \longrightarrow SU(3) \times U(1)_{em}
$$

\n
$$
\langle \Phi \rangle = \text{diag}(2V, 2V, 2V, -3V, -3V), \quad \langle H \rangle = (0, 0, 0, 0, v)^t
$$

$$
SO(10) \longrightarrow SU(3) \times SU(2) \times U(1)
$$

 $SO(10) \longrightarrow SU(5) \times U(1) \longrightarrow SU(3) \times SU(2) \times U(1)$

 $SO(10) \longrightarrow SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \longrightarrow SU(3) \times SU(2) \times U(1)$

- ✤ An important question is how the gauge group GGUT is broken down to $G_{MSSM} = SU(3) \times SU(2) \times U(1)$ below MGUT
- ✤ In usual 4D GUT's this is essentially realized via adjoint Higgssing
- ✤ Just like for a D7-brane wrapping a 4-cycle S, adjoint fields appear if

- ✤ An important question is how the gauge group GGUT is broken down to $G_{MSSM} = SU(3) \times SU(2) \times U(1)$ below M_{GUT}
- ✤ In usual 4D GUT's this is essentially realized via adjoint Higgssing
- ✤ Just like for a D7-brane wrapping a 4-cycle S, adjoint fields appear if

h^(0,1) (S) ≠0 \Rightarrow Wilson lines

h^(0,2) (S) \neq 0 \Rightarrow Geometric deformations of S

 \triangleleft However, for a del Pezzo surface h^(0,1) = h^(0,2) = 0 \Rightarrow No adjoints

$$
\Downarrow
$$
\nThe usual 4D GUT model is incompatible with decoupling gravity

- ✤ An important question is how the gauge group GGUT is broken down to $G_{MSSM} = SU(3) \times SU(2) \times U(1)$ below MGUT
- **❖** Adjoint Higgssing X
- ✤ An alternative mechanism relies on turning on discrete Wilson lines, available whenever $h^{(0,1)}(S) = 0$ but $\pi_1(S) \neq 0$
	- \triangleleft However for S = del Pezzo $\pi_1(S) = 0 \Rightarrow$ No discrete Wilson lines

- ✤ An important question is how the gauge group GGUT is broken down to $G_{MSSM} = SU(3) \times SU(2) \times U(1)$ _Y below M_{GUT}
- **❖** Adjoint Higgssing X
- ❖ Discrete Wilson lines
- Finally, one can turn on a $F_{U(1)}$ flux along S, so that $G_{new} = [G_{GUT}, U(1)]$

★ In particular SU(5)
$$
\longrightarrow
$$
 SU(3) × SU(2) × U(1)
\n
$$
F_Y = \begin{pmatrix} -2 & & \\ & -2 & \\ & & 3 & \\ & & & 3 \end{pmatrix}
$$

- ✤ An important question is how the gauge group GGUT is broken down to $G_{MSSM} = SU(3) \times SU(2) \times U(1)$ below MGUT
- **❖** Adjoint Higgssing X
- ❖ Discrete Wilson lines
- Finally, one can turn on a $F_{U(1)}$ flux along S, so that $G_{new} = [G_{GUT}, U(1)]$

- ✤ An important question is how the gauge group GGUT is broken down to $G_{MSSM} = SU(3) \times SU(2) \times U(1)$ below M_{GUT}
- **❖** Adjoint Higgssing X
- ❖ Discrete Wilson lines
- **❖** Hypercharge flux F_Y

Caveats:

- \triangleq If F_Y couples to RR bulk fields, U(1)_Y will get a Stückelberg mass
- \blacklozenge In general F_Y will generate reps. $(\overline{3},2)_5$, $(3,\overline{2})$ -₅ that mediate proton decay
- \triangleleft Just as F_Y modifies the gauge group on S, it can modify the matter content on $\Sigma \Rightarrow$ we could induce MSSM exotics

Massless Hypercharge

✤ In type IIB, a D7-brane with gauge group U(1) contains the coupling

$$
\int_{\mathbb{R}^{1,3}\times S} F^2 \wedge C_4 = \sum_i \int_{\mathbb{R}^{1,3}} F \wedge B_2^i \int_S F_{U(1)} \wedge \alpha_2^i
$$

where α_2 are harmonic forms of the bulk. If \int_S (ⁱ) \neq 0 for any i, the 4D coupling renders the U(1) massive via a Stückelberg mechanism

- $\bullet\bullet$ One can achieve that $\int s(i) = 0 \forall i$, by taking the P.D.(F_{U(1)}) a non-trivial 2-cycle of S which is nevertheless trivial in the homology of B_3 Buican et al. - hep-th/0610007
- ✤ The same happens in F-theory, so a viable F-theory GUT model is based on a del Pezzo surface $S \subset B_3$, where some 2-cycles of S are trivial in B₃

$$
∗
$$
 Such setup is impossible if B₃

$$
\bigvee_{S}^{1} \mathsf{IP}^1 \Rightarrow
$$

No obvious heterotic dual

Avoiding Exotics

- An extra condition is that no $(3,2)_{-5}$ + $(3,2)_{5}$ should appear upon introducing F_Y , not even in vector-like pairs, since that could mediate proton decay ر
2
- In terms of the topology of dP_N, this means that $5F_Y$ must live in a specific set of $H_2(dP_N,Z)$, that correspond to the simple roots of the Lie algebra $E_N \Rightarrow N$ choices
- $\cdot \cdot$ It turns that $F_Y \notin H_2(dP_N,Z)$ but only 5F_Y does. This is not incompatible with Dirac quantization, since all the fields are also charged under some extra U(1)'s that should be turned on for consistency

Avoiding Triplets

✤ In flat space:

Avoiding Triplets

Monday, February 16, 2009

Avoiding Triplets

✤ In flat space: $\mathcal{F}_{\mathcal{U}(1)}$ D7 \bigotimes $U(1)$ \bigotimes Σ $\mathcal{F}_{\varUpsilon}$ \bigotimes \bigotimes S \mathcal{L} $\left\{\n\begin{array}{ccc}\n\mathcal{S}U(\mathcal{S})\mathcal{X}S\mathcal{U}(\mathcal{S})\mathcal{X}U(\mathcal{I})_{\mathcal{Y}}\n\end{array}\n\right\}$ T-duality $\langle 1,2 \rangle$

Avoiding Exotics

- ❖ In general, whenever $\int~F_Y \neq 0$, Σ will no longer contain full GUT multiplets :
∷ Σ $F_Y \neq 0$
- \cdot This can be positive for the Higgs curve Σ_H, since we may get rid of the triplet Higgsses, but potentially dangerous for the rest of the matter curves, since no exotics are contained there
- Indeed, for SU(5) each family = $10 + 5 \Rightarrow$ anomaly free combination $\overline{}$

$$
\bar{5} = \begin{pmatrix} d_R^1 \\ d_R^2 \\ d_B^3 \\ e \\ \nu_e \end{pmatrix}, \qquad 10 = \begin{pmatrix} 0 & u_R^3 & -u_R^2 & u_L^1 & d_L^1 \\ & 0 & u_R^1 & u_L^2 & d_R^2 \\ & & 0 & u_L^3 & d_L^3 \\ & & & 0 & e_R \\ & & & & 0 \end{pmatrix}
$$

✤ For SO(10):

 $16\,=\,\left(\nu_L, u^1_L, u^2_L, u^3_L; e_L, d^1_L, d^2_L, d^3_L; d^3_R, d^2_R, d^1_R, e_R; u^3_R, u^2_R, u^1_R, \nu_R\right)$

Avoiding Exotics

- ❖ In general, whenever $\int~F_Y \neq 0$, Σ will no longer contain full GUT multiplets :
∷ Σ $F_Y \neq 0$
- \cdot This can be positive for the Higgs curve Σ_H, since we may get rid of the triplet Higgsses, but potentially dangerous for the rest of the matter curves, since no exotics are contained there
- ✤ A simple way to avoid exotics is then to impose

$$
\int_{\Sigma_H} F_Y \neq 0
$$
 For the Higgs curve

For the matter curves

- \rightarrow allows to define R-parity in terms of the flux G₄
- \rightarrow favors that H_u and H_d arise from different curves $\Sigma_{\rm H}$, which in turn suppresses 5D operators violating Baryon number

:
1

 Σ_i

 $F_Y = 0$

- ❖ In the simplest GUT models, all MSSM matter localizes on curves
- ✤ Hence all Yukawas arise from triple intersections
- ✤ As each curve typically contains a different family of (up-like) quarks, we find a texture of the form

$$
\lambda^u_{ij} = \left(\begin{array}{ccc} 0 & A & B \\ A & 0 & C \\ B & C & 0 \end{array}\right)
$$

that rather suggests one light family and two heavy ones

 $\Sigma_{\sf H}$

 \sum

|
|
|

- ❖ [In the simplest GUT models, all MSSM matter localizes on curves](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/)
- ✤ Hence all Yukawas arise from triple intersections
- ✤ [As each curve typically contains a](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/) different family of (up-like) quarks, [we find a texture of the form](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/)

$$
\lambda_{ij}^u = \left(\begin{array}{ccc} 0 & A & B \\ A & 0 & C \\ B & C & 0 \end{array}\right)
$$

[that suggest one light family](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/) [and two heavy ones](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/)

✤ [A possibility to allow diagonal entries](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/) [is to consider self-intersecting curves](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/)

- ✤ [In the simplest GUT models, all MSSM matter localizes on curves](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/)
- ✤ Hence all Yukawas arise from triple intersections
- ✤ Another possibility is to weaken the condition

$$
\int_{\Sigma_i} F_Y = 0 \quad \forall i \qquad \text{to} \qquad \sum_i \int_{\Sigma_i} F_Y = 0 \qquad \text{Ibáñez & Font - O811.2157}
$$

- $\cdot \cdot$ If this is done, each matter curve Σ_i will not contain the usual GUT [multiplets, but those will be unequally distributed among all the curves](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/)
- ✤ The total spectrum is however the same and the Yukawas present more interesting textures. Neat example: SO(10) model

quarks leptons

$$
\lambda_{ij}^{Q} \sim \left(\begin{array}{ccc} x & x & 0 \\ x & x & 0 \\ 0 & 0 & x \end{array}\right)
$$

Monday, February 16, 2009

✤ [In conventional 4D GUT's there are very few independent Yukawas](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/)

 $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$ $L_{YUK}^{SU(5)} = Y_U^{ij} \bar{\psi}_{10}^i \psi_{10}^j H_5^* + Y_{D,L}^{ij} \bar{\psi}_{5}^i \psi_{10}^j H_5 + h.c.$

- Y_D (M_{GUT}) = Y_L (M_{GUT})
- At M_{EW} : $m_b/m_\tau \sim 3$ (good for the 3rd family, bad for 1st and 2nd)
- For SO(10) there is only one Yukawa coupling
- ✤ [In models with extra dimensions we have more freedom.](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/) [In the case at hand:](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/) $|\psi_Q(0)|$ $|\psi_Q(0)|$ $|\psi_Q(0)|$ $|\psi_Q(0)|$

$$
m_Q = m_l \left| \frac{\psi_Q(0)}{\psi_l(0)} \right| \leftarrow
$$
 different ψ 's expected
from different hyperch.

✤ [Such discrepancy will in average be bigger for larger Vol\(](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/piched.cre8/)Σ), which usually contain the lightest generations!!

Further couplings

✤ [Another important class of cubic couplings are those that involve a](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/ncyuk.cre8/) singlet Φ under G_{GUT}

✤ [This coupling will be enhanced or suppressed depending on the](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/ncyuk.cre8/) behavior of the singlet wavefunction near S

Singlet wavefunctions

✤ [Singlet wavefunctions satisfy the following Laplace equation in the](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/ncyuk.cre8/) coordinate *z* transverse to S

$$
4 \frac{\partial^2 \psi}{\partial z \partial \bar{z}} = \left(\frac{1}{2}\mathcal{R} - \mathcal{F}\right)\psi \qquad \Rightarrow \qquad \psi = e^{\frac{1}{4}\left(\frac{1}{2}\mathcal{R} - \mathcal{F}\right)|z|^2} + \dots
$$

 \cdot [In this frame the norm of](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/ncyuk.cre8/) ψ is given by

$$
||\psi||^2 = M_*^2 \int_{\Sigma_{\perp}} e^{2\phi(z,\bar{z})} |\psi|^2 \qquad e^{2\phi(z,\bar{z})} |\psi|^2 \sim e^{-\frac{1}{2}(\frac{1}{2}\mathcal{R} + \mathcal{F})|z|^2}
$$

$$
\mathcal{R} \sim -M_{GUT}^2
$$

$$
\mathcal{F} \sim \pm \text{Vol}^{-1}(\Sigma_X) \pm \text{Vol}^{-1}(\Sigma_Y) \sim \pm M_{GUT}^2
$$

 \rightarrow [Everything depends on the sign of](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/ncyuk.cre8/) $F + R/2$

- positive \Rightarrow [coupling enhancement](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/ncyuk.cre8/) \Rightarrow $||\psi||^2 \sim M_*^2/M_{GUT}^2$ $||\psi||^2 \sim M_*^2/M_{GUT}^2$
- negative \Rightarrow [coupling suppression \(](file://localhost/Users/marchesa/Physics/Charlas/CERN-RTN/ncyuk.cre8/) μ -term)