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e We argued last time that

operator O — dynamical field ¢
(field theory) (bulk),
such that
Zoulk|¢ — 0b(0)] = (exp (l/ ddX\/?(O)(S(b(O)O>>F.T. :
where '\ deA
¢(f):<1> Oks as r—0,

e |.e. Boundary value of field — source for dual operator.
e A is the scaling dimension of the operator O.
e Can see that if O is relevant, A < d, then ¢ — 0 near the boundary.
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.
Expectation values

e From previous formula clear that

_I.5Zbu|k[¢(o)] _ 6S[d(0)] '

0O) =

© 09(0) 09(0)

e Useful to make a Hamilton-Jacobi-esque identification
0S oS
Yol __ i 250l _ i g,
(Sgb(o) r—0 58,(]5(0) r—0

e Straightforward to check (adding appropriate counterterms) that if

N d—A A

¢(r):(z) ¢(0)+(Z) ¢(1)—|--'- as r—20.
e Then A _ d
(O) = %)
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N —
Retarded Green's functions

o Basic object describing perturbations away from equilibrium
6<0A>(w7 k) - G(I;AOB (wv k)6¢3(0)(w7 k) :

e From previous expression

5(Oa) . 0Ny 205 — d 09 A1)
= lim =

G 0. = = .
On08 00B(0) sp=0 0 098(0) 5¢=0 - 0B(0)

e Near the boundary require: dpa(r) = rd_AégbA(o) + o

e Regularity on the future horizon — ingoing boundary conditions

5¢A(r) _ CAefi47rw/Tlog(r7r+) +-o as r—ry.
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-
Example: Electrical and Thermal conductivity

e Want: zero momentum conductivity with a chemical potential.
e Chemical potential mixes thermal and electric conductivities

(3)=(a&r 07 ) (ewiryr )

Qx = Tex — /LJX .

where

o Why the extra term in Q,? Chemical potential gives term in action

S, = / d9xdt, /—8(0) (g“,u,Jt + gti/LJ;) .

Therefore under a perturbation of gy (o)
0S = /dd ! ( ) (Ttx /LJX) (5gtx(0).
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e Background electric field:
EX = iw(SAX(O) .
e Background thermal gradient:

VT .
T = [wigkx(0) -

[To see this: rescale time so that the period of Euclidean time is

fixed, then gi:(0) = —%. A thermal gradient is then
2xV, T
5gtt(0) = T T3

Now to a gauge transformation on the background field
08ab(0) = 0ab + Opa, with & = xV, T /w T3]
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e Therefore:
< <JX> ) o < g aT > < I.LU(SAX(O) )
<QX> - aT kT iwégtx(o) '

So conductivities are Green's functions! For instance

_inJ (w)
o(w) = —==>—.
w
e Need to solve bulk equations for A, and g, such that
Ax — AX(O) :

8tx — Lz/r2 8tx(0)

Get a decoupled equation for Ay:

2
4
(FOALY + “6A, — ‘;; 5Ax =0 .
f v2rs

Near boundary:

6Ax = 6A0) + [OAw) + - as 0.
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e Work out the ‘momenta’ (p = —9Q/0u/ V)
S 212

Mg, = — = —pdA o (11— 2
8o 581 €on0 POA) + 5 5( )081x(0)
S FOA (o)
n fr— —_ = - .
Ax 50 Avo) 22 P 08tx(0)

e Taking the boundary limit r — O:

A,
< () ) _ émx((lg) -p ( 0Ax(0) > :
(Qx) —p —€ 5gtx(0)

(e = —2Q/V, energy density).
e Compare with above:

()_;idAX(l). _ip_
T T R0 A T LT
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e Solve the differential equation
12 :

for Ay to get electrical conductivity
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e For amusement, compare with experimental data on a 241
dimensional relativistic theory, graphene!
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¢ Note that the real conductivity in the data goes up again at low
frequencies, this is the Drude peak due to momentum relaxation from
impurities, ions, etc.

e In the AdS/CFT theories (without impurities) there will be a delta
function in the conductivity at w = 0.

e This is because a translation-invariant medium with a net charge
cannot relax a DC (w = 0) current due to momentum conservation.
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-
Collisionless to hydrodynamic crossover

e Say something about finite momentum, but no chemical potential.
e Generic expectations for charge transport in a CFT.
e Long wavelength k < T: hydrodynamics — charge diffusion (collision
timescale ~ 1/T).
e Short wavelength k > T: zero temperature relativistic transport
(‘phase coherent’).

e AdS/CFT the first CFT in which crossover can be exhibited explicitly
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-
Cyclotron resonance

e Simple to add a magnetic field — dyonic black hole.
e Can get analytic results at w < T, and B ~ w!/2:
s w(w + iy + iw2/7y)

SR GRS
P —2iyw + 7% 4 w?

Txy B (w+iv)? —w?
where
" Bp . ooB?
T e+ P’ e+ P’

e Exactly the same results can be obtain from hydrodynamics alone:
conservation law plus constitutive relations.
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Cyclotron resonance at w = we — i7.

The fact that cyclotron motion is damped is an inherently relativistic
effect (colliding electrons and holes).

Zero frequency limit gives Hall conductivity
oxx(w=0)=0, Oxy(w=0) =

P
5

Need a net charge for a Hall effect.
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-
Beyond hydrodynamics

e Hydrodynamics requires small w and small B. AdS/CFT does not.

e The location of the cyclotron pole is of interest in, for instance,
graphene.
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e Some qualitatively similar results obtained at weak coupling
(=Boltzmann equation) by Miiller, Fritz and Sachdev 0805.1413.
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N —
Nernst coefficient

e A quantity of recent experimental interest has been the Nernst

coefficient:
E

N .
B|VT|

e From the hydrodynamic formulae above one obtains:

N 1 —lw
T \(WE/y—iw)r+w?)

e Vanishes when w — 0! = Need impurities.
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.
Impurities

e We need to add the effect of scattering from impurities. Break
translational invariance
= |ate time non-conservation of momentum

e Then, at w = 0,

N = l 1/Timp
T (W2/7 +1/Timp)? +w2 /)

e We want to compute N(T,B). Need dependence on T and B through

Timp-
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® Timp( T, B) needs to be computed from a microscopic theory. No
computations known (to me). Use the M2 brane theory!

e What is an impurity?

6H = /d2yV(y)O(t,y).

e V is a random potential

(VDimp =0, (VE)V(Y))imp = V20D (x — y).

e C. Herzog and | showed (using the ‘memory function method') that:

1 V2 / d’k k2|mG£O(w, k)

Timp 2(6 + P) wanol (271')2 w
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Experiment:
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