Holographic methods for condensed matter physics

Sean Hartnoll

Harvard University

Jan. 09 - CERN

Lecture III

Away from equilibrium

- Expectation values
- Retarded Green's functions
- 3 Example: Electrical and thermal conductivity
- 4 Example: Collisionless to Collision-dominated crossover
- **5** Example: Cyclotron resonance
- 6 Example: Impurities in AdS/CFT

We argued last time that

$$\begin{array}{ccc} \text{operator } \mathcal{O} & & \text{dynamical field } \phi \\ \text{(field theory)} & & \text{(bulk)} \,, \end{array}$$

such that

$$Z_{\text{bulk}}[\phi \to \delta \phi_{(0)}] = \langle \exp\left(i \int d^d x \sqrt{-g_{(0)}} \delta \phi_{(0)} \mathcal{O}\right) \rangle_{\text{F.T.}}.$$

where

$$\phi(r) = \left(\frac{r}{L}\right)^{d-\Delta} \phi_{(0)} + \cdots$$
 as $r \to 0$,

- I.e. Boundary value of field → source for dual operator.
- Δ is the scaling dimension of the operator \mathcal{O} .
- Can see that if \mathcal{O} is relevant, $\Delta < d$, then $\phi \to 0$ near the boundary.

Expectation values

From previous formula clear that

$$\langle \mathcal{O} \rangle = -i \frac{\delta Z_{\text{bulk}}[\phi_{(0)}]}{\delta \phi_{(0)}} = \frac{\delta S[\phi_{(0)}]}{\delta \phi_{(0)}}.$$

Useful to make a Hamilton-Jacobi-esque identification

$$\frac{\delta S[\phi_{(0)}]}{\delta \phi_{(0)}} = -\lim_{r \to 0} \frac{\delta S[\phi_{(0)}]}{\delta \partial_r \phi_{(0)}} \equiv \lim_{r \to 0} \Pi[\phi_{(0)}].$$

• Straightforward to check (adding appropriate counterterms) that if

$$\phi(r) = \left(\frac{r}{L}\right)^{d-\Delta} \phi_{(0)} + \left(\frac{r}{L}\right)^{\Delta} \phi_{(1)} + \cdots \quad \text{as} \quad r \to 0.$$

Then

$$\langle \mathcal{O} \rangle = \frac{2\Delta - d}{L} \phi_{(1)}.$$

Retarded Green's functions

Basic object describing perturbations away from equilibrium

$$\delta \langle \mathcal{O}_A \rangle(\omega, k) = G_{\mathcal{O}_A \mathcal{O}_B}^R(\omega, k) \delta \phi_{B(0)}(\omega, k).$$

• From previous expression

$$G_{\mathcal{O}_A\mathcal{O}_B}^R = \left. \frac{\delta \langle \mathcal{O}_A \rangle}{\delta \phi_{B(0)}} \right|_{\delta \phi = 0} = \left. \lim_{r \to 0} \frac{\delta \Pi_A}{\delta \phi_{B(0)}} \right|_{\delta \phi = 0} = \frac{2\Delta_A - d}{L} \frac{\delta \phi_{A(1)}}{\delta \phi_{B(0)}} \,.$$

- Near the boundary require: $\delta \phi_A(r) = r^{d-\Delta} \delta \phi_{A(0)} + \cdots$.
- ullet Regularity on the future horizon o ingoing boundary conditions

$$\delta\phi_A(r) = C_A e^{-i4\pi\omega/T \log(r-r_+)} + \cdots$$
 as $r \to r_+$.

Example: Electrical and Thermal conductivity

- Want: zero momentum conductivity with a chemical potential.
- Chemical potential mixes thermal and electric conductivities

$$\begin{pmatrix} \langle J_x \rangle \\ \langle Q_x \rangle \end{pmatrix} = \begin{pmatrix} \sigma(\omega) & \alpha(\omega)T \\ \alpha(\omega)T & \bar{\kappa}(\omega)T \end{pmatrix} \begin{pmatrix} E_x \\ -(\nabla_x T)/T \end{pmatrix} ,$$

where

$$Q_{\mathsf{X}} = T_{\mathsf{t}\mathsf{X}} - \mu J_{\mathsf{X}} \,.$$

• Why the extra term in Q_x ? Chemical potential gives term in action

$$S_{\mu} = \int d^{d-1}x dt \sqrt{-g_{(0)}} \left(g^{tt} \mu J_t + g^{ti} \mu J_i \right) .$$

Therefore under a perturbation of $\delta g_{t\times(0)}$

$$\delta S = \int d^{d-1}x dt \sqrt{-g_{(0)}} \left(T^{tx} - \mu J^{x} \right) \delta g_{tx(0)}.$$

Background electric field:

$$E_{x}=i\omega\delta A_{x(0)}.$$

Background thermal gradient:

$$-\frac{\nabla_{x}T}{T}=i\omega\delta g_{tx(0)}.$$

[To see this: rescale time so that the period of Euclidean time is fixed, then $g_{tt(0)} = -\frac{1}{T^2}$. A thermal gradient is then

$$\delta g_{tt(0)} = -\frac{2x\nabla_x T}{T^3}.$$

Now to a gauge transformation on the background field $\delta g_{ab(0)} = \partial_a \xi_b + \partial_b \xi_a$, with $\xi_t = x \nabla_x T / \omega T^3$.]

Therefore:

$$\left(\begin{array}{c} \langle J_x \rangle \\ \langle Q_x \rangle \end{array} \right) = \left(\begin{array}{cc} \sigma & \alpha T \\ \alpha T & \bar{\kappa} T \end{array} \right) \left(\begin{array}{c} i\omega \delta A_{x(0)} \\ i\omega \delta g_{tx(0)} \end{array} \right) \; .$$

So conductivities are Green's functions! For instance

$$\sigma(\omega) = \frac{-iG_{J_xJ_x}^R(\omega)}{\omega}.$$

• Need to solve bulk equations for A_x and g_{tx} such that

$$A_x \rightarrow A_{x(0)}$$

 $g_{tx} \rightarrow L^2/r^2 g_{tx(0)}$

Get a decoupled equation for A_x:

$$(f\delta A_x')' + \frac{\omega^2}{f}\delta A_x - \frac{4\mu^2 r^2}{\gamma^2 r_\perp^2}\delta A_x = 0.$$

Near boundary:

$$\delta A_x = \delta A_{x(0)} + \frac{r}{I} \delta A_{x(1)} + \cdots$$
 as $r \to 0$.

• Work out the 'momenta' $(\rho = -\partial\Omega/\partial\mu/V)$

$$\begin{split} \Pi_{g_{tx}} &= -\frac{\delta S}{\delta \partial_{r} g_{tx(0)}} = -\rho \, \delta A_{x(0)} + \frac{2L^{2}}{\kappa^{2} r^{3}} (1 - f^{-1/2}) \delta g_{tx(0)} \,, \\ \Pi_{A_{x}} &= -\frac{\delta S}{\delta \partial_{r} A_{x(0)}} = \frac{f \delta A'_{x(0)}}{g^{2}} - \rho \, \delta g_{tx(0)} \,. \end{split}$$

• Taking the boundary limit $r \to 0$:

$$\begin{pmatrix} \langle J_x \rangle \\ \langle Q_x \rangle \end{pmatrix} = \begin{pmatrix} \frac{1}{g^2} \frac{\delta A_{x(1)}}{L \delta A_{x(0)}} & -\rho \\ -\rho & -\epsilon \end{pmatrix} \begin{pmatrix} \delta A_{x(0)} \\ \delta g_{tx(0)} \end{pmatrix},$$

 $(\epsilon = -2\Omega/V$, energy density).

• Compare with above:

$$\sigma(\omega) = \frac{-i}{g^2 \omega} \frac{\delta A_{x(1)}}{L \delta A_{x(0)}}; \qquad \alpha(\omega) = \frac{i\rho}{\omega T}; \qquad \bar{\kappa}(\omega) = \frac{i\epsilon}{\omega T}.$$

• Solve the differential equation for A_x to get electrical conductivity

• For amusement, compare with experimental data on a 2+1 dimensional relativistic theory, graphene!

- Note that the real conductivity in the data goes up again at low frequencies, this is the Drude peak due to momentum relaxation from impurities, ions, etc.
- In the AdS/CFT theories (without impurities) there will be a delta function in the conductivity at $\omega=0$.
- This is because a translation-invariant medium with a net charge cannot relax a DC ($\omega=0$) current due to momentum conservation.

Collisionless to hydrodynamic crossover

- Say something about finite momentum, but no chemical potential.
- Generic expectations for charge transport in a CFT.
 - Long wavelength $k \ll T$: hydrodynamics \rightarrow charge diffusion (collision timescale $\sim 1/T$).
 - Short wavelength $k \gg T$: zero temperature relativistic transport ('phase coherent').
- AdS/CFT the first CFT in which crossover can be exhibited explicitly

Cyclotron resonance

- Simple to add a magnetic field → dyonic black hole.
- Can get analytic results at $\omega \ll T$, and $B \sim \omega^{1/2}$:

$$\begin{split} \sigma_{xx} &= \sigma_Q \frac{\omega(\omega + i\gamma + i\omega_c^2/\gamma)}{(\omega + i\gamma)^2 - \omega_c^2} \;, \\ \sigma_{xy} &= -\frac{\rho}{B} \frac{-2i\gamma\omega + \gamma^2 + \omega_c^2}{(\omega + i\gamma)^2 - \omega_c^2} \;. \end{split}$$

where

$$\omega_c = \frac{B\rho}{\epsilon + P} \; , \quad \gamma = \frac{\sigma_Q B^2}{\epsilon + P} \; ,$$

Exactly the same results can be obtain from hydrodynamics alone: conservation law plus constitutive relations.

- Cyclotron resonance at $\omega = \omega_c i\gamma$.
- The fact that cyclotron motion is damped is an inherently relativistic effect (colliding electrons and holes).
- Zero frequency limit gives Hall conductivity

$$\sigma_{xx}(\omega=0)=0\,,\qquad \sigma_{xy}(\omega=0)=rac{
ho}{B}\,.$$

Need a net charge for a Hall effect.

Sean Hartnoll (Harvard)

Beyond hydrodynamics

- Hydrodynamics requires small ω and small B. AdS/CFT does not.
- The location of the cyclotron pole is of interest in, for instance, graphene.

 Some qualitatively similar results obtained at weak coupling (=Boltzmann equation) by Müller, Fritz and Sachdev 0805.1413.

Nernst coefficient

 A quantity of recent experimental interest has been the Nernst coefficient:

$$N \equiv \frac{E}{B|\nabla T|}$$
.

From the hydrodynamic formulae above one obtains:

$$N = \frac{1}{T} \left(\frac{-i\omega}{(\omega_c^2/\gamma - i\omega)^2 + \omega_c^2} \right) .$$

• Vanishes when $\omega \to 0!$ \Rightarrow Need impurities.

Impurities

- We need to add the effect of scattering from impurities. Break translational invariance
 - ⇒ late time non-conservation of momentum

$$\dot{P} \sim -\frac{P}{\tau_{\rm imp}}$$
.

• Then, at $\omega = 0$,

$$N = rac{1}{T} \left(rac{1/ au_{imp}}{(\omega_c^2/\gamma + 1/ au_{imp})^2 + \omega_c^2}
ight) \, .$$

 We want to compute N(T,B). Need dependence on T and B through $\tau_{\rm imp}$.

- $\tau_{imp}(T,B)$ needs to be computed from a microscopic theory. No computations known (to me). Use the M2 brane theory!
- What is an impurity?

$$\delta H = \int d^2y V(y) \mathcal{O}(t,y).$$

V is a random potential

$$\langle V(x)\rangle_{\rm imp} = 0$$
, $\langle V(x)V(y)\rangle_{\rm imp} = \bar{V}^2\delta^{(2)}(x-y)$.

C. Herzog and I showed (using the 'memory function method') that:

$$\frac{1}{\tau_{\rm imp}} = \frac{\bar{V}^2}{2(\epsilon + P)} \lim_{\omega \to 0} \int \frac{d^2k}{(2\pi)^2} \, k^2 \frac{{\rm Im} \, G^R_{\mathcal{O}\mathcal{O}}(\omega,k)}{\omega} \, . \label{eq:timp}$$

Experiment:

