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Consider an expanding Universe

t

High energy density,
Quantum gravity effects ...

Where else do we encounter
high energy densities ?

When matter collapses to form a
black hole ....

String theory has had good success 
in understanding the quantum structure 
of the black hole interior...

What do the results suggest about the 
early Universe?



Note: 

In the last 3 lectures, we did well defined computations in string theory
to resolve the black hole information paradox

The ideas in the present talk will be purely speculative, and are just one 
way that we can start to think about the very early Universe
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The Hawking ‘theorem’ :  If

(a) All quantum gravity effects are confined to within a given distance 
like planck length or string length

(b) The vacuum is unique

Then there WILL be information loss

Summary of results from last 3 lectures: 

Hawking gives an explicit construction of the evolution
of the vacuum state near the horizon, and shows that it
gives entangled pairs

If we can show that the state is not       , then we resolve
the problem
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But a black hole is made of a large number of quanta     ,  so we must
ask if the relevant length scales are         or  
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In this case the black hole would be replaced by a horizon - sized
quantum ‘fuzzball’.

String theory computations suggest that such is the case ...
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No 
perturbative 
deformations
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Earlier attempts to find ‘hair’ did not succeed ....they looked for
perturbative deformations of the traditional black hole metric

Thus we kept getting
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We used string theory to understand the whole class of black hole states ... this 
allowed us to start from simple states and move to more complicated ones

‘Quantum
  fuzzball’
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Thus the generic state is expected to have

and not



We are resolving a paradox.  All we have to show is that
there is a physical way out of the Hawking construction.

We do not need to make all states in all detail.

If someone wants to still argue there is a paradox, then he has to show 
that other states will not behave this way

We do have to show a way out of the simple ‘dynamical puzzle’:

Once a shell collapses inside its horizon, how can information ever come 
out ?

Concrete computations:  2-charge extremal, 3-charge extremal,
some non-extremal, Hawking radiation from nonextremal



We cannot assume that the black hole interior is classical ...
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??

Number of states that we can tunnel to 
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10The infalling shell can tunnel into a linear combination of fuzzball states,
and the time for this tunneling is shorter than Hawking evaporation time
(SDM 08)



(A) An overview of the main point: 
                   Entropy in the early Universe



In the early days of Cosmology, 
one assumed that the early Universe
was filled with radiation

Why did we do this ?

We held fixed the volume of the 
Universe at a given time,
and looked for the most entropic state
with the given energy

(Note that when the Universe expands,
the entropy can increase, because the
box size increases)

What happens if we find configurations with more entropy ?



Start with a box of volume V

In the box put energy E

Question:  What is the state of maximal entropy S, and how much is S(E) ?

This appears to be a well defined question in string theory, 
though we should worry about the fact that energy density forces 
expansion, so we may go out of equilibrium.

For the moment, we will just assume equilibrium at all times, just like 
for radiation in the early Universe
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Radiation

1-charge objects:  radiation

The entropy also depends on the volume V

We hold V fixed, so we do not write it

Note that there is no net momentum, so we have 
both P and anti-P modes (the state is not BPS)
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(Brandenberger+Vafa)

 But we can get more entropy if we use two kinds of charges ...Nα lp (77)
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Fix V ...
 
For high enough E, this entropy is more than the entropy of radiation



   If we use 3 kinds of charges,  the entropy behaves as 
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We have

Which gives 

NS1 − P (IIB)
S → D1 − P (IIB)
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Does string theory force us to consider more and more types of branes
in the early Universe ?



Plan of the talk :

(a) Review what is known about entropy for non-extremal 
     black holes

(b) Get an equation of state for the early Universe based on
     the physics of black holes

(c) Solve for the evolution with this physics

(d) Conjectures about late time evolution

(e) Summary 

       Some general emerging principles about physics at very
             high energy densities

       



Entropy of non-extremal black holes



bound state

Degeneracy = 256
(independent of n)

S = ln 256 ~ 0

  One charge extremal

Two charge extremal

Many ways to partition momentum among 
different harmonics -- large entropy

travelling waves on string
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(Strominger + Vafa  ’96)

Three charge extremal

D1-D5

D1-D5-P



Two large charges + nonextremality
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(Callan + Maldacena ’ 96)

Thus we see that we reproduce the Bekenstein entropy by assuming that the 
momentum and anti-momentum excitations do not interact -- the energy is 
the sum of the two energies and the entropy is the sum of the two entropies
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P P
-

excitations collide 
and create gravitons

Semiclassical Hawking radiation
from black hole

Radiation from near-extremal D1-D5 system
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(Das+SDM ’96, Strominger+Maldacena ’96)

Exact agreement of radiation rate, spin 
dependence, grey-body factors

Do we trust this picture of excitations ?



One large charge (D5) + nonextremality
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Maximize the formal expression for
                 subject to these constraints
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Effective string with 
fractional tension
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Effective string with 
fractional tension
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(Klebanov+SDM ’97)

Radiation from near-extremal D5 

Do we trust this picture of excitations ?



No large charges

Maximize               subject to the constraints
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(Horowitz, Maldacena, Strominger ’96)



Take a neutral hole and add charges by boosting + dualities. This relates
it to a near extremal hole, and we can find the emission from microscopics:
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Note that boosting in a compact direction is not an exact symmetry, but is 
presumably a good approximation for large charges (similar to the idea of 
Matrix theory)

(Das, SDM, Ramadevi ’98)



The compact directions have a size that relaxes gradually to its value at 
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We have seen that the energies of the branes and antibranes just ‘add’, as 
if there were no interactions.

We get  a similar simplification for ‘pressures’
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Nontrivial fiber direction
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NS1 P NS1 P + ∆E → NS1 P + PP̄ → radiation ??
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Radiation

Let us apply these principles to the early Universe.

We let the Universe be a torus with volume V

Branes can wrap around all the cycles of this torus

We look for the configuration with maximum entropy
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Three charges (4+1 d black hole)
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This needs 5 compact directions ...



Four charges (3+1 d black hole) ... this uses 6 compact directions
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N charges,
postulate .....
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We will call such a state the ‘Fractional brane state’

In M-theory language, we have 10 spatial directions and one time ...
so we have 10 cycles to wrap objects on



This state looks like a ‘brane gas’, but is actually different in many ways ...

In a brane gas, we have a dilute set of 
branes filling the Universe. The branes 
carry vibrations on their surface, and 
can interact when they cross

(a) The entropy of  a brane gas is  S ~ E, i.e. Hagedorn type, since
     it comes from vibrations of the brane surface

     The entropy of the fractional brane state is 
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Fractional brane stated  vs   Brane gas



(b) In a brane gas, we can take any set of branes to exist

     In the fractional brane state, the energy goes to specific brane sets.
     For example, if we have D1, then we can have D5 but not D3.
     The branes we can have are such that they are pairwise BPS

      Only in this case does the entropy grow as the product 
      of brane numbers

      We can take upto 9 kinds of branes in the fractional brane state.
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(c) To understand the fractional brane state, start with a brane gas.
     At low densities, the branes float around, with rare interactions 

     Increase the density of branes so that they are squeezed tightly together,
     tighter than planck spacing.

     At this point, we might have expected annihilation, but instead the energy
     goes to creating a set of specific branes and antibranes in a specific kind 
     of bound state. This state is metastable, decaying very very slowly. 

    This is the fractional brane state that we are after



Why don’t the branes and antibranes annihilate immediately?

Tachyon at top of potential
(Sen ’99)

Antibrane falls down throat, no radiation 
emerges for a long time ...

Dhar, Mandal,  Wadia,  Yogendran ’99
Lunin, SDM, Park, Saxena ’03
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2πk

n1n5L

2πm

L

3

Fractional branes and antibranes have to ‘find’ each other 
before they can annihilate ...

A graviton outside
the branes has to 
have an integral 
momentum

M9,1 →M3,1 × T 4 × S1 × S̃1

2πk

n1n5L

2πm

L

3

Excitations of
the effective string
come in units of 

(a) Fractionation makes the excitations very low energy

(b) An excitation with k = 7 cannot annihilate against k = -5 ... can annihilate
     with k = -7



Solving for the evolution



Plan of the computation :

Assume Universe is a torus ...

Branes can wrap all directions of space ...

Assume entropy relation like the one for black holes ..
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We will work for general N, though in principle string theory should fix this
(N=9?) 

Just as for black holes, the energy and pressure are taken to be a simple sum 
over the energies and pressures of the branes/antibranes.

Solve for the evolution !



Here mi is the mass of the brane of type i

mi = Tp

∏

j

Lj (2.30)

where Tp is the tension of a p-brane and the product runs over all the spatial directions
of the brane.

We assume that the system is in thermal equilibrium, so we will maximize the entropy
(2.27) for given E.3 To find the state with maximal entropy at a given time t, the Li

are held fixed (which fixes the mi), and the total energy is held fixed at E. Taking into
account this energy constraint we maximize

S̃ = S − λ(Ebranes − E) = A
N
∏

i=1

√
ni − λ(2

∑

i

mini − E) (2.31)

Extremizing over ni gives

nk = n̄k =
E

2Nmk

(2.32)

Note that the energy is equipartitioned among all types of branes, each type getting
energy (there is no sum over k)

Ek = nkmk =
E

2N
(2.33)

2.5 Stress tensor

We have seen that the entropy of black holes is reproduced by assuming that the energy
gets partitioned optimally between different kinds branes and antibranes. In this com-
putation the energy is taken to be just additive; i.e. there was no energy of interaction.
In [16] it was shown that with this same assumption of noninteraction between branes
we can reproduce the pressures exerted by the black hole on the various compact cycles.
Thus on the one hand we can take the black hole geometry and for compact directions
yi look at the asymptotic fall-off of gyiyi

; this is related to the pressure components T i
i of

the stress tensor in a weak gravity situation. On the other hand we can take the set of
branes and antibranes that we obtained by extremizing an expression like (2.18),(2.23),
compute the pressure each brane exerts by itself on the compact directions, and just add
these pressures. One again finds exact agreement between the black hole result and the
microscopic computation.4 We will thus also use a simple sum over the pressures of the
branes describing our configuration.

3To see if the assumption of equilibrium is true, we will have to compute the rate of interactions
between fractional branes. This interaction depends on the total number of branes in the bound state.
We do not address these issues here, and hope to return to them elsewhere.

4In [16] the variables compared between the two computations were certain linear combinations of
the pressures; for a direct computation of pressures from wrapped branes see for example [20].
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compute the pressure each brane exerts by itself on the compact directions, and just add
these pressures. One again finds exact agreement between the black hole result and the
microscopic computation.4 We will thus also use a simple sum over the pressures of the
branes describing our configuration.

3To see if the assumption of equilibrium is true, we will have to compute the rate of interactions
between fractional branes. This interaction depends on the total number of branes in the bound state.
We do not address these issues here, and hope to return to them elsewhere.

4In [16] the variables compared between the two computations were certain linear combinations of
the pressures; for a direct computation of pressures from wrapped branes see for example [20].
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Here mi is the mass of the brane of type i

mi = Tp

∏

j

Lj (2.30)

where Tp is the tension of a p-brane and the product runs over all the spatial directions
of the brane.
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S̃ = S − λ(Ebranes − E) = A
N
∏

i=1

√
ni − λ(2

∑

i

mini − E) (2.31)

Extremizing over ni gives

nk = n̄k =
E

2Nmk

(2.32)

Note that the energy is equipartitioned among all types of branes, each type getting
energy (there is no sum over k)

Ek = nkmk =
E

2N
(2.33)

2.5 Stress tensor
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In [16] it was shown that with this same assumption of noninteraction between branes
we can reproduce the pressures exerted by the black hole on the various compact cycles.
Thus on the one hand we can take the black hole geometry and for compact directions
yi look at the asymptotic fall-off of gyiyi

; this is related to the pressure components T i
i of

the stress tensor in a weak gravity situation. On the other hand we can take the set of
branes and antibranes that we obtained by extremizing an expression like (2.18),(2.23),
compute the pressure each brane exerts by itself on the compact directions, and just add
these pressures. One again finds exact agreement between the black hole result and the
microscopic computation.4 We will thus also use a simple sum over the pressures of the
branes describing our configuration.

3To see if the assumption of equilibrium is true, we will have to compute the rate of interactions
between fractional branes. This interaction depends on the total number of branes in the bound state.
We do not address these issues here, and hope to return to them elsewhere.

4In [16] the variables compared between the two computations were certain linear combinations of
the pressures; for a direct computation of pressures from wrapped branes see for example [20].

9

Step A :  Find the number of branes and anti-branes by maximizing entropy S
            for given total mass of branes/anti-branes

Mass of a brane is given by its tension 
times its area

The Universe is neutral, so 

Smicro = 2π
√

n1n5np (152)

Sbek =
A

4G
= 2π

√
n1n5np = Smicro (153)

ni = n̄i (154)

9

Maximize  S  for given total energy  E

Energy is equi-partitioned
among different types of 
branes

We find

Smicro = 2π
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n1n5np (152)

Sbek =
A

4G
= 2π

√
n1n5np = Smicro (153)

ni = n̄i (154)

X i N pi = wi ρ ρ Ni (155)

X1 X2 X3 w = {1, .5, .5} N = 2 (156)

a1 a2 a3 (157)

L1 L2 (158)
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Step B :  Find the stress tensor due to the branes/anti-branes

Let us first compute the stress tensor of a single p-brane. The action of the brane is

S = −Tp

∫

√

−gind dp+1ξ (2.34)

where gind
ab is the metric induced on the worldvolume. The stress tensor is given by

Tµν = −
2√
−g

δS

δgµν
(2.35)

Let the length of the direction xi be Li. Let the brane be wrapped on directions x1 . . . xp.
The volume of the brane is Vp =

∏p
i=1 Li. The volume of the directions transverse to the

brane is Vtr =
∏D−1

i=p+1 Li. The total volume of the torus is V = VpVtr. The stress tensor
has only diagonal components. We find (there is no sum over k)

T (p)k
k = −Tp

D−1
∏

i=p+1

δ̂(xi − x̄i), k = 1, . . . , p

T (p)k
k = 0, k = p + 1, . . . , (D − 1) (2.36)

where δ̂ is the covariant delta function (
∫

δ̂(x)
√
−gxx dx = 1), and x̄i give the position

of the p-brane in the transverse coordinates.
Now suppose there are np branes of this type, smeared uniformly on the transverse

directions xi, i = p + 1 . . . (D − 1). Then we get

T (p)k
k = −Tp

np

Vtr

= −Tp

npVp

V
= −

Ep

V
(2.37)

where Ep = npTpVp is the total energy carried by this type of brane. Using (2.33) we
have

T (p)k
k = −

E

2NV
= −

ρ

2N
(2.38)

where ρ = E
V

is the energy density. Including the contribution of the corresponding
antibrane, we get from this type of brane the pressure

p = −
1

N
ρ (2.39)

Now suppose there were Ni types of branes wrapping the direction xi. Then the pressure
in the direction xi will be

pi = −
Ni

N
ρ ≡ wiρ (2.40)

where we have defined

wi ≡ −
Ni

N
(2.41)
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A brane has tension (negative pressure) along the directions 
where it extends, and zero pressure in the remaining directions

Following what we learnt from black holes,
we will simply add the stress tensors from 
all the branes and anti-branes
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Let       of these types extend along the direction     
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9

Smicro = 2π
√

n1n5np (152)

Sbek =
A

4G
= 2π

√
n1n5np = Smicro (153)

ni = n̄i (154)

X i N pi = wi ρ ρ Ni (155)

9

Let there be       different types of branes/antibranes
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Define

Then we find that when the entropy is maximized, the 
pressure in the direction         is given by 
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entropy. At very high energies these elementary constituents are essentially noninteract-
ing quanta. In our case we have a high energy density in the early Universe, and black
hole physics suggests that the most entropically favored configuration is one of fractional
branes. Black hole computations also suggest that these fractional brane quanta are free
to leading order, and that we should find the total energy and pressure by adding the
contributions from each brane in the state.

3 Einstein’s equations

We take the metric to have the form

ds2 = −dt2 +
D−1
∑

i=1

a2
i (t)dx2

i (3.1)

The coordinates xi are compactified with period unity (0 ≤ xi < 1). The nonvanishing
components of the connection are

Γt
ii = aiȧi, Γi

ti =
ȧi

ai

(3.2)

The relevant components of the Einstein tensor are

Gt
t = −

1

2
(
∑

i

ȧi

ai

)2 +
1

2

∑

i

ȧ2
i

a2
i

(3.3)

Gk
k =

äk

ak

+
ȧk

ak

(
∑

i

ȧi

ai

) −
ȧ2

k

a2
k

−
1

2
[2

∑

i

äi

ai

+ (
∑

i

ȧi

ai

)2 −
∑

i

ȧ2
i

a2
i

]

=
äk

ak

+
ȧk

ak

(
∑

i

ȧi

ai

) −
ȧ2

k

a2
k

−
∑

i

äi

ai

+ Gt
t (3.4)

(There is no sum over k in (3.4).) The Einstein equations are Gµ
ν = 8πGT µ

ν . The
nonvanishing components of the stress tensor are

T t
t = −ρ, T k

k = pk = wkρ (3.5)

so we get the field equations

−
1

2
(
∑

i

ȧi

ai

)2 +
1

2

∑

i

ȧ2
i

a2
i

= −8πGρ (3.6)

äk

ak

+
ȧk

ak

(
∑

i

ȧi

ai

) −
ȧ2

k

a2
k

−
∑

i

äi

ai

= 8πG(1 + wk)ρ (3.7)

Substituting (3.6) in (3.7) we get

äk

ak

+
ȧk

ak

(
∑

i

ȧi

ai

) −
ȧ2

k

a2
k

−
∑

i

äi

ai

= (1 + wk) [
1

2
(
∑

i

ȧi

ai

)2 −
1

2

∑

i

ȧ2
i

a2
i

] (3.8)
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Step C :  Solving Einstein’s equations

We take a ‘Kasner-type’ metric ansatz

And solve the Einstein equations with 

Smicro = 2π
√

n1n5np (152)

Sbek =
A

4G
= 2π

√
n1n5np = Smicro (153)

ni = n̄i (154)

X i N pi = wi ρ ρ Ni (155)

9

Interestingly, the problem can be solved in closed form

(some earlier work with similar equations had found numerical solutions)

(B. Chowdhury + SDM, 2006)
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The solution

Define the
constants

4 A Kasner type power law solution

For the empty Universe with toroidal compactification we have the Kasner solutions [27],
where the radii grow as powers of t. A power law solution was also found for the case of
isotropically wrapped branes in [3]. We will see that with the equation of state that we
have chosen we can get a power law solution for any choice of the wi which characterize
the brane wrappings.

Thus write
ai = āi tβi (4.1)

Thus
ȧi

ai

=
βi

t
,

äi

ai

=
βi(βi − 1)

t2
(4.2)

Substituting in (3.8) gives

βk =
1
2(

∑

i β
2
i )(1 − wk) + 1

2(
∑

i βi)2(1 + wk) − (
∑

i βi)

[(
∑

i βi) − 1]
(4.3)

We write
∑

i

βi = A,
∑

i

β2
i = B (4.4)

Then we have

βk = [
1
2B + 1

2A
2 − A

(A − 1)
] − wk [

1
2B − 1

2A
2

(A − 1)
] (4.5)

Let us define
W ≡

∑

i

wi, U ≡
∑

i

w2
i (4.6)

We can get two consistency conditions from (4.5). First we sum over k in (4.5), getting

∑

k

βk = A = (D − 1)[
1
2B + 1

2A
2 − A

(A − 1)
] − W [

1
2B − 1

2A
2

(A − 1)
] (4.7)

Next we square the βk and then add:

∑

k

β2
k = B = (D−1)[

1
2B + 1

2A
2 − A

(A − 1)
]2+U [

1
2B − 1

2A
2

(A − 1)
]2−2W [

1
2B + 1

2A
2 − A

(A − 1)
] [

1
2B − 1

2A
2

(A − 1)
]

(4.8)
One solution to these equations is A = 1, B = 1, which gives the well known vacuum
Kasner solutions [27]. To find other solutions, note that eq.(4.7) is linear in B, and gives

B = A
2(D − 2) + A(3 − W − D)

D − 1 − W
(4.9)

Substituting in (4.8) we get a quadratic equation for A. Solving this, we get two additional
solutions, one of which is A = 0. Collecting all these solutions we have the following cases:
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Let us first compute the stress tensor of a single p-brane. The action of the brane is

S = −Tp

∫

√

−gind dp+1ξ (2.34)

where gind
ab is the metric induced on the worldvolume. The stress tensor is given by

Tµν = −
2√
−g

δS

δgµν
(2.35)

Let the length of the direction xi be Li. Let the brane be wrapped on directions x1 . . . xp.
The volume of the brane is Vp =

∏p
i=1 Li. The volume of the directions transverse to the

brane is Vtr =
∏D−1

i=p+1 Li. The total volume of the torus is V = VpVtr. The stress tensor
has only diagonal components. We find (there is no sum over k)

T (p)k
k = −Tp

D−1
∏

i=p+1

δ̂(xi − x̄i), k = 1, . . . , p

T (p)k
k = 0, k = p + 1, . . . , (D − 1) (2.36)

where δ̂ is the covariant delta function (
∫

δ̂(x)
√
−gxx dx = 1), and x̄i give the position

of the p-brane in the transverse coordinates.
Now suppose there are np branes of this type, smeared uniformly on the transverse

directions xi, i = p + 1 . . . (D − 1). Then we get

T (p)k
k = −Tp

np

Vtr

= −Tp

npVp

V
= −

Ep

V
(2.37)

where Ep = npTpVp is the total energy carried by this type of brane. Using (2.33) we
have

T (p)k
k = −

E

2NV
= −

ρ

2N
(2.38)

where ρ = E
V

is the energy density. Including the contribution of the corresponding
antibrane, we get from this type of brane the pressure

p = −
1

N
ρ (2.39)

Now suppose there were Ni types of branes wrapping the direction xi. Then the pressure
in the direction xi will be

pi = −
Ni

N
ρ ≡ wiρ (2.40)

where we have defined

wi ≡ −
Ni

N
(2.41)
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(Recall that                   )

Compute the 
constants

Then (5.3) is
d

dt
γk + γkP −

d

dt
P −Q =

1

2
(P2 −Q)(1 + wk) (5.5)

Summing (5.5) over k gives

−(D − 2)
d

dt
P + P2 − (D − 1)Q =

1

2
(P2 −Q)(D − 1 + W ) (5.6)

Multiplying (5.5) by γk and then summing over k gives

1

2

d

dt
Q− P

d

dt
P =

1

2
(P2 −Q)(P + S) (5.7)

Multiplying (5.5) by wk and then summing over k gives

d

dt
S + PS − W

d

dt
P − WQ =

1

2
(P2 −Q)(W + U) (5.8)

Interestingly, we find that even though there are D − 1 variables γi, the three moments
(5.4) form a closed system of three first order equations. We can write (5.6)-(5.8) in a
more convenient form by defining

Q̃ = Q− P2 (5.9)

Then our three equations become

Ṗ + P2 = −K1Q̃ (5.10)
˙̃Q + PQ̃ = −SQ̃ (5.11)

Ṡ + PS = K2Q̃ (5.12)

where

K1 =
(D − 1 − W )

2(D − 2)
(5.13)

K2 = −
1

2
[
1 − W

D − 2
W + U ] (5.14)

If P,Q,S are known then we get the γi from (5.5)

γ̇k + γkP = −
1

2
Q̃[

1 − W

D − 2
+ wk] (5.15)

The ai are then determined by (5.1).
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Eq.(5.15) for the γi can also be written simply in hatted variables

d

dt
γ̂k = −δk

ˆ̃Q (5.28)

where

δk =
1

2
[
1 − W

D − 2
+ wk] (5.29)

5.2 Integrals of motion

The hatted version of the basic equations allow us to note some simple integrals of the
equations.

From (5.24) and (5.26) we find immediately that

d

dt
(K2P̂ + K1Ŝ) = 0 (5.30)

which gives

Ŝ = −
K2

K1
P̂ + constant (5.31)

where the constant is determined by initial conditions.
From (5.29) and (5.24) we find

d

dt
γ̂k = −δk

ˆ̃Q =
δk

K1

d

dt
P̂ (5.32)

which gives

γ̂k =
δk

K1
P̂ + Fk (5.33)

where Fk are constants determined by initial conditions. Note that

∑

k

δk

K1
= 1 (5.34)

Since
∑

k γ̂k = P̂ , we see that we must have

∑

k

Fk = 0 (5.35)

5.3 Physical ranges for parameters

Note that

P =
∑

i

γi =
d

dt

∑

i

log ai =
d

dt
log V =

V̇

V
(5.36)
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is less than −1. It is conventionally assumed that wi lie in the range −1 ≤ wi ≤ 1. The
upper limit comes from the dominant energy condition, but there is no strong reason to
require the lower limit. For the quanta that we get from string theory though we do have
−1 ≤ w1 ≤ 1, as can be seen from the definition (2.41).

In either of these cases (b),(c) we are on the ‘right branch’ of the parabola in Fig.4(b).
Thus the point τ = 0 where the initial data is specified lies to right of the two roots of
the parabola. So r1 < r2 < 0, and we find from (6.17)

(t− t0) =
(r2 − r1)α1+α2+1

|A4|

(

B τ−r2
τ−r1

[α2 + 1,−α1 − α2 − 1)] − B r2
r1

[α2 + 1,−α1 − α2 − 1)]
)

(6.27)
In Fig.6 we plot graphs for an example that illustrates case (b). We have taken

wi = −.2 for all i. We have set t0 = 2 and have taken γi(t = t0) = 1, ai(t = t0) = 1 for

all i. We plot P̂,− ˆ̃Q, and a1.

6.3 Solving for γi, ai

From (5.32) we find

(−
1
ˆ̃Q

)
d

dt
γ̂k =

d

dτ
γ̂k = δk (6.28)

which gives
γ̂k = δkτ + fk (6.29)

where fk are constants. Since
∑

k

γ̂k = Î
∑

k

γk = ÎP = P̂ (6.30)

we have one relation between the fk

∑

k

fk = P̂(τ = 0) = A1 (6.31)

Now note that
d

dt
(log ak) =

ȧk

ak

= γk =
γ̂k

Î
=

δkτ + fk

Î
(6.32)

Thus

d

dτ
(log ak) = (−

1
ˆ̃Q

)
d

dt
(log ak) = −

(δkτ + fk)
ˆ̃QÎ

= −[
(δkτ + fk)

− (K1+K2)
2 (τ − r1)(τ − r2)

] (6.33)

where we have used (6.12),(6.15). This gives

ak = Ck (τ − r1)
2(δkr1+fk)

(K1+K2)(r1−r2) (τ − r2)
−

2(δkr2+fk)
(K1+K2)(r1−r2) (6.34)

where Ck are constants.
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Then

where      is an auxiliary time parameter given by

From (5.42) and (5.45) we find that the RHS of (5.24) is non-negative, so P̂ is a
non-decreasing function of time

d

dt
P̂ ≥ 0 (5.46)

From (5.37) and (5.46) we see that for all t ≥ t0 we will have

P̂ ≥ 0 (5.47)

From (5.27) we see that
d

dt
Î ≥ 0 (5.48)

so that Î = V
V0

is a nondecreasing function of time. Thus the Universe will not ‘recollapse’
to V → 0.

The variables S, Ŝ can have either sign, and this sign can change during the evolution.

6 Solving the equations

We observe that in the system (5.24)-(5.27), three of equations have ˆ̃Q on the right hand

side. We can divide by ˆ̃Q and absorb it in the definition of time, by writing

1

(− ˆ̃Q)

d

dt
≡

d

dτ
(6.1)

We have put in the negative sign because ˆ̃Q is negative; with this sign, the variable τ
increases when t increases. Thus the t, τ variables are related by

τ =

∫ t

t0

dt′ (− ˆ̃Q), (t − t0) =

∫ τ

0

dτ ′

(− ˆ̃Q)
(6.2)

where we have chosen the lower limit of t to be the time t0 where we specify initial
conditions. The system (5.24)-(5.27) then gives

d

dτ
P̂ = K1 (6.3)

d

dτ
ˆ̃Q =

Ŝ
Î

(6.4)

d

dτ
Ŝ = −K2 (6.5)

d

dτ
Î = −

P̂
ˆ̃Q

(6.6)
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are given by rational functions of this time. To get back to the physical problem however,
we need to relate τ to t. This is done through (6.2)

(t − t0) =
1

A4

∫ τ

0

(τ ′ − r1)
2(−r1K2+A2)

(K1+K2)(r1−r2) (τ ′ − r2)
−

2(−r2K2+A2)
(K1+K2)(r1−r2) dτ ′ (6.17)

The integral on the RHS is given by an incomplete Beta function. This function is defined
by [28]

Bx(p, q) =

∫ x

0

sp−1(1 − s)q−1ds (6.18)

The precise expression for (6.17) in terms of the incomplete Beta function will depend
on the location of τ with respect to the roots r1, r2.

Since the relation between t and τ is transcendental, we will analyze the solutions
qualitatively to see the dynamical behavior that results for different choices of parameters.

6.1 Different dynamical behaviors

Consider the integral in (6.17). For what follows we recall eq.(5.46) which says that P̂
cannot decrease with time. There are three possible cases:

(a) The integral (6.17) diverges at a finite value of τ . Then we reach t = ∞ with
finite τ . Then from (6.7) we see that P̂ asymptotes to a finite constant.

(b) The integral (6.17) diverges as τ → ∞. In this case P̂ → ∞ as t → ∞.

(c) The integral (6.17) converges. In this case we have a divergence P̂ → ∞ at a
finite time t.

6.2 Dependence on parameters

We now wish to see which of the above behaviors results for which choices of parameters

and initial conditions. Recall that Î is positive (eq.(5.39)) and ˆ̃Q is negative (eq.(5.42)).
Thus the left hand side of (6.12) is negative. Consider the function

f(τ) ≡ (−Î ˆ̃Q) =
(K1 + K2)

2
τ 2 − (A2 − A1)τ − A3 (6.19)

The physical values of parameters then requires

f ≥ 0 (6.20)

The function f(τ) describes a parabola. We have two cases:6

6Here and in other computations below we consider only generic values of the parameters for sim-
plicity. For example we do not explicitly look at the border K1 + K2 = 0 between the two cases below;
such special cases can be easily worked out explicitly.
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Recall that this integral is just the incomplete Beta function
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At late times the evolution becomes power law ...
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Figure 5: Plots of P̂,− ˆ̃Q and a selection of ai for wi =
{.9,−.9,−.9,−.9,−.9,−.1,−.1,−.1,−.1,−.1}, a set that gives K1 + K2 < 0 and
illustrates case (a) behavior. We have taken γi(2) = ai(2) = 1 for all i. We see that P̂
asymptotes to a constant.
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Figure 6: Plots of P̂ , ˆ̃Q, a1 for the choice wi = −.2 for all i. This gives K1 + K2 > 0,
K1 > K2, and thus case (b) behavior. P̂ grows without bound.
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We do not seem to get an inflationary evolution ...

But quantum nonlocal effects can stretch all across 
the Universe ....

What is the physics of this Universe ?  When do we get into a phase
like the one that we are studying ?

(Several other cases and related ideas studied by Kalyanrama 2007)



What kind of states should we get ?



When do we get such states ?

Fractional brane state fills the
entire Universe

But now quantum gravity effects
stretch across the entire torus ...

Black holes

Black holes are
really Fuzzballs



Black holes have a structure all the way to the horizon ...

Packing in more energy creates more of the ‘same stuff ’ ,
we can keep increasing the density of the same stuff, getting
any amount of E in a given V



Changes in the fractional brane gas state (work in progress)

As the Universe evolves, the different cycles of the torus
expand at different rates.

Some branes thus become much heavier than other branes,
and it becomes entropically favorable to transfer their energy to
the other sets of branes

After sufficient expansion, it becomes entropically favorable to transfer 
all energy to radiation



But these annihilation processes are SLOW, since they are given by the 
Hawking radiation process for black holes

Thus the system can be left out of equilibrium for long times ...
when it does return to equilibrium, we can get a substantial entropy 
generation

Radiation rates agree (Spins, greybody factors ...)

(Das-Mathur 96, Maldacena-Strominger 96)



If some branes do not annihilate, but stay trapped in different
‘wells’ of the Calabi-Yau manifold, then this could give the starting point 
for brane inflation models

If some fractional branes do not annihilate till today, they could be 
part of missing matter ....

CY manifold describing
compact directions 

Brane extending in
noncompact directions

Antibrane extending in 
noncompact directions

Some possibilities to explore ....



Summary



(a)  Fractionation:   When different kinds of branes are bound together, 

      they  ‘fractionate’ each other, so that we get get a large number of 
      objects with very low mass.  

       This large number of fractional objects gives the large black hole     
       entropy, and the low mass gives very long distance effects, that    
       stretch upto horizon radius.  

       Thus we get quantum gravtity effects over macroscopic distances

A simple picture seems to emerge for matter at very high densities

The basic elements are:



(c)  Quasi-free constituents:   These fractional objects seem to be      

    essentially free,  so that we get the total energy, pressure, entropy by 
    just  adding the contributions from individual fractional branes.

(b) Brane-antibrane pairs:  If we have energy but no charge, then
     we  get the maximal entropic state by using the energy to make
     brane-antibrane pairs,  which then fractionate as above.



Analogy:  Quark-Gluon plasma:  

The dynamics of hadrons is very complicated

But if we go to very high densities and very high energies, 
the physics simplifies

To see this simplified physics, we must use the correct 
dynamical objects  - the quarks and gluons

At high energy density the quarks and gluons are 
essentially free ...



These simple observations suggest that there is a deeper detailed theory 
of matter at high energy densities ...

This would be similar to the case of strong interactions ... From hadron 
classification and scattering quarks were deduced, but QCD came later ....

u

u d

u

d d

u u-

proton neutron

pion

L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

1



Questions :

        (a) Is it a correct principle to ask for maximal entropy in the early
             Universe ?

         (b) Does the Hartle-Hawking process lead to such a state ?

         (c) How much of the energy should be in a 
             ‘brane bound state’ ?  

        

        

String theory should be able to supply all the other answers ... 

Radiation

String gas
(Hagedorn)

Fractional 
brane state


