Lecture 3

Constructing Fuzzballs
Dynamical behavior: results and conjectures

Recall the way we made the 2-charge black hole ...

This allowed us to count the states of the black hole, so we solve the entropy problem, but what about the
 information puzzle?

A key point

The elementary string (NSI) does not have any LONGITUDINAL vibration modes

This is because it is not made up of 'more elementary particles'

Thus only transverse oscillations are permitted

This causes the string to spread over a nonzero transverse area

Making the geometry

We know the metric of one straight strand of string

We get the metric for many strands by superposing harmonic functions from each strand
(Dabholkar, Gauntlett,Harvey, Waldram '95, Callan,Maldacena,Peet '95)

In our present case, we have a large number of strands, so we 'smear over them to make a continuous ‘strip’ (Lunin+SDM '0I)

Let us now carry out these steps:

Step 1: We write the metric of a single strand of string

$$
\begin{aligned}
d s_{\text {string }}^{2} & =H_{1}^{-1}\left[-d t^{2}+d y^{2}\right]+\sum_{i=1}^{8} d x_{i} d x_{i} \\
e^{2 \phi} & =H_{1}^{-1} \\
H_{1} & =1+\frac{Q_{1}}{r^{6}}
\end{aligned}
$$

Step 2: Adding momentum
The naive metric is

$$
\begin{aligned}
d s_{\text {string }}^{2} & =H\left[-d u d v+K d v^{2}\right]+\sum_{i=1}^{4} d x_{i} d x_{i}+\sum_{a=1}^{4} d z_{a} d z_{a} \\
B_{u v} & =-\frac{1}{2}[H-1] \\
e^{2 \phi} & =H \\
H^{-1} & =1+\frac{Q_{1}}{r^{2}}, \quad K=\frac{Q_{p}}{r^{2}}
\end{aligned}
$$

Step 2: Done correctly, actual metric

$$
\begin{aligned}
d s_{\text {string }}^{2} & =H\left[-d u d v+K d v^{2}+2 A_{i} d x_{i} d v\right]+\sum_{i=1}^{4} d x_{i} d x_{i}+\sum_{a=1}^{4} d z_{a} d z_{a} \\
B_{u v} & =-\frac{1}{2}[H-1], \quad B_{v i}=H A_{i} \\
e^{2 \phi} & =H \\
H^{-1}(\vec{x}, y, t) & =1+\frac{Q_{1}}{|\vec{x}-\vec{F}(t-y)|^{2}} \\
K(\vec{x}, y, t) & =\frac{Q_{1}|\overrightarrow{\vec{F}}(t-y)|^{2}}{|\vec{x}-\vec{F}(t-y)|^{2}} \\
A_{i}(\vec{x}, y, t) & =-\frac{Q_{1} \dot{F}_{i}(t-y)}{|\vec{x}-\vec{F}(t-y)|^{2}}
\end{aligned}
$$

Step 3: Adding over strands

$$
\begin{gathered}
d s_{s t r i n g}^{2}=H\left[-d u d v+K d v^{2}+2 A_{i} d x_{i} d v\right]+\sum_{i=1}^{4} d x_{i} d x_{i}+\sum_{a=1}^{4} d z_{a} d z_{a} \\
B_{u v}=-\frac{1}{2}[H-1], \quad B_{v i}=H A_{i} \\
e^{2 \phi}=H \\
H^{-1}(\vec{x}, y, t)=1+\sum_{s} \frac{Q_{1}^{(s)}}{\left|\vec{x}-\vec{F}^{(s)}(t-y)\right|^{2}} \\
K(\vec{x}, y, t)=\sum_{s} \frac{Q_{1}^{(s)}\left|\dot{\vec{F}}^{(s)}(t-y)\right|^{2}}{\left|\vec{x}-\vec{F}^{(s)}(t-y)\right|^{2}} \\
A_{i}(\vec{x}, y, t)=-\sum_{s} \frac{Q_{1}^{(s)} \dot{F}_{s}^{(s)}(t-y)}{\left|\vec{x}-\vec{F}^{(s)}(t-y)\right|^{2}}
\end{gathered}
$$

Step 4: Smoothing over strands:

$$
\begin{aligned}
d s_{s t r i n g}^{2} & =H\left[-d u d v+K d v^{2}+2 A_{i} d x_{i} d v\right]+\sum_{i=1}^{4} d x_{i} d x_{i}+\sum_{a=1}^{4} d z_{a} d z_{a} \\
B_{u v} & =\frac{1}{2}[H-1], \quad B_{v i}=H A_{i} \\
e^{2 \phi} & =H
\end{aligned}
$$

$$
\begin{aligned}
H^{-1} & =1+\frac{Q_{1}}{L_{T}} \int_{0}^{L_{T}} \frac{d v}{|\vec{x}-\vec{F}(v)|^{2}} \\
K & =\frac{Q_{1}}{L_{T}} \int_{0}^{L_{T}} \frac{d v(\dot{F}(v))^{2}}{|\vec{x}-\vec{F}(v)|^{2}} \\
A_{i} & =-\frac{Q_{1}}{L_{T}} \int_{0}^{L_{T}} \frac{d v \dot{F}_{i}(v)}{|\vec{x}-\vec{F}(v)|^{2}}
\end{aligned}
$$

'Naive NSI-P geometry'

Actual NSI-P geometry

DI-D5 \longleftrightarrow NSI-P

Geometry for D1-05

$$
\begin{aligned}
d s^{2}=\sqrt{\frac{H}{1+K}}[& \left.-\left(d t-A_{i} d x^{i}\right)^{2}+\left(d y+B_{i} d x^{i}\right)^{2}\right] \\
& +\sqrt{\frac{1+K}{H}} d x_{i} d x_{i}+\sqrt{H(1+K)} d z_{a} d z_{a}
\end{aligned}
$$

$$
\begin{aligned}
H^{-1} & =1+\frac{Q}{L_{T}} \int_{0}^{L_{T}} \frac{d v}{|\vec{x}-\vec{F}(v)|^{2}} \\
K & =\frac{Q}{L_{T}} \int_{0}^{L_{T}} \frac{d v(\dot{F}(v))^{2}}{|\vec{x}-\vec{F}(v)|^{2}} \\
A_{i} & =-\frac{Q}{L_{T}} \int_{0}^{L_{T}} \frac{d v \dot{F}_{i}(v)}{|\vec{x}-\vec{F}(v)|^{2}}
\end{aligned}
$$

$$
d B=-*_{4} d A
$$

(Lunin+SDM '0I, also
'Supergravity supertubes' (Emparan+Mateos+Townsend 'OI)
(a) Size depends on mean harmonic number

$$
\sum k m_{k}=n_{1} n_{p}
$$

(b) Fluctuations depend on occupation number

Put energy in a few harmonics, large occupation number for each harmonic

Energy in many harmonics, occupation number order unity in each

Coherent states

Generic quantum state

'Fuzzball'

Scale of the 'fuzzball'

A simple example

$$
\begin{aligned}
d s^{2} & =-H_{1}^{-1}\left(d t^{2}-d y^{2}\right)+H_{5} f\left(d \theta^{2}+\frac{d r^{2}}{r^{2}+a^{2}}\right)-\frac{2 a \sqrt{Q_{1}^{\prime} Q_{5}^{\prime}}}{H_{1} f}\left(\cos ^{2} \theta d y d \psi+\sin ^{2} \theta d t d \phi\right) \\
& +H_{5}\left[\left(r^{2}+\frac{a^{2} Q_{1}^{\prime} Q_{5}^{\prime} \cos ^{2} \theta}{H_{1} H_{5} f^{2}}\right) \cos ^{2} \theta d \psi^{2}+\left(r^{2}+a^{2}-\frac{a^{2} Q_{1}^{\prime} Q_{5}^{\prime} \sin ^{2} \theta}{H_{1} H_{5} f^{2}}\right) \sin ^{2} \theta d \phi^{2}\right] \\
& +d z_{a} d z_{a}
\end{aligned}
$$

$$
f=r^{2}+a^{2} \cos ^{2} \theta, \quad H_{1}=1+\frac{Q_{1}^{\prime}}{f}, \quad H_{5}=1+\frac{Q_{5}^{\prime}}{f}
$$

2-charge extremal DID5:

$\sim\left(n_{1} n_{5}\right)^{\frac{1}{6}} l_{p}$
Horizon
size
3-charge extremal DID5 P?

Generic DID5P CFT state

Simple states: all components the same, excitations fermionic, spin aligned
$|k\rangle^{\text {total }}=\left(J_{-(2 k-2)}^{-, \text {total }}\right)^{n_{1} n_{5}}\left(J_{-(2 k-4)}^{-, \text {total }}\right)^{n_{1} n_{5}} \ldots\left(J_{-2}^{-, \text {total }}\right)^{n_{1} n_{5}}|1\rangle^{\text {total }}$

Can make geometries for these simple states :
$U(I) \times U(I)$ symmetry

$$
A d S_{3} \times S^{3} \times T^{4}
$$

Geometry for simple state (winding $=1$)

$$
\begin{aligned}
d s^{2} & =-\frac{1}{h}\left(d t^{2}-d y^{2}\right)+\frac{Q_{p}}{h f}(d t-d y)^{2}+h f\left(\frac{d r_{N}^{2}}{r_{N}^{2}+a^{2} \eta}+d \theta^{2}\right) \\
& +h\left(r_{N}^{2}-n a^{2} \eta+\frac{(2 n+1) a^{2} \eta Q_{1} Q_{5} \cos ^{2} \theta}{h^{2} f^{2}}\right) \cos ^{2} \theta d \psi^{2} \\
& +h\left(r_{N}^{2}+(n+1) a^{2} \eta-\frac{(2 n+1) a^{2} \eta Q_{1} Q_{5} \sin ^{2} \theta}{h^{2} f^{2}}\right) \sin ^{2} \theta d \phi^{2} \\
& +\frac{a^{2} \eta^{2} Q_{p}}{h f}\left(\cos ^{2} \theta d \psi+\sin ^{2} \theta d \phi\right)^{2} \\
& +\frac{2 a \sqrt{Q_{1} Q_{5}}}{h f}\left[n \cos ^{2} \theta d \psi-(n+1) \sin ^{2} \theta d \phi\right](d t-d y) \\
& -\frac{2 a \eta \sqrt{Q_{1} Q_{5}}}{h f}\left[\cos ^{2} \theta d \psi+\sin ^{2} \theta d \phi\right] d y+\sqrt{\frac{H_{1}}{H_{5}}} \sum_{i=1}^{4} d z_{i}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f=r_{N}^{2}-a^{2} \eta n \sin ^{2} \theta+a^{2} \eta(n+1) \cos ^{2} \theta \\
& h=\sqrt{H_{1} H_{5}}, H_{1}=1+\frac{Q_{1}}{f}, H_{5}=1+\frac{Q_{5}}{f}
\end{aligned}
$$

$$
\eta \equiv \frac{Q_{1} Q_{5}}{Q_{1} Q_{5}+Q_{1} Q_{p}+Q_{5} Q_{p}}
$$

(Giusto SDM Saxena 04)

2-charges, 4+ I dimensions, noncompact excitations: Lunin+SDM ’0 I
2-charges, 4+ Id, torus excitations: Lunin+Maldacena+Maoz '02, Skenderis
+Taylor 07
2-charges, 4+ Id, fermionic excitations: Taylor '05

3-charges, 4+ / d, one charge 'test quantum' wavefunction; SDM+Saxena+Srivastava '03

3-charge, 4+Id, $U(I) X U(I)$ axial symmetry: Giusto+SDM+Saxena '04, Lunin '04

3-charge, 4+ / d, U(I) axial symmetry: Bena+Kraus '05, Berglund+Gimon+Levi '05

3 charges, $3+I$ d, U(I) axial symmetry: Bena+Kraus '05
4-charges, $3+I d, U(I) X U(I)$ symmetry: Saxena+Giusto+Potvin+Peet '05
4 charges, $3+I$ d, U(I) symmetry: Balasubramanian+Gimon+Levi '06

Non-extremal geometries, 3 charges, 4+I d, U(I)XU(I) axial symmetry:

$$
\text { Jejjala+Madden+Ross+Titchener } 05
$$

Non-extremal geometries, 4 charges, $3+I d, U(I) X U(I)$ axial symmetry:
Giusto+Ross+Saxena 07

2-charges, 4+ I d, K3 compactification: Skenderis+Taylor 07
2-charges, I-point functions: Skenderis+Taylor 06

General structure of extremal solutions: hyperkahler base + 2-d fiber (Gauntlett+Gutowski+Hull+Pakis+Reall 02, Gutowski+Martelli+Reall 03)

Decomposing known microstate solutions into base + fiber:
hyperkahler \longrightarrow psedo-hyperkahler
(Giusto+SDM 04)

Structure of general 3-charge and 4-charge geometries:

Bound states of branes is on Higgs branch. Dipole charges form, are held apart by fluxes ...
(Bena+Warner 05)

$$
g \rightarrow 0
$$

g nonzero

If we reduce to $3+1$ dimensions, get metrics for 'branes at angles' (Denef '02, Balasubramanian+Gimon+Levi 05)

Recent work (Bena+Bobev+Ruef+Warner 08) ... supertubes in the 'throat' might give correct order for number of states ...

The Non-Extremal Hole :

$? ?$

DI-D5 CFT has both
left and right moving
excitations
(Jejalla, Madden, Ross Titchener '05)

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\frac{f}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\left(\mathrm{~d} t^{2}-\mathrm{d} y^{2}\right)+\frac{M}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\left(s_{p} \mathrm{~d} y-c_{p} \mathrm{~d} t\right)^{2} \\
& +\sqrt{\tilde{H}_{1} \tilde{H}_{5}}\left(\frac{r^{2} \mathrm{~d} r^{2}}{\left(r^{2}+a_{1}^{2}\right)\left(r^{2}+a_{2}^{2}\right)-M r^{2}}+\mathrm{d} \theta^{2}\right) \\
& +\left(\sqrt{\tilde{H}_{1} \tilde{H}_{5}}-\left(a_{2}^{2}-a_{1}^{2}\right) \frac{\left(\tilde{H}_{1}+\tilde{H}_{5}-f\right) \cos ^{2} \theta}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\right) \cos ^{2} \theta \mathrm{~d} \psi^{2} \\
& +\left(\sqrt{\tilde{H}_{1} \tilde{H}_{5}}+\left(a_{2}^{2}-a_{1}^{2}\right) \frac{\left(\tilde{H}_{1}+\tilde{H}_{5}-f\right) \sin ^{2} \theta}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\right) \sin ^{2} \theta \mathrm{~d} \phi^{2} \\
& +\frac{M}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\left(a_{1} \cos ^{2} \theta \mathrm{~d} \psi+a_{2} \sin ^{2} \theta \mathrm{~d} \phi\right)^{2} \\
& +\frac{2 M \cos ^{2} \theta}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\left[\left(a_{1} c_{1} c_{5} c_{p}-a_{2} s_{1} s_{5} s_{p}\right) \mathrm{d} t+\left(a_{2} s_{1} s_{5} c_{p}-a_{1} c_{1} c_{5} s_{p}\right) \mathrm{d} y\right] \mathrm{d} \psi \\
& +\frac{2 M \sin ^{2} \theta}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\left[\left(a_{2} c_{1} c_{5} c_{p}-a_{1} s_{1} s_{5} s_{p}\right) \mathrm{d} t+\left(a_{1} s_{1} s_{5} c_{p}-a_{2} c_{1} c_{5} s_{p}\right) \mathrm{d} y\right] \mathrm{d} \phi \\
& +\sqrt{\frac{\tilde{H}_{1}}{\tilde{H}_{5}} \sum_{i=1}^{4}} \mathrm{~d} z_{i}^{2}
\end{aligned}
$$

$Q_{1}=\frac{g \alpha^{\prime 3}}{V} n_{1}$
$Q_{5}=g \alpha^{\prime} n_{5}$
$Q_{p}=\frac{g^{2} \alpha^{\prime 4}}{V R^{2}} n_{p}$
(Jejalla, Madden, Ross Titchener '05)
$\tilde{H}_{i}=f+M \sinh ^{2} \delta_{i}, \quad f=r^{2}+a_{1}^{2} \sin ^{2} \theta+a_{2}^{2} \cos ^{2} \theta$
$Q_{1}=M \sinh \delta_{1} \cosh \delta_{1}, \quad Q_{5}=M \sinh \delta_{5} \cosh \delta_{5}, \quad Q_{p}=M \sinh \delta_{p} \cosh \delta_{p}$

Hawking radiation

Unitary radiation
process in CFT

Radiation rates agree (Spins, greybody factors ...)
(Callan-Maldacena 96, Dhar-Mandal-Wadia 96, Das-Mathur 96, Maldacena-Strominger 96)

Can we get UNITARY radiation (information carrying) in the GRAVITY description ??

As in any statistical system, each microstate radiates a little differently

Emission vertex

Occupation numbers of left, right excitations Bose, Fermi distributions for generic state

$\Gamma_{C F T}=V \bar{\rho}_{L} \bar{\rho}_{R}$
Occupation numbers for this particular microstate

Emission from the special microstate is peaked at definite frequencies and grows exponentially, like a laser
'Hawking radiation’ from the special microstate’

The emitted frequencies are peaked at

$$
\omega_{R}^{C F T}=\frac{1}{R}\left[-l-2-m_{\psi} m+m_{\phi} n\right]
$$

$$
m=n_{L}+n_{R}+1, \quad n=n_{L}-n_{R}
$$

Emission grows exponentially because after n de-excited strings have been created, the probability for creating the next one is Bose enhanced by $(\mathrm{n}+\mathrm{I})$

$$
\text { Emission grows as } \operatorname{Exp}\left[\omega_{I}^{C F T} t\right]
$$

Gravity description of emission :

This gravity solution has no horizon, no singularity, but it has an ergoregion

(all non-exremal states made so far are either time-dependent or have an ergoregion)

$$
\omega=\omega_{R}^{\text {gravity }}+i \omega_{I}^{\text {gravity }}
$$

(Cardoso, Dias, Jordan, Hovdebo, Myers, '06)

> | Negative energy quanta collect in the |
| :--- |
| ergoregion, positive energy quanta |
| radiated to infinity |

Radiation:The gravity calculation

$$
M_{9,1} \rightarrow M_{4,1} \times T^{4} \times S^{1}
$$

Graviton with indices on the torus is a scalar in 6-d $h_{12} \equiv \Psi$
$\square \Psi=0$

$$
\begin{aligned}
& M_{4,1} \rightarrow t, r, \theta, \psi, \phi \\
& S^{1} \rightarrow y \quad y:(0,2 \pi R) \\
& \Psi=\exp \left(-i \omega t+i \lambda \frac{y}{R}+i m_{\psi} \psi+i m_{\phi} \phi\right) \chi(\theta) h(r)
\end{aligned}
$$

Solve by matching inner and outer region solutions

One finds :

$$
\begin{aligned}
\omega_{R}^{C F T} & =\omega_{R}^{\text {gravity }} \\
\omega_{I}^{C F T} & =\omega_{I}^{\text {gravity }}
\end{aligned}
$$

(Chowdhury + SDM 07, 08)

Thus for a set of (nongeneric) microstates we can explicitly see 'information carrying radiation' which is the 'Hawking radiation' for these microstates

Dynamical questions

(A) An illustration of AdS/CFT duality

Incoming graviton

Gravity picture

We want to study what happens in each picture ...

Absorption

With an absorption probability P, the energy of the graviton gets converted to a pair of vibration modes on one of the pieces of the effective string

With probability P, the graviton enters the throat of the geometry

Time delay

The excitations travel around the loop in a time T and re-collide

The colliding
excitations can lead to re-emission of the graviton with probability P

The graviton travels down the throat, bounces off the 'cap' and comes back up in a time T

It can re-emerge from the throat with probability P

B. Collapsing shell

Consider a shell that is collapsing to form a black hole ...

We have shown that eigenstates of the hole are fuzzballs.
But how does a collapsing shell turn into a fuzzball?
(a) The shell should be able to turn into a fuzzball
and
(b) This should happen in a time less than Hawking evaporation time, otherwise the fuzzball picture would not help with information loss

Suppose we make a black hole by collapsing a shell of matter

How can this shell change into a fuzzball ?

Light cones point inwards
How does data get out to horizon ?

(a) We cannot assume classical physics in the black hole, even though the hole is large
(i) Suppose we have a shell of radius of order the horizon radius, GM
(ii) A fuzzball state has a size of the same order
(iii) Let us ask if the shell state can tunnel into the fuzzball state
(iv) Both these states are large, heavy states, so the tunneling probability should be very very small
(v) Estimating the tunneling probability

The probability amplitude is e^{-S}
where the action is to be computed from the Einstein action

$$
S=\frac{1}{16 \pi G} \int R d^{4} x
$$

The length scale for the solution is $L \sim G M$
Then $\quad R \sim \frac{1}{L^{2}} \sim \frac{1}{(G M)^{2}} \quad d^{4} x \sim(G M)^{2}$

$$
S \sim G M^{2}
$$

$$
e^{-S} \sim e^{-G M^{2}}
$$

This is indeed a very small probability
(vi) But there are many different fuzzball states that we can tunnel to

The number of fuzzball states is

$$
e^{S_{b e k}} \sim e^{G M^{2}}
$$

(vii) Thus we can see that this large number if states can cancel the smallness of the tunneling amplitude $\quad e^{-S} \sim e^{-G M^{2}}$

What kind of state will such a cancellation generate ?

Toy model

Put a quantum in a potential well
Tunneling probability is small
But there are many neighboring wells

In a time of order unity, the quantum spreads to a linear combination of states in all potential wells

(SDM 08)

Thus we see that even though a collapsing shell looks classical, once it reaches order horizon size, the physics need not be classical.

Tunneling can spread its wavefunction to a linear combination of fuzzball states

But how long will this process take?

Tunneling is just 'de-phasing' of eigenstates :

Suppose we have two potential wells, separated by a barrier

The energy eigenstates are symmetric and antisymmetric wavefunctions

The state in the left well is a superposition of these two eigenfunctions

The two eigenfunction have slightly different eigenvalues, so after some time they go OUT of phase

$$
|\psi\rangle=\frac{1}{2}\left|\psi_{S}\right\rangle+\frac{1}{2}\left|\psi_{A}\right\rangle \rightarrow \frac{1}{2} e^{-i E_{S} t}\left|\psi_{S}\right\rangle+\frac{1}{2} e^{-i E_{A} t}\left|\psi_{A}\right\rangle
$$

The wavefunction now ends up in the second well. This is tunneling. The time for tunneling is thus

$$
t_{\text {tunnel }} \sim t_{\text {dephase }} \sim 1 / \Delta E
$$

(b) How long does it take for the shell to become a general linear combination of fuzzballs ?

If it takes more than Hawking evaporation time, fuzzballs dont help !
(i) Since the fuzzballs form a complete set of eigenstates, we can write the state of the shell as a linear combination of fuzzball states

(ii) Let the horizon radius be R. Since the shell has to
fit inside the horizon, the uncertainty principle gives

$$
\Delta P_{r} \gg \frac{1}{R}
$$

(iii) Then the spread in energy will be

$$
\Delta E \sim \frac{P_{r} \Delta P_{r}}{M} \gg \frac{\left(\Delta P_{r}\right)^{2}}{M} \gg \frac{1}{M R^{2}}
$$

(iv) Thus

$$
t_{\text {dephase }} \sim \frac{1}{\Delta E} \ll M R^{2}
$$

(v) Note that $t_{\text {eva }} \sim M R^{2}$

So $\quad t_{\text {dephase }} \ll t_{\text {eva }}$
That is, the state becomes a linear combination of fuzzballs much before the hole evaporates

Resolving the information paradox

The information paradox :

The Hawking 'theorem' : If
(a) All quantum gravity effects are confined to within a given distance like planck length or string length
(b) The vacuum is unique

Then there WILL be information loss

Hawking gives an explicit construction of the evolution of the vacuum state near the horizon, and shows that it gives entangled pairs

If we can show that the state is not $|0\rangle$, then we resolve

$$
\begin{aligned}
& |0\rangle \rightarrow|\psi\rangle \\
& \langle 0 \mid \psi\rangle \approx 0
\end{aligned}
$$ the problem

We explicitly construct microstates starting with simple ones ...

We are resolving a paradox. All we have to show is that there is a physical way out of the Hawking construction.
We do not need to make all states in all detail.
If someone wants to still argue there is a paradox, then he has to show that other states will not behave this way

Earlier attempts to construct hair were trying perturbative deformations, while the actual constructions turn out to be nonperturbative.

String theory gives us a new expansion: since we can catalog all states, we can start with states which have 'many excitations in the same mode', and then move to more generic states ...

Summary: All microstates of black holes made so far are 'fuzzballs'

2-charge extremal
$+$ excitation

3-charge extremal: Large classes also known with CFT state not yet identified

Nonextremal:Some families known, radiation agrees

