
Lecture 3

Constructing Fuzzballs

Dynamical behavior: results and conjectures
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Recall the way we made the 2-charge black hole ...

This allowed us to count the 
states of the black hole, so 
we solve the entropy 
problem, but what about the 
information puzzle?



A key point

The elementary string (NS1) does not have any LONGITUDINAL 
vibration modes

This is because it is not made up of
‘more elementary particles’ Not a mode for the 

elementary string

Thus only transverse oscillations are
permitted

This causes the string to spread over
a nonzero transverse area

Momentum is carried
by transverse
oscillations
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‘Naive
geometry’

An ‘actual 
geometry’



Making the geometry 

We know the metric of one straight strand 
of string 

We know the metric of a string
carrying a wave --  ‘Vachaspati transform’

We get the metric for many 
strands by superposing harmonic 
functions from each strand

(Dabholkar, Gauntlett,Harvey, Waldram 
’95, Callan,Maldacena,Peet ’95)

In our present case, we have a large
number of strands, so we ‘smear over
them to make a
continuous ‘strip’ (Lunin+SDM ’01)



1(a) 1(b)

Figure 1: (a) The conventional picture of a black hole (b) the proposed picture – state
information is distributed throughout the ‘fuzzball’.

we let the winding number be n1 ! 1. It is important that we take a bound state of these n1

strings, since otherwise we will end up making many small black holes instead of one big black
hole. The bound state in this case is easily pictured: We let the string wrap around the circle
n1 times before joining back to form a closed loop; thus we have one long ‘multiwound’ string
of total length 2πRn1 where R is the radius of the S1. The supergravity solution produced by
such a string is

ds2
string = H−1

1 [−dt2 + dy2] +
8

∑

i=1

dxidxi (2.1)

e2φ = H−1
1 (2.2)

H1 = 1 +
Q1

r6
(2.3)

Here ds2
string is the 10-D string metric, y is the coordinate along the S1 and xi are the 8 spatial

directions transverse to the string. At r → 0 the dilaton φ goes to −∞ and the length of the
y circle is seen to go to zero. The geometry does not have a horizon at any nonzero r, and if
we say that the horizon occurs at r = 0 then we find that the area of this horizon (measured in
the Einstein metric) is zero. Thus we get SBek = 0.

This vanishing of SBek is actually consistent with the microscopic count. The NS1 brane is
in an oscillator ground state, so its only degeneracy comes from the zero modes of the string,
which give 128 bosonic and 128 fermionic states. Thus we have Smicro = ln[256] which does
not grow with n1. Thus in the macroscopic limit n1 → ∞ we would write Smicro = 0 to leading
order, which agrees with SBek.

Let us go back and see why we failed to make a black hole with nonzero area. Consider the
NS1 brane as an M2 brane of M theory; this M2 brane wraps the directions x11, y. A brane
has tension along its worldvolume directions, so it squeezes the cycles on which it is wrapped.
Thus the length of the x11 circle goes to zero at the brane location r = 0, which shows up as
φ → −∞ in the IIA description. Similarly, we get a vanishing of the length of the y circle in
the M theory description. On the other hand if we had some directions that are compact and
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Step 1:    We write the metric of a single strand of string

Let us now carry out these steps:



charges to get a good black hole. But the microscopic entropy for two charges NS1-P
was Smicro = 2π

√
2
√

n1np, which is nonzero.
One might say that the 2-charge case is just not a system that gives a good black hole,

and should be disregarded in our investigation of black holes. But this would be strange,
since on the microscopic side the entropy of the 2-charge system arose in a very similar
way to that for the three charge system; in each case we partitioned among harmonics
the momentum on a string or ‘effective string’. We would therefore like to take a closer
look at the gravity side of the problem for the case of two charges.

We get the metric for NS1-P by setting to zero the Q5 charge in (2.10). With a slight
change of notation we write the metric as (u = t + y, v = t − y)

ds2
string = H [−dudv + Kdv2] +

4
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4
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2
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r2
, K =

Qp

r2
(4.72)

We will call this metric the naive metric for NS1-P. This is because we will later argue
that this metric is not produced by any configuration of NS1, P charges. It is a solution
of the low energy supergravity equations away from r = 0, but just because we can write
such a solution does not mean that the singularity at r = 0 will be an allowed one in the
full string theory.

What then are the singularities that are allowed? If we start with flat space, then
string theory tells us that excitations around flat space are described by configurations
of various fundamental objects of the theory; in particular, the fundamental string. We
can wrap this string around a circle like the S1 in our compactification. We have also
seen that we can wrap this string n1 times around the S1 forming a bound state. For n1

large this configuration will generate the solution which has only NS1 charge

ds2
string = H [−dudv] +

4
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dxidxi +
4

∑

a=1

dzadza

Buv = −1

2
[H − 1]

e2φ = H

H−1 = 1 +
Q1

r2
(4.73)

This solution is also singular at r = 0, but this is a singularity that we must accept since
the geometry was generated by a source that exists in the theory. One may first take the
limit g → 0 and get the string wrapped n1 times around S1 in flat space. Then we can
increase g to a nonzero value, noting that we can track the state under the change since
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Step 2:   Adding momentum

             The naive metric is



it is a BPS state. If n1 is large and we are not too close to r = 0 then (4.73) will be
a good description of the solution corresponding to the bound state of n1 units of NS1
charge.

Now let us ask what happens when we add P charge. We have already seen that
in the bound state NS1-P the momentum P will be carried as traveling waves on the
‘multiwound’ NS1. Here we come to the most critical point of our analysis: There are
no longitudinal vibration modes of the fundamental string NS1. Thus all the momentum
must be carried by transverse vibrations. But this means that the string must bend away
from its central axis in order to carry the momentum, so it will not be confined to the
location r = 0 in the transverse space. We will shortly find the correct solutions for
NS1-P, but we can already see that the solution (4.72) may be incorrect since it requires
the NS1-P source to be at a point r = 0 in the transverse space.

The NS1 string has many strands since it is multiwound. When carrying a generic
traveling wave these strands will separate from each other. We have to find the metric
created by these strands. Consider the bosonic excitations, and for the moment restrict
attention to the 4 that give bending in the noncompact directions xi. The wave carried
by the NS1 is then described by a transverse displacement profile !F (v), where v = t− y.
The metric for a single strand of the string carrying such a wave is known [11]

ds2
string = H [−dudv + Kdv2 + 2Aidxidv] +

4
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4

∑

a=1

dzadza

Buv = −1

2
[H − 1], Bvi = HAi

e2φ = H

H−1(!x, y, t) = 1 +
Q1

|!x − !F (t − y)|2

K(!x, y, t) =
Q1| !̇F (t − y)|2

|!x − !F (t − y)|2

Ai(!x, y, t) = − Q1Ḟi(t − y)

|!x − !F (t − y)|2
(4.74)

Now suppose that we have many strands of the NS1 string, carrying different vibration
profiles !F (s)(t − y). While the vibration profiles are different, the strands all carry mo-
mentum in the same direction y. In this case the strands are mutually BPS and the
metric of all the strands can be obtained by superposing the harmonic functions arising
in the solutions for the individual strands. Thus we get

ds2
string = H [−dudv + Kdv2 + 2Aidxidv] +

4
∑

i=1

dxidxi +
4

∑

a=1

dzadza

Buv = −1

2
[H − 1], Bvi = HAi
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Step 2:  Done correctly, actual metric
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e2φ = H

H−1(!x, y, t) = 1 +
∑

s

Q(s)
1

|!x − !F (s)(t − y)|2

K(!x, y, t) =
∑

s

Q(s)
1 | !̇F

(s)

(t − y)|2

|!x − !F (s)(t − y)|2

Ai(!x, y, t) = −
∑

s

Q(s)
1 Ḟ (s)

i (t − y)

|!x − !F (s)(t − y)|2
(4.75)

Now consider the string that we actually have in our problem. We can open up the
multiwound string by going to the n1 fold cover of S1. Then the string is described by the
profile !F (t − y), with 0 ≤ y < 2πRn1. The part of the string in the range 0 ≤ y < 2πR
gives one strand in the actual space, the part in the range 2πR ≤ y < 4πR gives another
strand, and so on. These different strands do not lie on top of each other in general, so
we have a many strand situation as in (4.75) above. But note that the end of one strand
is at the same position as the start of the next strand, so the strands are not completely
independent of each other. In any case all strands are given once we give the profile
function !F (v).

The above solution has a sum over strands that looks difficult to carry out in practice.
But now we note that there is a simplification in the ‘black hole’ limit which is defined
by

n1, np → ∞ (4.76)

while the moduli like g, R, V are held fixed. We have called this limit the black hole limit
for the following reason. As we increase the number of quanta ni in a bound state, the
system will in general change its behavior and properties. In the limit ni → ∞ we expect
that there will be a certain set of properties that will govern the system, and these are the
properties that will be the universal ones that characterize large black holes (assuming
that the chosen charges do form a black hole).

The total length of the NS1 multiwound string is 2πn1R. From (3.50) we see that
the generic vibration profile has harmonics of order k ∼ √

n1np on this string, so the
wavelength of the vibration is

λ ∼ 2πRn1√
n1np

∼
√

n1

np
R (4.77)

We will see shortly that the generic state of the string is not well described by a classical
geometry, so we will first take some limits to get good classical solutions, and use the
results to estimate the ‘size’ of the generic ‘fuzzball’. Let us take a state where the typical
wavenumber is much smaller than the value (3.50)

k
√

n1np
≡ α ( 1 (4.78)
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Step 3:  Adding over strands



In this case neighboring strands give very similar contributions to the harmonic functions in
(??), and we may replace the sum by an integral

n1∑

s=1

→
∫ n1

s=0
ds =

∫ 2πRn1

y=0

ds

dy
dy (5.15)

Since the length of the compacification circle is 2πR we have

ds

dy
=

1
2πR

(5.16)

Also, since the vibration profile is a function of v = t− y we can replace the integral over y by
an integral over v. Thus we have

n1∑

s=1

→ 1
2πR

∫ LT

v=0
dv (5.17)

where
LT = 2πRn1 (5.18)

is the total range of the y coordinate on the multiwound string. Finally, note that

Q(i)
1 =

Q1

n1
(5.19)

We can then write the NS1-P solution as

ds2
string = H[−dudv + Kdv2 + 2Aidxidv] +

4∑

i=1

dxidxi +
4∑

a=1

dzadza

Buv =
1
2
[H − 1], Bvi = HAi

e2φ = H (5.20)

where

H−1 = 1 +
Q1

LT

∫ LT

0

dv

|"x− "F (v)|2
(5.21)

K =
Q1

LT

∫ LT

0

dv(Ḟ (v))2

|"x− "F (v)|2
(5.22)

Ai = −Q1

LT

∫ LT

0

dvḞi(v)
|"x− "F (v)|2

(5.23)

5.1 Obtaining the NS1-NS5 geometries

From (??) we see that we can perform S,T dualities to map the above NS1-P solutions to
NS1-NS5 solutions. For a detailed presentation of the steps (for a specific "F (v)) see [?]. The
computations are straightforward, except for one step where we need to perform an electric-
magnetic duality. Recall that under T-duality a Ramond-Ramond gauge field form C(p) can
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dvḞi(v)
|"x− "F (v)|2

(5.23)

5.1 Obtaining the NS1-NS5 geometries

From (??) we see that we can perform S,T dualities to map the above NS1-P solutions to
NS1-NS5 solutions. For a detailed presentation of the steps (for a specific "F (v)) see [?]. The
computations are straightforward, except for one step where we need to perform an electric-
magnetic duality. Recall that under T-duality a Ramond-Ramond gauge field form C(p) can

32

L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

P =
2πnp

L
=

2π(n1np)
LT

p =
2πk

LT

∑

k

knk = n1np

e2π
√

2
√

n1np

S = 2π
√

2√n1np

LT = n1L

L

1

=
2πn1np

n1L
=

2πn1np

LT
(105)

∼ [

√
n1n5npg2α′4

LS1VT 4
]
1
3 (106)

Sbek =
A

4G
(107)

eSbek (108)

Smicro = Sbek (109)

Smicro = ln[256] ∼ 0 (110)

A = 0 (111)

Smicro = Sbek = 0 (112)

Smicro = 4π
√

n1np (113)

T 4 × S1 K3× S1 (114)

Sbek =
A

2G
= 4π

√
n1np = Smicro (115)

n′
1 = np n′

5 = n1 (116)

n′
1n

′
5 = n1np (117)

Smicro = ln[N ] (118)

Sbek =
A

4G
(119)

A
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√
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√

2
√

n1n5 (120)

A

4G
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√
n1n5 − J ∼ Smicro = 2π

√
2
√

n1n5 − J (121)

∑
k nk = n1np (122)

∑
k nk = n′

1n
′
5 (123)

#F (x− t) (124)
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Step 4:  Smoothing over strands:



L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

P =
2πnp

L
=

2π(n1np)
LT

p =
2πk

LT

∑

k

knk = n1np

e2π
√

2
√

n1np

S = 2π
√

2√n1np

LT = n1L

L

1

‘Naive NS1-P
geometry’

Actual NS1-P
geometry



D1-D5            NS1-P

‘Effective string’ with
total winding number 

+

L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

P =
2πnp

L
=

2π(n1np)
LT

p =
2πk

LT

∑

k

knk = n1np

e2π
√

2
√

n1np

S = 2π
√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

1

L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

P =
2πnp

L
=

2π(n1np)
LT

p =
2πk

LT

∑

k

knk = n1np

e2π
√

2
√

n1np

S = 2π
√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

1

D1 branes D5 branes

D ∼ G
1

3

5 (n1n5np)
1

6 ∼ RS (81)

∼ Nα lp (82)

eS (83)

S ∼ E ∼
√

E
√

E (84)

n1 n̄1 np n̄p (85)

S = 2π
√

2(
√

n1 +
√

n̄1)(
√

np +
√

n̄p) ∼
√

E
√

E ∼ E (86)

S = 2π(
√

n1 +
√

n̄1)(
√

n5 +
√

n̄5)(
√

np +
√

n̄p) ∼ E
3

2 (87)

S = 2π(
√

n1 +
√

n̄1)(
√

n2 +
√

n̄2)(
√

n3 +
√

n̄3)(
√

n4 +
√

n̄4) ∼ E2 (88)

S = AN

N
∏

i=1

(
√

ni +
√

n̄i) ∼ E
N
2 (89)

ds2 = −dt2 +
∑

i

a2
i (t)dxidxi (90)

S = 2π(
√

n1 +
√

n̄1)(
√

n2 +
√

n̄2)(
√

n3 +
√

n̄3)(
√

n4 +
√

n̄4) (91)

S = 2π(
√

n1 +
√

n̄1)(
√

n2 +
√

n̄2)(
√

n3 +
√

n̄3) (92)

n4 = n̄4 ! 1 (93)

Smicro = 2π
√

2
√

n1np = Sbek (94)

Smicro = 2π
√

n1n5np = Sbek (95)

Smicro = 2π
√

n1n5npnkk = Sbek (96)

Smicro = 2π
√

n1n5(
√

np +
√

n̄p) = Sbek (97)

Smicro = 2π
√
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√

n1 +
√

n̄1)(
√

np +
√

n̄p) = Sbek (98)
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√
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√
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√
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√

n̄1)(
√
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√

n̄p) (99)
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√

n1 +
√

n̄1)(
√

n2 +
√

n̄2)(
√

n3 +
√

n̄3)(
√

n4 +
√

n̄4) (100)

n̂i = ni − n̄i (101)

E =
∑

i

(ni + n̄i) mi (102)

S = C
N
∏

i=1

(
√

ni +
√

n̄i) (103)

Pa =
∑

i

(ni + n̄i) pi
a (104)

6

S1 → y y : (0, 2πR) (175)

ClV̂ [l] V̂ (176)

N = n1n5 (177)

√
N − n

√
n + 1 ≈

√
N

√
n + 1

dn

dt
∝ (n + 1) n (178)

ωR =
1

R
[−l − 2 − mψm + mφn] = ωgravity

R (179)

m = nL + nR + 1, n = nL − nR (180)

|λ − mψn + mφm| = 0, N = 0 (181)

λ = 0, mψ = −l, n = 0, N = 0 (182)

ωI = ωgravity
I (183)

|0〉 |ψ〉 〈0|ψ〉 ≈ 0 (184)

n1, n2, n3 n4 (185)

1/n1n2n3 (186)

(n1n5)
αlp (187)

n1n5

∑

knk = n1n5 n5 (188)

n′
p = n1 n′

1 = n5,
∑

knk = n′
pn

′
1 (189)
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√
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√
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String carrying
           units
of lightest excitation
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√
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√
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D1-D5 
CFT state

D1-D5 
gravity
dual

   S,T
dualities

r = 0 (129)

r = 2M (130)

t (131)

V ∼ V

G

V

2G
(132)

∆E =
2

n1n5R
(133)

∆h =
1

k
+ (

l

2
−m)

1

k
− 2mn (134)

∆h̄ =
1

k
+ (

l

2
− m̄)

1

k
(135)

!F (y − ct) = (136)

(α−1)
n1(α−2)

n2 . . . |0〉 (137)

8

NS1-P
geometry

NS1-P
state

r = 0 (129)

r = 2M (130)

t (131)

V ∼ V

G

V

2G
(132)

∆E =
2

n1n5R
(133)

∆h =
1

k
+ (

l

2
−m)

1

k
− 2mn (134)

∆h̄ =
1

k
+ (

l

2
− m̄)

1

k
(135)

!F (y − ct) = (136)

(αi1
−1)

n1(αi2
−2)

n2 . . . |0〉 (137)

8



S5 =
2π4R0V0

G10

∫
dx5

√
−g(E)

[
R(E)

+
c2

6

g2 α′4

V0 R2
0

( V

V0
e−2φ

)−1/3 (R0

R

)4/3

R(E)
µνρσR

µνρσ
(E)

]

ds2 = −H−1(dv +
√

2β)
(
du +

√
2ω +

F

2
(dv +

√
2β)

)

+Hhmndxmdxn (1)

H2 =
n + 1

|%x| − n

|%x− %c|

(α−1)
n1(α−2)

n2 . . . |0〉

(α−k1)
n1(α−k2)

n2 . . . |0〉

n1 n2

ds2 =

√
H

1 + K
[−(dt− Aidxi)2 + (dy + Bidxi)2]

+

√
1 + K

H
dxidxi +

√
H(1 + K)dzadza

where after the dualities all lengths in the harmonic functions get scaled by a factor

µ =

√
g V ′

g′ α′ (2)

so that

H−1 = 1 +
Q

LT

∫ LT

0

dv

|%x− %F (v)|2
, K =

Q

LT

∫ LT

0

dv(Ḟ (v))2

|%x− %F (v)|2
,

Ai = − Q

LT

∫ LT

0

dv Ḟi(v)

|%x− %F (v)|2
(3)

Here Bi is given by
dB = − ∗4 dA (4)

1

S5 =
2π4R0V0

G10

∫
dx5

√
−g(E)

[
R(E)

+
c2

6

g2 α′4

V0 R2
0

( V

V0
e−2φ

)−1/3 (R0

R

)4/3

R(E)
µνρσR

µνρσ
(E)

]

ds2 = −H−1(dv +
√

2β)
(
du +

√
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F
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(dv +

√
2β)

)
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|%x| − n
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+

√
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0

dv

|%x− %F (v)|2
(3)

K =
Q

LT

∫ LT

0

dv(Ḟ (v))2

|%x− %F (v)|2
(4)

Ai = − Q

LT

∫ LT

0

dv Ḟi(v)

|%x− %F (v)|2
(5)

dB = − ∗4 dA (6)

|n〉total = (J−,total
−(2n−2))

n1n5(J−,total
−(2n−4))

n1n5 . . . (J−,total
−2 )n1n5 |1〉total (7)

1

S5 =
2π4R0V0

G10

∫
dx5

√
−g(E)
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R(E)

+
c2

6
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V0 R2
0
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)−1/3 (R0

R

)4/3

R(E)
µνρσR
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(E)

]

ds2 = −H−1(dv +
√

2β)
(
du +

√
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√
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)

+Hhmndxmdxn (1)
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ds2 =
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+

√
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√
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µ =

√
g V ′

g′ α′ (2)

H−1 = 1 +
Q
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∫ LT

0

dv

|%x− %F (v)|2
(3)

K =
Q

LT

∫ LT

0

dv(Ḟ (v))2

|%x− %F (v)|2
(4)

Ai = − Q

LT
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0

dv Ḟi(v)
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1(Lunin+SDM ’01,
also

 ‘Supergravity supertubes’
(Emparan+Mateos+Townsend ’01)

Geometry for D1-D5



‘Fuzzball’

Put energy in a few
harmonics, large 
occupation number
for each harmonic

Coherent 
states

Energy in
many harmonics,
occupation number
order unity in each

Generic
quantum
state

(a) Size depends on mean harmonic number

(b) Fluctuations depend on occupation number

S1 → y y : (0, 2πR) (175)

ClV̂ [l] V̂ (176)

N = n1n5 (177)

√
N − n

√
n + 1 ≈

√
N

√
n + 1

dn

dt
∝ (n + 1) n (178)

ωR =
1

R
[−l − 2 − mψm + mφn] = ωgravity

R (179)

m = nL + nR + 1, n = nL − nR (180)

|λ − mψn + mφm| = 0, N = 0 (181)

λ = 0, mψ = −l, n = 0, N = 0 (182)

ωI = ωgravity
I (183)

|0〉 |ψ〉 〈0|ψ〉 ≈ 0 (184)

n1, n2, n3 n4 (185)

1/n1n2n3 (186)

(n1n5)
αlp (187)

n1n5

∑

k mk = n1n5 n5 (188)

n′
p = n1 n′

1 = n5,
∑

k mk = n′
pn

′
1 (189)

Smicro = 2π
√

2
√

n1n5 Smicro = 4π
√

n1n5 (190)

R2 (191)

Sbek =
A

2G
= Smicro (192)

∑

k mk = n1np (193)
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Scale of the ‘fuzzball’

(Lunin+SDM ’02)

=
2πn1np

n1L
=

2πn1np

LT
(105)

∼ [

√
n1n5npg2α′4

LS1VT 4
]
1
3 (106)

Sbek =
A

4G
(107)

eSbek (108)

Smicro = Sbek (109)

Smicro = ln[256] ∼ 0 (110)

A = 0 (111)

Smicro = Sbek = 0 (112)

Smicro = 4π
√

n1np (113)

T 4 × S1 K3× S1 (114)

Sbek =
A

2G
= 4π

√
n1np = Smicro (115)

n′
1 = np n′

5 = n1 (116)

n′
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′
5 = n1np (117)

Smicro = ln[N ] (118)

Sbek =
A

4G
(119)

A

G
∼ √n1np ∼ Smicro = 2π

√
2
√

n1np (120)

A

G
∼

√
n1np − J ∼ Smicro = 2π

√
2
√

n1np − J (121)

∑
k nk = n1np (122)

∑
k nk = n′

1n
′
5 (123)

#F (x− t) (124)

AdS3 × S3 (125)

2πk

LT
(126)

S = 2π
√

n1n2(
√

n3 +
√

n̄3) (127)

S = 2π
√
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√

n4 +
√

n̄4) (128)

7
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√
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A simple example

NS1- P : one turn
of a uniform helix

D1-D5: CFT state
has all loops
‘singly wound’,
and all spins aligned

Make metric from
profile function F

=
2πn1np

n1L
=

2πn1np

LT
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∼ [

√
n1n5npg2α′4

LS1VT 4
]
1
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Smicro = ln[256] ∼ 0 (110)

A = 0 (111)

Smicro = Sbek = 0 (112)

Smicro = 4π
√

n1np (113)

T 4 × S1 K3× S1 (114)

Sbek =
A

2G
= 4π

√
n1np = Smicro (115)

n′
1 = np n′

5 = n1 (116)

n′
1n

′
5 = n1np (117)

Smicro = ln[N ] (118)

Sbek =
A

4G
(119)

A

4G
∼
√

n1n5 ∼ Smicro = 2π
√

2
√

n1n5 (120)

A

4G
∼

√
n1n5 − J ∼ Smicro = 2π

√
2
√

n1n5 − J (121)

∑
k nk = n1np (122)

∑
k nk = n′

1n
′
5 (123)

#F (x− t) (124)

AdS3 × S3 (125)
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going over to 
flat space at
infinity



The NS1 charge becomes the NS5 charge after dualities, and corresponding harmonic function
becomes

H ′−1 = 1 +
Q′

5

f
(5.50)

The harmonic function for momentum P was

K =
Q1â2

n2
1R

2

1
(r2 + â2 cos2 θ)

≡ Qp

(r2 + â2 cos2 θ)
(5.51)

After dualities K will change to the harmonic function generated by NS1 branes. Performing
the change of scale (5.29) we find

K ′ = µ2 Qp

f
≡ Q′

1

f
(5.52)

Using the value of Q1 from (2.15) we observe that

a =
√

Q′
1Q

′
5

R′ (5.53)

where R′ is the radius of the y circle after dualities (given in (5.25)).
To finish writing the NS1-NS5 solution we also need the functions Bi defined through (5.33).

In the coordinates r, θ, φ̃ ≡ φ, ψ̃ ≡ ψ we have

Aφ = −a
√

Q′
1Q

′
5
sin2 θ

f
(5.54)

We can check that the dual form is

Bψ = −a
√

Q′
1Q

′
5
cos2 θ

f
(5.55)

To check this, note that the flat 4-D metric in our coordinates is

dxidxi =
f

r2 + a2
dr2 + fdθ2 + (r2 + a2) sin2 θdφ2 + r2 cos2 θdψ2 (5.56)

We also have
εrθφψ =

√
g = fr sin θ cos θ (5.57)

We then find

Frψ = ∂rBψ = a
√

Q′
1Q

′
5
2r cos2 θ

f2
= −εrψθφgθθgφφ[∂θAφ] = −(∗dA)rψ (5.58)

Fθψ = ∂θBψ = a
√

Q′
1Q

′
5
r2 sin(2θ)

f2
= −εθψrφgrrgφφ[∂rAφ] = −(∗dA)θψ (5.59)

verifying (5.33).
Putting all this in (5.31) we find the NS1-NS5 (string) metric for the profile (5.35)

ds2 = −H−1
1 (dt2 − dy2) + H5f

(
dθ2 +

dr2

r2 + a2

)
−

2a
√

Q′
1Q

′
5

H1f

(
cos2 θdydψ + sin2 θdtdφ

)

+ H5

[(
r2 +

a2Q′
1Q

′
5 cos2 θ

H1H5f2

)
cos2 θdψ2 +

(
r2 + a2 − a2Q′

1Q
′
5 sin2 θ

H1H5f2

)
sin2 θdφ2

]

+ dzadza

36where
f = r2 + a2 cos2 θ, H1 = 1 +

Q′
1

f
, H5 = 1 +

Q′
5

f
(5.60)

At large r this metric goes over to flat space. Let us consider the opposite limit r !
(Q′

1Q
′
5)1/4 (we write r′ = r/a):

ds2 = −(r′2 + 1)
a2dt2

Q′
1

+ r′2 a2dy2

Q′
1

+ Q′
5

dr′2

r′2 + 1

+ Q′
5



dθ2 + cos2 θ

(
dψ − ady√

Q′
1Q

′
5

)2

+ sin2 θ

(
dφ− adt√

Q′
1Q

′
5

)2




+ dzadza (5.61)

Let us transform to new angular coordinates

ψ′ = ψ − a√
Q′

1Q
′
5

y, φ′ = φ− a√
Q′

1Q
′
5

t (5.62)

Since ψ, y are both periodic coordinates, it is not immediately obvious that the first of these
changes makes sense. The identifications on these coordinates are

(ψ → ψ + 2π, y → y), (ψ → ψ, y → y + 2πR′) (5.63)

But note that we have the relation (5.53), which implies that the identifications on the new
variables are

(ψ′ → ψ′ + 2π, y → y), (ψ′ → ψ′ − a2πR′
√

Q′
1Q

′
5

= ψ′ − 2π, y → y + 2πR′) (5.64)

so that we do have a consistent lattice of identifications on ψ′, y. The metric (5.62) now becomes

ds2 = Q′
5

[
−(r′2 + 1)

dt2

R2
+ r′2 dy2

R2
+

dr′2

r′2 + 1

]

+ Q′
5

[
dθ2 + cos2 θdψ′2 + sin2 θdφ′2

]
+ dzadza (5.65)

This is just AdS3×S3×T 4. Thus the full geometry is flat at infinity, has a ‘throat’ type region
at smaller r where it approximates the naive geometry (5.34), and then instead of a singularity
at r = 0 it ends in a smooth ‘cap’. This particular geometry, corresponding to the profile (5.35),
was derived earlier in [31, 32] by taking limits of general rotating black hole solutions found in
[33]. We have now obtained it by starting with the particular NS1-P profile (5.35), and thus
we note that it is only one member of the complete family parametrized by %F . It can be shown
[34, 43], that all the metrics of this family have the same qualitative structure as the particular
metric that we studied; in particular they have no horizons, and they end in smooth ‘caps’ near
r = 0. We depict the 2-charge NS1-NS5 microstate geometries in Figure 2.
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Each point on the ring is the 
center of a Kaluza-Klein 
monopole

No net KK monopole charge : 
KK is a dipole charge

NS1-P D1-D5



|n〉total = (J−,total
−(2n−2))

n1n5(J−,total
−(2n−4))

n1n5 . . . (J−,total
−2 )n1n5 |1〉total (5)

A

4G
= S = 2π

√
n1n2n3

∆E =
1

nR
+

1

nR
=

2

nR

∆E =
2

nR

S = ln(1) = 0 (6)

S = 2
√

2π
√

n1n2 (7)

S = 2π
√

n1n2n3 (8)

S = 2π
√

n1n2n3n4 (9)

n1 ∼ n5 ∼ n

∼ n
1
4 lp

∼ n
1
2 lp

∼ n lp

M9,1 → M4,1 ×K3× S1

A

4G
∼

√
n1n5 − J ∼ S

A

4G
∼
√

n1n5 ∼ S

e2π
√

2
√

n1np

1 +
Q1

r2

1 +
Qp

r2

e2π
√

2
√

n1n5

w = e−i(t+y)−ikz w̃(r, θ, φ) (10)

B(2)
MN = e−i(t+y)−ikz B̃(2)

MN(r, θ, φ) , (11)

2

Horizon
   size

Ψ = ψ(x)e−iωt (201)

L =
1

2
∂µφ∂µφ (202)

τ (203)

|ψ〉1 =
1√
2

(1.1|0〉b1 ⊗ |0〉c1 + 0.9|1〉b1 ⊗ |1〉c1) (204)

E = mc2 E = mc2 − GMm

r
E ∼ 0 r ∼ GM

c2
(205)

|Ψ〉 = [|0〉b1|0〉c1 + |1〉b1|1〉c1]
⊗ [|0〉b2|0〉c2 + |1〉b2|1〉c2]

. . .

⊗ [|0〉b1|0〉c1 + |1〉b1|1〉c1] (206)

eiθ e−iθ (207)

c, !, G (208)

A

G
∼ √

n1np ∼ Smicro (209)

R R + R2 (210)

Sbw =
A

2G
= 4π

√
n1n2 = Smicro (211)

K3 × T 2 (212)

S = 2
√

2π
√

n1n5 (213)

AdS3 × S3 × T 4 (214)

∼ (n1n5)
1

6 lp (215)

11

2-charge extremal D1D5 : 

3-charge extremal D1D5 P ?

Same diameter
?? ??



and for k ≥ 0

|− k〉total = (J+,total
−(2k−2))

n1n5(J+,total
−(2k−4))

n1n5 . . . (J+,total
−2 )n1n5(J+,total

0 )n1n5 |1〉total (2.15)

Similarly, for k > 1

|k〉total = (J−,total
−(2k−2))

n1n5(J−,total
−(2k−4))

n1n5 . . . (J−,total
−2 )n1n5 |1〉total (2.16)

3 Constructing the gravity duals

In [?] the 2-charge D1-D5 solutions were found by dualizing to the FP system, which has
a fundamental string (F) wrapped on S1 carrying momentum (P) along S1. Metrics for
the vibrating string were constructed, and dualized back to get D1-D5 geometries. The
general geometry was thus parametrized by the vibration profile !F (v) of the F string.
But a 1-parameter subfamily of these D1-D5 geometries had been found earlier [?, ?], by
looking at extremal limits of the general axially symmetric D1-D5 geometry found in [?].

We do not have an analogue of the procedure of [?] for 3-charge systems. We will
follow instead the analogue of [?, ?] and take an extremal limit of the general 3-charge
solution to obtain solutions with D1, D5 and P charges. Taking the limit needs some
care, and it will be important to know in advance the properties of the CFT states for
which we will be finding the duals. The procedure will give us the duals of the states
|n〉total which were discussed in the last section. We will find that the dual geometries
are completely smooth, with no horizon and no singularity.

3.1 Spectral flow in the gravity description

In [?, ?] the following 2-charge D1-D5 solution was found (setting Q1 = Q5 = Q for
simplicity)

ds2 = −1

h
(dt2 − dy2) + hf

(
dθ2 +

dr2

r2 + a2

)
− 2aQ

hf
(cos2 θdydψ + sin2 θdtdφ)

+ h

[(
r2 +

a2Q2 cos2 θ

h2f 2

)
cos2 θdψ2 +

(
r2 + a2 − a2Q2 sin2 θ

h2f 2

)
sin2 θdφ2

]
+ dzidzi

(3.1)

where

a =
Q

R
, f = r2 + a2 cos2 θ, h = 1 +

Q

f
(3.2)

Let R >>
√

Q. In the region r <<
√

Q the geometry (??) becomes

ds2 = −(r2 + a2 cos2 θ)

Q
(dt2 − dy2) + Q

(
dθ2 +

dr2

r2 + a2

)

− 2a(cos2 θdydψ + sin2 θdtdφ) + Q(cos2 θdψ2 + sin2 θdφ2) (3.3)

5

√
α′

α′ <
g2α′3n1np

V4LM

∼ ls ∼ lp ∼ (n1n5)αlp

L, V4, g

AdS3 × S3 × T 4

4

Geometry for simple
state (winding =1)

Generic D1D5P CFT state
Simple states: all components the same,
excitations fermionic, spin aligned

Can make geometries for 
these simple states :

U(1) X U(1) symmetry



The numerator is r2dr2 = r2
Ndr2

N , and we get a cancellation of the factors r2
N . We will

see below that in the extremal metric the point rN = 0 acts like an origin of polar
coordinates, so the choice (??) is the correct one to define a coordinate rN with range
(0,∞).

We also find that other terms in the metric and gauge field are finite in the extremal
limit; this can be verified using (??),(??). We get the extremal solution (in the string
frame)

ds2 = −1

h
(dt2 − dy2) +

Qp

hf
(dt− dy)2 + hf

(
dr2

N

r2
N + a2η

+ dθ2

)

+ h

(
r2
N − na2η +

(2n + 1)a2ηQ1Q5 cos2 θ

h2f 2

)
cos2 θdψ2

+ h

(
r2
N + (n + 1)a2η − (2n + 1)a2ηQ1Q5 sin2 θ

h2f 2

)
sin2 θdφ2

+
a2η2Qp

hf

(
cos2 θdψ + sin2 θdφ

)2

+
2a
√

Q1Q5

hf

[
n cos2 θdψ − (n + 1) sin2 θdφ

]
(dt− dy)

− 2aη
√

Q1Q5

hf

[
cos2 θdψ + sin2 θdφ

]
dy +

√
H1

H5

4∑

i=1

dz2
i (4.21)

C2 =
a
√

Q1Q5 cos2 θ

H1f
(−(n + 1)dt + ndy) ∧ dψ

+
a
√

Q1Q5 sin2 θ

H1f
(ndt− (n + 1)dy) ∧ dφ

+
aηQp√

Q1Q5H1f
(Q1dt + Q5dy) ∧

(
cos2 θdψ + sin2 θdφ

)

− Q1

H1f
dt ∧ dy − Q5 cos2 θ

H1f

(
r2
N + (n + 1)a2η + Q1

)
dψ ∧ dφ (4.22)

e2Φ =
H1

H5
(4.23)

f = r2
N − a2η n sin2 θ + a2η (n + 1) cos2 θ

h =
√

H1H5, H1 = 1 +
Q1

f
, H5 = 1 +

Q5

f
(4.24)
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4.2 Taking the extremal limit

To get the extremal limit we must take

M → 0, δi →∞ (i = 1, 5, p) (4.11)

keeping the Qi fixed. This gives

cosh2 δi =
Qi

M
+

1

2
+ O(M)

sinh2 δi =
Qi

M
− 1

2
+ O(M) (4.12)

We must also take suitable limits of a1, a2 so that the angular momenta are held fixed.
It is useful to invert (??):

a1 = −
√

Q1Q5

M

γ1 cosh δ1 cosh δ5 cosh δp + γ2 sinh δ1 sinh δ5 sinh δp

cosh2 δ1 cosh2 δ5 cosh2 δp − sinh2 δ1 sinh2 δ5 sinh2 δp

a2 = −
√

Q1Q5

M

γ2 cosh δ1 cosh δ5 cosh δp + γ1 sinh δ1 sinh δ5 sinh δp

cosh2 δ1 cosh2 δ5 cosh2 δp − sinh2 δ1 sinh2 δ5 sinh2 δp

(4.13)

Using (??) we find

a1 = −(γ1 + γ2) η

√
Qp

M
− γ1 − γ2

4

√
M

Qp
+ O(M3/2)

= −a η

√
Qp

M
+ a

2n + 1

4

√
M

Qp
+ O(M3/2)

a2 = −(γ1 + γ2) η

√
Qp

M
+

γ1 − γ2

4

√
M

Qp
+ O(M3/2)

= −a η

√
Qp

M
− a

2n + 1

4

√
M

Qp
+ O(M3/2) (4.14)

where we have defined the dimensionless combination

η ≡ Q1Q5

Q1Q5 + Q1Qp + Q5Qp
(4.15)

and in the second equalities we have used the specific values for γ1 and γ2 given in (??).
We thus see that for generic values of γ1, γ2 and Qp the parameters a1 and a2 diverge

when M → 0. There are two exceptions:
(a) Qp = 0, which is the case considered in [?, ?]; in this case a1 and a2 go to finite values
when M → 0.

9

(Giusto SDM Saxena 04)



2-charges, 4+1 dimensions, noncompact excitations:   Lunin+SDM ’01

2-charges, 4+1d, torus excitations:  Lunin+Maldacena+Maoz ’02,  Skenderis          
                                                                                        +Taylor 07
2-charges, 4+1d, fermionic excitations: Taylor ’05

3-charge,  4+1 d, U(1) X U(1) axial symmetry:  Giusto+SDM+Saxena ’04,
                                                                  Lunin ’04

3-charge,  4+1 d,  U(1) axial symmetry:   Bena+Kraus ’05,
                                                         Berglund+Gimon+Levi ’05 

3-charges, 4+1 d, one charge ‘test quantum’ wavefunction;                                                                     
                                                             SDM+Saxena+Srivastava ’03

3 charges, 3+1 d, U(1) axial symmetry:  Bena+Kraus ’05

4-charges, 3+1 d, U(1)XU(1) symmetry:  Saxena+Giusto+Potvin+Peet ’05

4 charges, 3+1 d, U(1) symmetry:  Balasubramanian+Gimon+Levi ’06



Non-extremal geometries, 3 charges, 4+1 d, U(1)XU(1) axial symmetry: 
                                                                       Jejjala+Madden+Ross+Titchener 05

Non-extremal geometries, 4 charges, 3+1 d, U(1)XU(1) axial symmetry:
                                                                    Giusto+Ross+Saxena 07

2-charges, 4+1 d, K3 compactification:  Skenderis+Taylor 07

2-charges, 1-point functions: Skenderis+Taylor 06

General structure  of extremal solutions:  hyperkahler base + 2-d fiber
(Gauntlett+Gutowski+Hull+Pakis+Reall 02,  Gutowski+Martelli+Reall 03)

Decomposing known microstate solutions into base + fiber:
      hyperkahler            psedo-hyperkahler
                                                         (Giusto+SDM 04)



Bound states of branes is on Higgs branch. Dipole charges form,
are held apart by fluxes ... 
                                                              (Bena+Warner 05)

If we reduce to 3+1 dimensions, get  metrics for ‘branes at 
angles’ (Denef ’02,  Balasubramanian+Gimon+Levi 05)

S1 → y y : (0, 2πR) (175)

ClV̂ [l] V̂ (176)

N = n1n5 (177)

√
N − n

√
n + 1 ≈

√
N

√
n + 1

dn

dt
∝ (n + 1) n (178)

ωR =
1

R
[−l − 2 − mψm + mφn] = ωgravity

R (179)

m = nL + nR + 1, n = nL − nR (180)

|λ − mψn + mφm| = 0, N = 0 (181)

λ = 0, mψ = −l, n = 0, N = 0 (182)

ωI = ωgravity
I (183)

|0〉 |ψ〉 〈0|ψ〉 ≈ 0 (184)

n1, n2, n3 n4 (185)

1/n1n2n3 (186)

(n1n5)
αlp (187)

n1n5

∑

k mk = n1n5 n5 (188)

n′
p = n1 n′

1 = n5,
∑

k mk = n′
pn

′
1 (189)

Smicro = 2π
√

2
√

n1n5 Smicro = 4π
√

n1n5 (190)

R2 (191)

Sbek =
A

2G
= Smicro (192)

∑

k mk = n1np (193)

1

!
(194)

∆E =
4π

n1n5L
(195)

g → 0 (196)

g nonzero (197)
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Recent work (Bena+Bobev+Ruef+Warner 08) ... supertubes in the `throat’ 
might give correct order for number of states ...

Structure of general 3-charge and 4-charge geometries :



(Jejalla, Madden, 
Ross Titchener ’05)

D1-D5 CFT has both 
left and right moving 
excitations

Gravity dual again has
no horizon or singularity

The Non-Extremal Hole :

?? ??



2 The non-extremal microstate geometries: Review

In this section we recall the microstate geometries that we wish to study, and explain how a
suitable limit can be taken in which the physics can be described by a dual CFT.

2.1 General nonextremal geometries

Let us recall the setting for the geometries of [13]. Take type IIB string theory, and compactify
10-dimensional spacetime as

M9,1 → M4,1 × T 4 × S1 (2.1)

The volume of T 4 is (2π)4V and the length of S1 is (2π)R. The T 4 is described by coordinates
zi and the S1 by a coordinate y. The noncompact M4,1 is described by a time coordinate t, a
radial coordinate r, and angular S3 coordinates θ,ψ,φ. The solution will have angular momenta
along ψ,φ, captured by two parameters a1, a2. The solutions will carry three kinds of charges.
We have n1 units of D1 charge along S1, n5 units of D5 charge wrapped on T 4 × S1, and np

units of momentum charge (P) along S1. These charges will be described in the solution by
three parameters δ1, δ5, δp. We will use the abbreviations

si = sinh δi, ci = cosh δi, (i = 1, 5, p) (2.2)

The metrics are in general non-extremal, so the mass of the system is more than the minimum
needed to carry these charges. The non-extremality is captured by a mass parameter M .

With these preliminaries, we can write down the solutions of interest. The general non-
extremal 3-charge metrics with rotation were given in [23]

ds2 = − f
√

H̃1H̃5

(dt2 − dy2) +
M

√

H̃1H̃5

(spdy − cpdt)2

+

√

H̃1H̃5

(
r2dr2

(r2 + a2
1)(r

2 + a2
2) − Mr2

+ dθ2

)

+

(
√

H̃1H̃5 − (a2
2 − a2

1)
(H̃1 + H̃5 − f) cos2 θ

√

H̃1H̃5

)

cos2 θdψ2

+

(
√

H̃1H̃5 + (a2
2 − a2

1)
(H̃1 + H̃5 − f) sin2 θ

√

H̃1H̃5

)

sin2 θdφ2

+
M

√

H̃1H̃5

(a1 cos2 θdψ + a2 sin2 θdφ)2

+
2M cos2 θ
√

H̃1H̃5

[(a1c1c5cp − a2s1s5sp)dt + (a2s1s5cp − a1c1c5sp)dy]dψ

+
2M sin2 θ
√

H̃1H̃5

[(a2c1c5cp − a1s1s5sp)dt + (a1s1s5cp − a2c1c5sp)dy]dφ

+

√

H̃1

H̃5

4
∑

i=1

dz2
i (2.3)
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where

H̃i = f + M sinh2 δi, f = r2 + a2
1 sin2 θ + a2

2 cos2 θ, (2.4)

The D1 and D5 charges of the solution produce a RR 2-form gauge field given by [6]

C2 =
M cos2 θ

H̃1
[(a2c1s5cp − a1s1c5sp)dt + (a1s1c5cp − a2c1s5sp)dy] ∧ dψ

+
M sin2 θ

H̃1
[(a1c1s5cp − a2s1c5sp)dt + (a2s1c5cp − a1c1s5sp)dy] ∧ dφ

−Ms1c1

H̃1
dt ∧ dy − Ms5c5

H̃1
(r2 + a2

2 + Ms2
1) cos2 θdψ ∧ dφ. (2.5)

The angular momenta are given by

Jψ = − πM

4G(5)
(a1c1c5cp − a2s1s5sp) (2.6)

Jφ = − πM

4G(5)
(a2c1c5cp − a1s1s5sp) (2.7)

and the mass is given by

MADM =
πM

4G(5)
(s2

1 + s2
5 + s2

p +
3

2
) (2.8)

It is convenient to define

Q1 = M sinh δ1 cosh δ1, Q5 = M sinh δ5 cosh δ5, Qp = M sinh δp cosh δp (2.9)

Extremal solutions are reached in the limit

M → 0, δi → ∞, Qi fixed (2.10)

whereupon we get the BPS relation

Mextremal =
π

4G(5)
[Q1 + Q5 + Q5] (2.11)

The integer charges of the solution are related to the Qi through

Q1 =
gα′3

V
n1 (2.12)

Q5 = gα′n5 (2.13)

Qp =
g2α′4

V R2
np (2.14)

2.2 Constructing regular microstate geometries

The solutions (2.3) in general have horizons and singularities. One can take careful limits of
the parameters in the solution and find solutions which have no horizons or singularities. In
[24] regular 2-charge extremal geometries were found while in [6, 7] regular 3-charge extremal
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(Jejalla, Madden, Ross 
Titchener ’05)



Hawking radiation

Unitary radiation 
process in CFT

Non-Unitary 
radiation from 
semiclassical gravity

Radiation rates agree (Spins, greybody factors ...)

(Callan-Maldacena 96, Dhar-Mandal-Wadia 96, Das-Mathur 
96, Maldacena-Strominger 96)

Can we get UNITARY radiation (information carrying) in the GRAVITY 
description ??



As in any statistical system, each microstate radiates a little differently

Ψ = ψ(x)e−iωt (201)

L =
1

2
∂µφ∂µφ (202)

τ (203)

|ψ〉1 =
1√
2

(1.1|0〉b1 ⊗ |0〉c1 + 0.9|1〉b1 ⊗ |1〉c1) (204)

E = mc2 E = mc2 − GMm

r
E ∼ 0 r ∼ GM

c2
(205)

|Ψ〉 = [|0〉b1|0〉c1 + |1〉b1|1〉c1]
⊗ [|0〉b2|0〉c2 + |1〉b2|1〉c2]

. . .

⊗ [|0〉b1|0〉c1 + |1〉b1|1〉c1] (206)

eiθ e−iθ (207)

c, !, G (208)

A

G
∼ √

n1np ∼ Smicro (209)

R R + R2 (210)

Sbw =
A

2G
= 4π

√
n1n2 = Smicro (211)

K3 × T 2 (212)

S = 2
√

2π
√

n1n5 (213)

AdS3 × S3 × T 4 (214)

∼ (n1n5)
1

6 lp (215)

ΓCFT = V ρL ρR (216)

ΓCFT = V ρ̄L ρ̄R (217)
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Occupation numbers
of left, right excitations
Bose, Fermi distributions
for generic state

Emission
vertex

Occupation  numbers
for this particular
microstate

Emission from the special microstate is peaked at definite frequencies
and grows exponentially, like a laser .....



‘Hawking radiation’ from the special microstate’

Emission grows exponentially because 
after n de-excited strings have been 
created, the probability for creating the 
next one is Bose enhanced by (n+1)

The emitted frequencies are peaked at 
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R = ωgravity
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R =

1

R
[−l − 2 − mψm + mφn] (221)

m = nL = n + R + 1, n = nL − nR eωI t (222)
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√
N − n

√
n + 1 ≈

√
N

√
n + 1

dn

dt
∝ (n + 1) n (175)

ωR =
1

R
[−l − 2 − mψm + mφn] = ωgravity

R (176)

m = nL + nR + 1, n = nL − nR (177)

|λ − mψn + mφm| = 0, N = 0 (178)

λ = 0, mψ = −l, n = 0, N = 0 (179)

ωI = ωgravity
I (180)
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Emission grows as 
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This gravity solution has no horizon, no singularity , but it has an 
ergoregion 

(all non-exremal states made so far are either time-dependent or have an 
ergoregion)

Gravity description of emission :
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(Cardoso, Dias, Jordan, 
Hovdebo, Myers, ’06)

Negative energy quanta collect in the 
ergoregion, positive energy quanta 
radiated to infinity



Radiation: The gravity calculation

S = 2π
√

n5(
√

n1 +
√

n̄1)(
√

np +
√

n̄p) (57)

= 2π
√

n5(
E

√
m1mp

) (58)

S = 2π
√

n1n5npnkk (59)

S = 2π
√

n1n5nkk(
√

np +
√

n̄p) (60)

= 2π
√

n1n5(
E

√
mpmkk

) (61)

S = 2π
√

n1n5(
√

np +
√

n̄p)(
√

nkk +
√

n̄kk) (62)

∼ lp (63)

∼ n
1
6 lp (64)

M9,1 →M4,1 × T 4 × S1 (65)

E/(2mkk) = 0.5 (66)

E/(2mkk) = 1.2 (67)

Lz ∼ [
g2α′4√n1n5np

V R
]
1
3 ∼ Rs (68)

∆S (69)

eS (70)

eS+∆S (71)

S = 2π
√

n1n5np(1− f) + 2π
√

n1n5npf(
√

nk +
√

n̄k) (72)

nk = n̄k =
1

2

∆E

mk
=

1

2Dmk
(73)

D ∼ [

√
n1n5npg2α′4

V Ry
]
1
3 ∼ RS (74)

∆S = S − 2π
√

n1n5np = 1 (75)

S =
A

4G
(76)

mk ∼
G5

G2
4

∼ D2

G5
(77)

D ∼ G
1
3
5 (n1n5np)

1
6 ∼ RS (78)

Nα lp (79)

eS (80)
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Graviton with indices on the torus is a scalar in 6-d

Smicro = 2π
√

n1n5np (152)

Sbek =
A

4G
= 2π

√
n1n5np = Smicro (153)

ni = n̄i (154)

X i N pi = wi ρ ρ Ni (155)

X1 X2 X3 w = {1, .5, .5} N = 2 (156)

a1 a2 a3 (157)

L1 L2 (158)

P =
∑

i

(ni + n̄i) pi (159)

S̃ = S − λ(Ebranes − E) = AN

N
∏

i=1

(
√

ni +
√

n̄i) − λ(2mini − E) (160)

abeckwith@uh.edu projectbeckwith1@yahoo.com

S ∼ E
D−1

D (161)

S ∼ E (162)

S = A(
√

n1 +
√

n̄1)(
√

n2 +
√

n̄2)(
√

n3 +
√

n̄3) . . . (
√

nN +
√

n̄N ) (163)

∼ E
N
2 (164)

SO(4) ≈ SU(2) × SU(2) (165)
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1

2
,
1

2
) (166)

X1, X2, X3, X4 ψ+, ψ̃+, ψ−, ψ̃− ψ̄+, ¯̃ψ
+
, ψ̄−, ¯̃ψ

−
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(0, 0) (0,
1

2
) (

1

2
, 0) (168)

nL nR { (169)

h12 ≡ Ψ !Ψ = 0 (170)

M4,1 → t, r, θ, ψ, φ (171)

S1 → y y : (0, 2πR) (172)

ClV̂ [l] V̂ (173)

N = n1n5 (174)
√

N − n
√

n ≈
√

N
√

n
dn

dt
∝ n (175)
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The mass of the extremal D1-D5 system is

Mextremal =
πM

4G(5)
(s2

1 + s2
5 + 1) (2.37)

From (2.8) we see that the energy of the system above the energy of the extremal D1-D5 system
is

∆MADM ! πM

8G(5)
(1 + 2s2

p) ! π

8G(5)

Q1Q5

R2
nm(s−2 + s2)

=
π

8G(5)

Q1Q5

R2
(m2 + n2 − 1)

=
1

2R
(m2 + n2 − 1)n1n5 (2.38)

where we used (2.32),(2.12),(2.13) and (2.25). Note that this result is consistent with our initial
observation (2.28) that M becomes small for large R.

In the large R limit that we have taken we also have, using (2.21) and (2.36)

r2
+ ≈ −Q1Q5

R2

s2

s−2 − s2

r2
− ≈ −Q1Q5

R2

s−2

s−2 − s2
(2.39)

which gives

r2
+ − r2

− ≈ Q1Q5

R2
(2.40)

3 The instability of the geometries: Review

Shortly after the construction of the above 3-charge regular geometries it was shown in [14]
that these geometries suffered from an instability. This was a classical ergoregion instability
which is a generic feature of rotating non-extremal geometries. In this section we will reproduce
the computations of [14] to find the complex eigenfrequencies for this instability in the large R
limit.

3.1 The wave equation for minimally coupled scalars

We consider a minimally coupled scalar field in the 6-dimensional geometry obtained by dimen-
sional reduction on the T 4. Such a scalar arises for instance from hij , which is the graviton
with both indices along the T 4. The wave equation for the scalar is

!Ψ = 0 (3.41)

We can separate variables with the ansatz [27, 13, 14]5

Ψ = exp(−iωt + iλ
y

R
+ imψψ + imφφ)χ(θ)h(r) (3.42)

5Our conventions are slightly different from those in [14]: we have the opposite sign of λ, for us positive ω

will correspond to positive energy quanta, and for us ω has dimensions of inverse length.
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9Solve by matching inner and outer region solutions



One finds :

 

Ψ = ψ(x)e−iωt (201)

L =
1

2
∂µφ∂µφ (202)

τ (203)

|ψ〉1 =
1√
2

(1.1|0〉b1 ⊗ |0〉c1 + 0.9|1〉b1 ⊗ |1〉c1) (204)

E = mc2 E = mc2 − GMm

r
E ∼ 0 r ∼ GM

c2
(205)

|Ψ〉 = [|0〉b1|0〉c1 + |1〉b1|1〉c1]
⊗ [|0〉b2|0〉c2 + |1〉b2|1〉c2]

. . .

⊗ [|0〉b1|0〉c1 + |1〉b1|1〉c1] (206)

eiθ e−iθ (207)

c, !, G (208)

A

G
∼ √

n1np ∼ Smicro (209)

R R + R2 (210)

Sbw =
A

2G
= 4π

√
n1n2 = Smicro (211)

K3 × T 2 (212)

S = 2
√

2π
√

n1n5 (213)

AdS3 × S3 × T 4 (214)

∼ (n1n5)
1

6 lp (215)

ΓCFT = V ρL ρR (216)

ΓCFT = V ρ̄L ρ̄R (217)

R S1 l, mφ, mψ λ (218)

ωCFT
R = ωgravity

R ωCFT
I = ωgravity

I (219)

ω = ωgravity
R + iωgravity

I (220)
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Thus for a set of (nongeneric) microstates we can explicitly see  
‘information carrying radiation’ which is the ‘Hawking radiation’ for these 
microstates

(Chowdhury + SDM 07, 08)



Dynamical questions



(A) An illustration of AdS/CFT duality

Incoming graviton

Incoming graviton

CFT picture Gravity picture

We want to study what happens in each picture ...



With an absorption probability P, 
the energy of the graviton gets 
converted to a pair of vibration 
modes on one of the
pieces of the effective string

With probability P,  the graviton
enters the throat of the geometry

Absorption



Time delay

The excitations travel 
around the loop in a 
time T and re-collide

The colliding 
excitations can lead 
to re-emission of the 
graviton with 
probability P 

The graviton travels down 
the throat, bounces off the 
‘cap’ and comes back up in 
a time T

It can re-emerge from the 
throat with probability P



We have shown that eigenstates of the hole are fuzzballs. 

But how does a collapsing shell turn into a fuzzball ?

(a) The shell should be able to turn into a fuzzball  

        and

(b) This should happen in a time less than Hawking evaporation time,    
       otherwise the fuzzball picture would not help with information loss

Consider a shell that is collapsing to form a black hole ...

B. Collapsing shell



Suppose we make a black hole by collapsing a shell of matter

How can this shell change into a fuzzball ?

??

Light cones point inwards

How does data get out to horizon ?



(a) We cannot assume classical physics in the black hole, 
even though the hole is large

(i) Suppose we have a shell of radius of order the horizon 
radius, 

m = nL = n + R + 1, n = nL − nR Exppo[ωCFT
I t] (223)

gtt = 0 gtt > 0 (224)

S =
1

16πG

∫

Rd4x (225)

R ∼ 1

L2
∼ 1

(GM)2
(226)

d4x ∼ (GM)2 (227)

S ∼ GM2 (228)

|ψ〉 =
1

2
|ψS〉 +

1

2
|ψA〉 → 1

2
e−iESt|ψS〉 +

1

2
e−iEAt|ψA〉 (229)

|ψ1〉 |ψ2〉 |ψn〉 (230)

|0〉 → |ψ〉 〈0|ψ〉 ≈ 0 〈0|ψ〉 ≈ 1 (231)

|ψ〉
∑

i

|ψi〉〈ψi| (232)

! φ = 0 (233)

Aµ (234)

〈0|ψ1〉 ≈ 0 〈0|ψ2〉 ≈ 0 〈0|ψn〉 ≈ 0 〈0|ψn〉 ≈ 1 (235)

GM (236)
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(ii) A fuzzball state has a size of the same order

(iii) Let us ask if the shell state can tunnel into the fuzzball state

(iv) Both these states are large, heavy states, so the tunneling probability
      should be very very small



S1 → y y : (0, 2πR) (175)

ClV̂ [l] V̂ (176)

N = n1n5 (177)

√
N − n

√
n + 1 ≈

√
N

√
n + 1

dn

dt
∝ (n + 1) n (178)

ωR =
1

R
[−l − 2 − mψm + mφn] = ωgravity

R (179)

m = nL + nR + 1, n = nL − nR (180)

|λ − mψn + mφm| = 0, N = 0 (181)

λ = 0, mψ = −l, n = 0, N = 0 (182)

ωI = ωgravity
I (183)

|0〉 |ψ〉 〈0|ψ〉 ≈ 0 (184)

n1, n2, n3 n4 (185)

1/n1n2n3 (186)

(n1n5)
αlp (187)

n1n5

∑

k mk = n1n5 n5 (188)

n′
p = n1 n′

1 = n5,
∑

k mk = n′
pn

′
1 (189)

Smicro = 2π
√

2
√

n1n5 Smicro = 4π
√

n1n5 (190)

R2 (191)

Sbek =
A

2G
= Smicro (192)

∑

k mk = n1np (193)

1

!
(194)

∆E =
4π

n1n5L
(195)

g → 0 (196)

g nonzero (197)

∆TCFT = ∆Tgravity (198)

e−S ∼ e−GM2

(199)

eSbek ∼ eGM2

(200)
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(v) Estimating the tunneling probability

The probability amplitude is            

 where the action is to be computed from the Einstein action
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The length scale for the solution is 
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Then 

This is indeed a very small probability ....
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(vi) But there are many different fuzzball states that we can tunnel to

The number of fuzzball states is 
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(vii) Thus we can see that this large number if states can cancel the     
      
        smallness of the tunneling amplitude 

What kind of state will such a cancellation generate ?



Toy model

Put a quantum in a potential well

Tunneling probability is small

But there are many neighboring wells

In a time of order unity, the quantum spreads to a linear combination
of states in all potential wells

(SDM 08)



Thus we see that even though a collapsing shell looks classical,
once it reaches order horizon size, the physics need not be classical.

Tunneling can spread its wavefunction to a linear combination of 
fuzzball states

But how long will this process take ?



Tunneling is just ‘de-phasing’ of eigenstates :

= +

Suppose we have two potential wells, separated by a barrier

The state in the left well is a superposition of these two eigenfunctions

The energy eigenstates are symmetric and antisymmetric wavefunctions
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The two eigenfunctions have slightly different eigenvalues, so after
some time they go OUT of phase

The wavefunction now ends up in the second well. This is tunneling.
The time for tunneling is thus
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i
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ttunnel ∼ tdephase ∼ 1/∆E (237)
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(b) How long does it take for the shell to become a general linear 
combination of fuzzballs ?

If it takes more than Hawking evaporation time, fuzzballs dont help !

17

energy E. We choose E to be small, so the backreaction
of the quantum on the geometry can be ignored. The
quantum will fall down the throat, reach the cap, and
eventually reflect back up the throat. How do we describe
this evolution in terms of the energy eigenstates of the
system?

We can find the energy eigenstates of the quantum by
solving the wave-equation !φ = 0. (For the simple ge-
ometries of fig.10 the wavefunctions have been explicitly
computed60.) We get a set of energy eigenfunctions. The
lowest energy state is localized in the cap (as shown in
fig.10), the next one extends a little further out, the next
one still further, etc. The infalling quantum starts high
up the throat, so we must superpose these energy eigen-
functions with suitable coefficients to obtain this initial
wavepacket

|ψ〉 =
∑

k

ck|Ek〉 (48)

where |Ek〉 is the eigenfunction with energy Ek.
This is all just standard quantum mechanics, and we

would do a similar computation for describing a localized
quantum moving in the potential of a harmonic oscillator.
The evolution of the wavepacket down the throat is ob-
tained by evolving the energy eigenfunctions; since these
eigenfunctions have slightly different energies, the rela-
tive phases between their coefficients change with time
and cause the wavepacket to move downwards towards
the cap. The essential point in the above discussion is
that even though the quantum is localized quite high up
the throat up the start, if we want to express its wave-
function in terms of the stationary states of the system
then we have to construct the detailed energy eigenfunc-
tions |Ek〉 in the entire geometry, and these will depend
sensitively on the structure of the cap.

(2) Now let us imagine that the energy of the infalling
quantum is a bit higher. We would therefore like to take
into account the small backreaction that the infalling
quantum would create on the geometry. How should we
do this?

We still have to follow the same basic scheme: we
have to find the energy eigenstates of the system and
superpose them with appropriate coefficients. The evo-
lution will then be given by the changing phases of the
coefficients. But what are the energy eigenstates this
time? Clearly, we should find solutions to the full sys-
tem of gravity plus scalar field φ, with the backreaction
of the φ excitation included, and arrive at some eigen-
states ψk[g, φ] which are functionals of both the metric g
and the scalar field φ. Note in particular that the energy
Ek of this state will reflect the energy of the background
extremal 2-charge geometry as well as the energy of the
quantum. So we are making energy eigenstates around
an energy

Etotal = Eextremal + Equantum (49)

The number of states of the system increase with the
energy, and we observe here that the set of eigenstates
that will be involved in a sum like (48) will be the number
at energy Etotal, and not at the base energy Eextremal.

(3) Now let us imagine increasing the energy of the in-
falling quantum still further, so that a classical analysis
would indicate the formation of a horizon at some point
in the throat, much before the cap is reached. This is
of course the case that we are really interested in under-
standing. The basic scheme will remain the same as in
the above two cases, but now we have to find all energy
eigenstates of the system with an energy Etotal where
the contribution Equantum is not small. According to
our postulate, these energy eigenstates are horizon sized
fuzzballs, pictured in fig.7(c). Thus the initial infalling
quantum has to be written in the form (48) as a set of
very quantum fuzzball states; these states are very nu-
merous and have a nontrivial structure all the way upto
the horizon.

Now suppose we did not know that there were all these
fuzzball states, and we wrote the sum (48) with only the
states that we see in the traditional picture of the black
hole. Then we would be using a much smaller number
of states. For example if we took the infalling quantum
to have spherical symmetry, then we might (erroneously)
assume that the black hole background should be a classi-
cal spherically symmetric state. But from what we have
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Hawking evaporation time. Suppose we have a shell of
mass M that collapses to form a black hole. Let the
Schwarzschild radius of the hole be denoted by R. To
make the shell collapse we must localize the matter in
the shell so that it fits in a radius " R. This needs a
momentum spread for the shell

∆P # 1

R
(50)

For a nonrelativistic shell, the energy of the shell is E ∼
P 2

2M , and the uncertainity in E will; be

∆E ∼ P∆P

M
# (∆P )2

M
# 1

MR2
(51)

(i) Since the fuzzballs form a complete set of 
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(iii) Then the spread in energy will be 

(iv) Thus
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The different fuzzball states |Ek〉 making up the shell
wavefunction |ψ〉 will go ‘out of phase’ over a time
tdephase so that the state will look like a linear combina-
tion of generic fuzzball states rather than a well defined
shell. We have

tdephase ∼ 1

∆E
# MR2 (52)

But the Hawking evaporation time for a Schwarzschild
hole (in all dimensions) is

tevap ∼ MR2 (53)

Thus we find that the time over which the the wavefunc-
tion ‘dephases to fuzzballs’ is shorter than the Hawking
evaporation time

tdephase # tevap (54)

This is important, since this ‘dephasing’ would not be of
interest if it took longer than the Hawking evaporation
time.

(Note that if we take a relativistic shell with E ∼ M

instead of E ∼ P 2

2M then we get an even shorter time
tdephase. Now we would have

∆E ∼ ∆P $ 1

R
(55)

This gives

tdephase # R # MR2 (56)

where we recall that we are measuring all quantities in
planck units, and M $ mpl, R $ lpl.)

3. The effect of phase space volume

Having obtained a rough picture of how black hole in-
fall may be studied using fuzzball states, let us consider
a toy model which illustrates in more detail how wave-
functions ‘spread’ during evolution.

In fig.13 we sketch a system where a quantum can move
along the r direction, from r = ∞ to r = 0. If we have
only this direction r to move in, the motion of a quantum
would be straightforward. But now let us assume that
there is another direction y in our space. Let there be a
potential

V =
1

2
k(r)y2 (57)

Let k(r) vanish at large and small r and be high in-
between, with the peak at r = r0.

Now let us see what this toy model represents. If k(r)
vanishes near r = 0, then the wavefunction can easily
spread over a large range of values of y once the quan-
tum gets close to r = 0. This represents the fact that
there is a large phase space of fuzzball states (given by

FIG. 13: The wavepacket travels in from r = ∞ towards
r = 0. The lines of constant potential are sketched; they
allow the wavepacket to spread as it reaches r → 0.

the Bekenstein entropy) which can be accessed once an
infalling shell comes close enough to the origin. For larger
r there are much fewer states for the given energy, while
at infinity there are again many states possible because
of the large volume of space available.

First consider a classical particle moving in this r − y
space. We can assume y = 0, py = 0 consistently, and
the particle just reaches the point r = 0, y = 0 at the end
of its motion.

Now consider the quantum problem, and start with a
wavepacket e−αy2

at large r. If α is large enough, the
wavepacket will manage to pass through the location of
steep potential at r = r0, and emerge into the region at
small r. But in this region there is no potential limiting
the wavefunction in the y direction, so it can spread over
the region −∞ < y < ∞.

Thus while the classical solution suggested that the
endpoint of the motion is at r = 0, y = 0, the actual wave-
function can spread over all y on reaching r = 0. This
effect becomes more pronounced if we have a large num-
ber of transverse directions like y. In our actual problem
the wavefunction of a collapsing shell can spread over
the very large of eSbek fuzzball states after the shell be-
comes smaller than a certain size. It is possible that the
consequent spreading of the wavefunction invalidates a
classical analysis of the motion of the shell.

4. Summary

Let us summarize the above discussion on the possible
dynamics of fuzzballs. A principal feature characteriz-
ing black holes is their large entropy. The traditional
picture of the hole does not exhibit the microstates re-
quired to explain this entropy. If we take the presence
of the large number of microstates into account, then
the wavefunction of a collapsing shell might spread to a
nontrivial extent over this vast phase space of allowed
solutions. The resulting dynamics would not correspond
to a given quantum moving on a given black hole geom-
etry, but rather lead to a wavefunctional ψ[g, φ] that is
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(v) Note that

So
That is, the state becomes a linear 
combination of fuzzballs much before
 the hole evaporates



Resolving the information paradox
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|0〉 |ψ〉 < 0|ψ〉 ≈ 0 (181)
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The Hawking ‘theorem’ :  If

(a) All quantum gravity effects are confined to within a given 
distance like planck length or string length

(b) The vacuum is unique

Then there WILL be information loss

The information paradox :

Hawking gives an explicit construction of the evolution
of the vacuum state near the horizon, and shows that it
gives entangled pairs

If we can show that the state is not       , then we resolve
the problem
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m = nL = n + R + 1, n = nL − nR Exppo[ωCFT
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e−iESt|ψS〉 +
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|ψ1〉 |ψ2〉 |ψn〉 (230)

|0〉 → |ψ〉 < 0|ψ >≈ 0 (231)
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We explicitly construct microstates starting with simple ones ...

We are resolving a paradox.  All we have to show is that
there is a physical way out of the Hawking construction.
We do not need to make all states in all detail.
If someone wants to still argue there is a paradox, then he has to show 
that other states will not behave this way



Earlier attempts to construct hair were trying perturbative 
deformations, while the actual constructions turn out to be 
nonperturbative.

String theory gives us a new expansion: since we can catalog 
all states, we can start with states which have ‘many 
excitations in the same mode’, and then move to more 
generic states ...

No 
perturbative 
deformations

2-charge extremal, 3-charge extremal, 
some nonextremal, Hawking radiation ...



Summary : All microstates of black holes made so far are ‘fuzzballs’

2-charge 
extremal

2-charge 
extremal
+
excitation

3-charge extremal: Large classes also known with CFT 
state not yet identified

Nonextremal: Some
families known, 
radiation agrees


