Lecture 3

Constructing Fuzzballs

Dynamical behavior: results and conjectures




Recall the way we made the 2-charge black hole ...

This allowed us to count the Ly =nL
states of the black hole, so
we solve the entropy \

problem, but what about the
information puzzle?




A key point

The elementary string (NS1) does not have any LONGITUDINAL
vibration modes

@
o
[
This is because it is not made up of ¢
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A\ elementary string
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Thus only transverse oscillations are Momentum is carried
permitted by transverse

oscillations
This causes the string to spread over

a honzero transverse area
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Making the geometry

We know the metric of one straight strand
of string

We know the metric of a string
carrying a wave -- ‘Vachaspati transform’

We get the metric for many
strands by superposing harmonic
functions from each strand

(Dabholkar, Gauntlett,Harvey,Waldram
’95, Callan,Maldacena,Peet '95)

In our present case, we have a large
number of strands, so we ‘smear over
them to make a

continuous ‘strip’ (Lunin+SDM "01)




Let us now carry out these steps:

Step |I: WVe write the metric of a single strand of string
8
dstyimg = H{'[-dt® +dy?|+  dwda,
i=1
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Step 2: Adding momentum

The naive metric is

4 4
ds2ping = Hl[—dudv+ Kdv’]+ ) dude; + ) dzedz,
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Step 2: Done correctly, actual metric

dsgtm’ng
1
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Step 3: Adding over strands

dsgtm’ng —
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Step 4: Smoothing over strands:

e
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DI-D5
CFT state

DI-D5
gravity
dual

e F(y—ct) =

S, T
dualities
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[—(dt — Asda")? + (dy + Byda')?]

1+ K
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‘Supergravity supertubes’
(Emparan+Mateos+Townsend ’01)




(a) Size depends on mean harmonic number

Z kEmy = nin,
(b) Fluctuations depend on occupation number

Put energy in a few

harmonics, large Coherent
occupation number states

for each harmonic

Energyin Generic
many harmonics, uantum
occupation number 9

order unity in each state
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(Lunin+SDM °02)
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A simple example

D1-D5: CFT state

NSI- P :one turn —> has all loops

of a uniform helix singly wqund g
and all spins aligned

Ang X S3

—_— going over to
flat space at

infinity

Make metric from
profile function F




2 2 aYaY
ds? = —Hl_l(alt2 — dy2) + Hsf <d92 + dr ) _ 1G5 (COS2 Odydy + sin’ thdqﬁ)

r2 -+ a? Hlf
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Each point on the ring is the
center of a Kaluza-Klein
monopole

No net KK monopole charge :
KK is a dipole charge

NSI-P DI-D5




2-charge extremal DIDS5 :

3-charge extremal DID5 P ?

2

™

—

Same diameter
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Horizon
size
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Simple states: all components the same,

Generic DID5P CFT state oy o
excitations fermionic, spin aligned

ota —,total nin —,oal nin —,oal nin ota
[R)' 1l = (i) ) (T )" (T e (L)

Can make geometries for \ /

these simple states : AdSs x S x T*

U(l) X U(l) symmetry p

Geometry for simple

\__/ state (winding =1)
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(Giusto SDM Saxena 04)




2-charges, 4+ 1 dimensions, noncompact excitations: Lunin+SDM 0l

2-charges, 4+1d, torus excitations: Lunint+Maldacena+Maoz '02, Skenderis
+Taylor 07
2-charges, 4+ 1d, fermionic excitations: Taylor '05

3-charges, 4+1 d, one charge ‘test quantum’ wavefunction;
SDM+Saxena+Srivastava 03

3-charge, 4+1 d,U(l) X U(l) axial symmetry: Giusto+SDM+Saxena ’'04,
Lunin ’04

3-charge, 4+1 d, U(l) axial symmetry: Bena+Kraus '05,
Berglund+Gimon+Levi ’05

3 charges, 3+1 d, U(1) axial symmetry: Bena+Kraus '05

4-charges, 3+1 d, U(1)XU(l) symmetry: Saxena+Giusto+Potvin+Peet '05

4 charges, 3+1 d, U(l) symmetry: Balasubramanian+Gimon+Levi ‘06




Non-extremal geometries, 3 charges, 4+ d, U(1)XU(I) axial symmetry:
JejjalatMadden+Ross+Titchener 05

Non-extremal geometries, 4 charges, 3+1 d, U(l)XU(I) axial symmetry:
Giusto+Ross+Saxena 07

2-charges, 4+ 1 d, K3 compactification: Skenderis+Taylor 07

2-charges, I-point functions: Skenderis+Taylor 06

General structure of extremal solutions: hyperkahler base + 2-d fiber
(Gauntlett+Gutowski+Hull+Pakis+Reall 02, Gutowski+Martelli+Reall 03)

Decomposing known microstate solutions into base + fiber:
hyperkahler —> psedo-hyperkahler
(Giusto+SDM 04)




Structure of general 3-charge and 4-charge geometries :

Bound states of branes is on Higgs branch. Dipole charges form,
are held apart by fluxes ...

(Bena+Warner 05)

g—0 @

g nonzero
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If we reduce to 3+1 dimensions, get metrics for ‘branes at
angles’ (Denef ’02, Balasubramanian+Gimon+Levi 05)

Recent work (Bena+Bobev+Ruef+Warner 08) ... supertubes in the "throat’
might give correct order for number of states ...




(Jejalla, Madden,
Ross Titchener ’05)
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The Non-Extremal Hole :
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DI1-D5 CFT has both
left and right moving
excitations

Gravity dual again has
no horizon or singularity
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Hawking radiation

B~

: Non-Unitary
Unitary radiation radiation from
NN

process in CFT semiclassical gravity

Radiation rates agree (Spins, greybody factors ...)

(Callan-Maldacena 96, Dhar-Mandal-Wadia 96, Das-Mathur
96, Maldacena-Strominger 96)

Can we get UNITARY radiation (information carrying) in the GRAVITY
description ??




As in any statistical system, each microstate radiates a little differently

el - tH-

Lerr =V pL pr Verr =V pr pr

Emission Occupation numbers Occupation numbers

vertex of left, right excitations for this particular
Bose, Fermi distributions microstate

for generic state

Emission from the special microstate is peaked at definite frequencies
and grows exponentially, like a laser .....




‘Hawking radiation’ from the special microstate’

The emitted frequencies are peaked at
N\~
crr _ 1
wp' = E[_l — 2 —mym + mgn|

m=nr+nrg+1, n=n;—ng

Emission grows exponentially because

after n de-excited strings have been
created, the probability for creating the

next one is Bose enhanced by (n+1)

Emission grows as | EXD [W? FTt]




Gravity description of emission :

This gravity solution has no horizon, no singularity , but it has an
ergoregion

(all non-exremal states made so far are either time-dependent or have an

ergoregion)
\ /

W = w%rcwity 4+ iw?ravity

(Cardoso, Dias, Jordan,
Hovdebo, Myers, ’06)

Negative energy quanta collect in the
ergoregion, positive energy quanta
radiated to infinity




Radiation: The gravity calculation

Mgy — My, x T* x S!

Graviton with indices on the torus is a scalar in 6-d
hio =V
(W =0

M4,1 — t,?“,(g,w,gb
St—y y: (0,21R)

U = exp(—iwt + z’)\% + imy ) + imed)x (0)h(r)

Solve by matching inner and outer region solutions




One finds :

CFT gravity
(Chowdhury + SDM 07, 08)
W ]C FT — W §7’avity

- -

Thus for a set of (nongeneric) microstates we can explicitly see
‘information carrying radiation’ which is the ‘Hawking radiation’ for these

microstates




Dynamical questions




(A) An illustration of AdS/CFT duality

s
/
> Incoming graviton
\
Incoming graviton
CFT picture Gravity picture

We want to study what happens in each picture ...




With an absorption probability P,
the energy of the graviton gets
converted to a pair of vibration
modes on one of the

pieces of the effective string

With probability P, the graviton
enters the throat of the geometry




Time delay

The excitations travel
around the loop in a
time T and re-collide

The colliding
excitations can lead
to re-emission of the
graviton with
probability P

The graviton travels down
the throat, bounces off the
‘cap’ and comes back up in
atimeTl

It can re-emerge from the
throat with probability P




B. Collapsing shell

Consider a shell that is collapsing to form a black hole ...

We have shown that eigenstates of the hole are fuzzballs.

But how does a collapsing shell turn into a fuzzball ?

() The shell should be able to turn into a fuzzball
and

(b) This should happen in a time less than Hawking evaporation time,
otherwise the fuzzball picture would not help with information loss




Suppose we make a black hole by collapsing a shell of matter

How can this shell change into a fuzzball ?

2

Light cones point inwards

How does data get out to horizon !




(a) We cannot assume classical physics in the black hole,
even though the hole is large

(i) Suppose we have a shell of radius of order the horizon

radius, GM

(i) A fuzzball state has a size of the same order

(iii) Let us ask if the shell state can tunnel into the fuzzball state

(iv) Both these states are large, heavy states, so the tunneling probability
should be very very small




(v) Estimating the tunneling probability

The probability amplitude is 6_5

where the action is to be computed from the Einstein action

1 4
S—IGWG/RCZ:E

The length scale for the solutionis L ~ GM

1 1
~ — ~ 4. 2
Then R 2~ (G d*x ~ (GM)
S ~ GM2 B_S ~J e_GM2

This is indeed a very small probability ....




(vi) But there are many different fuzzball states that we can tunnel to

2
The number of fuzzball states is esbek ~ GGM

(vii) Thus we can see that this large number if states can cancel the

_ M2
smallness of the tunneling amplitude e S~ e GM

What kind of state will such a cancellation generate ?




Toy model

Put a quantum in a potential well

Tunneling probability is small

N

But there are many neighboring wells

In a time of order unity, the quantum spreads to a linear combination
of states in all potential wells

o c (SDM 08)




Thus we see that even though a collapsing shell looks classical,
once it reaches order horizon size, the physics need not be classical.

Tunneling can spread its wavefunction to a linear combination of
fuzzball states

But how long will this process take ?




Tunneling is just ‘de-phasing’ of eigenstates :

Suppose we have two potential wells, separated by a barrier

The energy eigenstates are symmetric and antisymmetric wavefunctions

The state in the left well is a superposition of these two eigenfunctions




The two eigenfunctions have slightly different eigenvalues, so after
some time they go OUT of phase

1 1 1 . 1 .
) = §\¢S> + §\¢A> — §€_ZESth> + Qe_ZEAtWﬁ

J\

The wavefunction now ends up in the second well. This is tunneling.
The time for tunneling is thus

Liunnel ™ tdephase ~ 1/AE




(b) How long does it take for the shell to become a general linear
combination of fuzzballs ?

If it takes more than Hawking evaporation time, fuzzballs dont help !

(i) Since the fuzzballs form a complete set of
eigenstates, we can write the state of the shell
as a linear combination of fuzzball states

) = ch|Ek>
k

(i) Let the horizon radius be K. Since the shell has to
fit inside the horizon, the uncertainty principle gives

1
AP, —
> )




(iii) Then the spread in energy will be

P.AP,  (AP.)? 1
~ > >

Ab M M M R?

1
' t ephase ™~ X 4 M 2
(iv) Thus deph NG < MR

(V) Note that tefuap ~ MR2

That is, the state becomes a linear
So tdephase K tevap combination of fuzzballs much before
the hole evaporates

—>




Resolving the information paradox




The information paradox :

The Hawking ‘theorem’ : If

(2) All quantum gravity effects are confined to within a given
distance like planck length or string length

(b) The vacuum is unique

Then there WILL be information loss

Hawking gives an explicit construction of the evolution

of the vacuum state near the horizon, and shows that it
gives entangled pairs

0) — [
0ly) ~

o\/

If we can show that the state is not |0) , then we resolve
the problem




We explicitly construct microstates starting with simple ones ...
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We are resolving a paradox. All we have to show is that

there is a physical way out of the Hawking construction.

We do not need to make all states in all detail.

If someone wants to still argue there is a paradox, then he has to show
that other states will not behave this way




Earlier attempts to construct hair were trying perturbative
deformations, while the actual constructions turn out to be

nonperturbative.

String theory gives us a new expansion: since we can catalog
all states, we can start with states which have ‘many
excitations in the same mode’, and then move to more

generic states ...

P > “
AAA (‘/\‘)

N 2-charge extremal, 3-charge extremal,
o)

some nonextremal, Hawking radiation ...

perturbative
deformations




Summary : All microstates of black holes made so far are ‘fuzzballs’

N\~
2-charge
2-charge extremal
extremal +
excitation
3-charge extremal: Large classes also known with CFT
state not yet identified
7
3 \\ !\ [\ Nonextremal: Some
AN . ' I 1 IF([If  an> families known,

il A\IL \ : \ ; radiation agrees




