

From the LHC to a future collider (Theory Workshop) CERN 10 February 2009

The proper particle for the proper scope

Electrons (and positrons) are (so far) point like particles: no internal structure

The energy of the collider, namely two times the energy of the beam colliding is totally transferred into the collision

Ecoll= Eb1+ Eb2= 2Eb = 200 GeV (LEP)

Pros: the energy can be precisely tuned to scan for example, a mass region

Precision measurement (LEP)

Cons: above a certain energy is no more convenient to use electron because of too high synchrotron radiation

Protons (and antiprotons) are formed by quarks (uud) kept together by gluons

The energy of each beam is carried by the proton constituents, and it is not the entire proton which collides, but one of his constituent Ecoll < 2Eb

Pros: with a single energy possible to scan different processes at different energies

Discovery machine (LHC)

Cons:the energy available for the collision is lower than the accelerator energy and there is a large background

Cross-section of LHC cryodipole

Critical current density of technical superconductors

L. Evans – EDMS 986033 10

Cooldown of sectors

- **From RT to 80K precooling with LN2. 1200 tons of LN2 (64 trucks of 20 tons). Three weeks for the first sector.**
- **From 80K to 4.5K. Cooldown with refrigerator. Three weeks for the first sector. 4700 tons of material to be cooled.**
- **From 4.5K to 1.9K. Cold compressors at 15 mbar. Four days for the first sector.**

No RF, debunching in ~ 25*10 turns,

First attempt at capture, at exactly the wrong

Capture with corrected injection phasing

Capture with optimum injection phasing, correct

Cryostat and cold masses longitudinal displacements

L. Evans – EDMS 986033 28

Experimental validation: temperature evolution

 The power variation calculated by calorimetry is 10 W and is corresponding to the applied electrical power Validation of the method !

Powering example: 15R1 powering @ 5000A

Snapshots in S67 and S78 on all 154 dipoles - B32.R6 with a high (47 nΩ) joint resistance between the poles of one aperture

Results from provoked massive Post-Mortem of all dipoles in sectors 67 & 78 Page 1 Page 2 Page 3 sortedSlope: Dipole B32.R6 with 47 n Ω splice resistance $\frac{1}{n}$ o XY Graph 4 9287F-8 $4.250E - 4$ A32R6 \sim \sim delta slope $4.0005 - 4$ **B32R6** 层 2.72892E-9 $3.750E - 4$ R-square $C32R6$ 3.500E-4 0.987653 A33R6 离 $3.250E - 4$ **B32R6** $3,000E-4$ **B33R6** $2.750F - 4$ $C33R6$ **Design** 2.22315F-8 $2.500E - 4$ A34R6 æ delta sione. $2.250E -$ **B34R6** W 7.90081F-9 $2.000E - 4$ $C34R6$ æ R-square $\sum_{1.750E-4}$ 0.660038 Selu_030} $1.500E - 4$ $C34L7$ **SP** $1.250E -$ **B34L7** 霱 B_{24R6} $1.000E - 4$ A34L7 7.500E-5 2040746.9 $\frac{2}{32}$ 7.500E-5
 $\frac{2}{3}$ 5.000E-5 $C33L7$ **Designation** delta slope $2,500E-1$ **B33L7 SP** 4.117745-9 $0.000E + 0$ A33L7 æ R-square $-2.500E-5$ æ 0.857608 $C3ZL7$ $-5.0005 - 5$ B32L7 $-7.500E-5$ **DO** A11R6 $\overline{\mathbf{r}}$ $-1.000E - 4$ A32L7 1.95F-8 $-1.250E-4$ $C3117$ æ delta slope -1 500F-4 **B31L7** $\overline{\mathbf{z}}$ 2.89324F-9 $-1.750F - 4$ A31L7 **Sec. B-SOLIAGE** $-2.000E-4$ 500 $s\overline{so}$ 1000 1500 2000 2500 4000 4500 5000 6000 6500 3000 3500 7000 $C30L7$ **Izv** 0.91762 Current [A] **PER B30L7** $C1986$ + 四 州 ortedSlopes $\frac{1}{\tau}$ o XY Graph 1.46082F-8 $4.250E-4$ A32R7 $200A$ delta slope $4.000E-4$ **B32R7** œ 4.92032E-9 3.750E-4 茵 3 -square ctor 78 $C32R7$ $3.5005 - 4$ 0.610054 A33R7 **A** 3.250E-4 ≂ A29L8 3.000E-4 **B33R7** $2.750E-4$ $C33R7$ \sim 1.31595E-8 $2,500E-4$ $\overline{\mathbf{z}}$ delta slope A34R7 $2.250E - 4$ **B34R7** \sim 4.00195E-9 $2.000E - 4$ Σ 1.750E-4 $C34R7$ æ square $1.500E - 4$ $C34L8$ Z. 0.657427 $\widehat{\mathbb{S}}_i$ $1.250E - 4$ **B34L8 Sec.** $C3418$ 쿯 $1.000E - 4$ A34L8 **Design** $2.5005 -$ 1 29757F-8 $\frac{8}{5}$ 5.000E-5 $C33L8$ **Barrio** delta slope **Part** 2.500E-5 **B33L8** 5.67017E-9 $0.000E + 0$ $A33L8$ **ISS** -square $-2.500E - 5$ 0.48172 $C321B$ **Inch** $-5.000E - 5$ $B32L8$ \sim A23L8 $-7.500E - 5$ $-1.000E-4$ A32L8 **AM** 1.07342F-8 $-1.250E-4$ $C3118$ W delta slope $-1.500E-4$ **B31L8** 757 4.07705F-9 $-1.750F - 4$ A3118 **A** R-square $-2.000E-4$ $s00$ 1000 1500 2000 2500 4500 $s₀$ ss' 6000 6500 3000 3500 4000 **2000** $C30L8$ **Designation** 0.551627 Current [A] **B30L8 Barri** A12R7 + 四 例 L. Evans – EDMS 986033 38

Main quadrupoles in S67 and S78 – Results of global snapshots

Repairs and restart

- **The four warm sectors will be equipped with extra pressure relief valves on all dipole cryostats.**
- **The four cold sectors will get extra PRVs on all short straight section cryostats. This can be done with the sectors cold and is adequate for 5 TeV operation.**
- **The quench protection system will be upgraded everywhere to cover all busbar splices.**
- **The whole machine will be cold by mid August, ready for first injected beam in late September.**
- **The machine will run at 5 TeV until autumn 2010 after which the remaining 4 sectors will be equipped with PRVs and will be prepared for high energy operation.**

LHC upgrade: future plans

L. Evans – EDMS 986033 42

Peak Luminosity

- **N_b** number of particles per bunch
- **n_b** number of bunches
- **f**_r revolution frequency
- ε**ⁿ** normalised emittance
- β***** beta value at Ip
- **F** reduction factor due to crossing angle

Goal of "Phase I" upgrade:

Enable focusing of the beams to $\beta^* = 0.25$ m in IP1 and IP5, and reliable operation of the LHC at double the operating luminosity on the horizon of the physics run in 2013.

Scope of "Phase I" upgrade:

- 1. Upgrade of ATLAS and CMS experimental insertions. The interfaces between the LHC and the experiments remain unchanged at \pm 19 m.
- 2. Replace the present triplets with wide aperture quadrupoles based on the LHC dipole cables (Nb-Ti) cooled at 1.9 K.
- 3. Upgrade the D1 separation dipole, TAS and collimation system so as to be compatible with the inner triplet aperture.
- 4. The cooling capacity of the cryogenic system and other main infrastructure elements remain unchanged.
- 5. Modifications of other insertion magnets (e.g. D2-Q4) and introduction of other equipment in the insertions to the extent of available resources.

Several departments are involved in the "Phase I" project:

AT Department: low-beta quadrupoles and correctors, D1 separation dipoles, magnet testing, magnet protection and cold powering, vacuum equipment, QRL modifications.

AB Department: optics and performance, power converters, instrumentation, TAS and other beam-line absorbers, ...

TS Department: cryostat support and alignment equipment, interfaces with the experiments, installation, design effort, …

SLHC-PP collaborators.

Milestones:

Present limitations

1. Lack of reliability:

Ageing accelerators (PS is 48 years old !) operating far beyond initial parameters

need for new accelerators designed for the needs of SLHC

2. Main performance limitation:

Excessive incoherent space charge tune spreads DQSC at injection in the PSB (50 MeV) and PS (1.4 GeV) because of the high required beam brightness N/e*.

$$
\Delta Q_{SC} \propto \frac{N_b}{\epsilon_{X,Y}} \times \frac{R}{\beta \gamma^2}
$$

with N_h : number of protons/bunch ϵ_{y} : normalized transverse emittances R : mean radius of the accelerator β ¹ : classical relativistic parameters

need to increase the injection energy in the synchrotrons

- Increase injection energy in the PSB from 50 to 160 MeV kinetic
- Increase injection energy in the SPS from 25 to 50 GeV kinetic
- Design the PS successor (PS2) with an acceptable space charge effect for the maximum beam envisaged for SLHC: => injection energy of 4 GeV

Upgrade components

Stage 1: Linac4

• **Direct benefits of the new linac**

Stop of Linac2:

- End of recurrent problems with Linac2 (vacuum leaks, etc.)
- End of use of obsolete RF triodes (hard to get + expensive)

Higher performance:

- Space charge decreased by a factor of 2 in the PSB
	- => potential to double the beam brightness and fill the PS with the LHC beam in a single pulse,
	- => easier handling of high intensity. Potential to double the intensity per pulse.
- Low loss injection process (Charge exchange instead of betatron stacking)
- High flexibility for painting in the transverse and longitudinal planes (high speed chopper at 3 MeV in Linac4)

First step towards the SPL:

• Linac4 will provide beam for commissioning LPSPL + PS2 without disturbing physics.

• **Benefits for users of the PSB**

Good match between space charge limits at injection in the PSB and PS

=> for LHC, no more long flat bottom at PS injection + shorter flat bottom at SPS injection: easier/ more reliable operation / potential for ultimate beam from the PS

More intensity per pulse available for PSB beam users (ISOLDE) – up to 2´

Stage 2: LPSPL + PS2

• **Direct benefits of the LPSPL + PS2**

Stop of PSB and PS:

- End of recurrent problems (damaged magnets in the PS, etc.)
- End of maintenance of equipment with multiple layers of modifications
- End of operation of old accelerators at their maximum capability
- Safer operation at higher proton flux (adequate shielding and collimation)

Higher performance:

- Capability to deliver 2.2´ the ultimate beam for LHC to the SPS
	- => potential to prepare the SPS for supplying the beam required for the SLHC,
- Higher injection energy in the SPS + higher intensity and brightness => easier handling of high intensity. Potential to increase the intensity per pulse.

First step towards the SPL:

• Linac4 will provide beam for commissioning LPSPL + PS2 without disturbing physics.

• **Benefits for users of the LPSPL and PS2**

More than 50 % of the LPSPL pulses will be available (not needed by PS2)

=> New nuclear physics experiments – extension of ISOLDE (if no EURISOL)… Upgraded characteristics of the PS2 beam wrt the PS (energy and flux)

Stage 2'**: SPL**

Upgrade the LPSPL into an SPL (multi- MW beam power at 2-5 GeV):

- 50 Hz rate with upgraded infrastructure (electricity, water, cryoplants, …)
- 40 mA beam current by doubling the number of klystrons in the superconducting part)

Possible users

• **EURISOL (2nd generation ISOL-type RIB facility)**

=> special deflection system(s) out of the SPL into a transfer line => new experimental facility with capability to receive 5 MW beam power => potential of supplying b-unstable isotopes to a b-beam facility…

• **Neutrino factory**

=> energy upgrade to 5 GeV (+70 m of sc accelerating structures)

=> 2 fixed energy rings for protons (accumulator & compressor)

 L Evans – EDMS 986033 52 => accelerator complex with target, m capture-cooling-acceleration (20-50 GeV) and storage

Integrated luminosity…

