
1 Topological strings on compact Calabi-Yau,

MH, A. Klemm, Quackenbush, hep-th/0612125

• Topological strings: A N = (2, 2) supersymmetric non-linear sigma
model from world sheet Σ to target space X.

Φi : Σ → X

Topological string theory is the most interesting and free of world sheet
anomaly, when the target space X is a Calabi-Yau 3-fold.

• There are two types of topological twistings: A-model and B-model.
We are interested in the topological string partition function

Z = exp(

∞
∑

g=0

λ2g−2F (g)(ti))

where ti are Kahler moduli in the case of A-model, and complex struc-
ture moduli in the case of B-model.

• Topological A-model counts holomorphic curves in target space X, and
has a rigorous mathematical formulation known as Gromov-Witten the-
ory. Topological B-model is a complex structure deformation theory
known as Kodaira-Spencer theory.

• Topological strings compute physical couplings, world-sheet instanton
corrections, R2 terms in superstring compactifications, geometrically
engineer 4-d quantum field theory, etc.

• Mirror symmetry relates topological A-model on manifold X to topo-
logical B-model on its mirror manifold. Some very difficult mathemat-
ical problems of enumerative geometry can be easily solved by physical
methods.

• Many techniques have been developed to study topological string the-
ory. For example, topological strings on a class of non-compact toric
Calabi-Yaus are essentially solved to all genera by topological vertex
formalism.

• A long standing problem: How to solve topological strings on compact
Calabi-Yau spaces? Progress are very limited.
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• A famous example: the Quintic manifold, a degree 5 hypersurface in
CP

4.
Candelas et al solve the prepotential, i.e. the counting genus zero curve,
using physical idea of mirror symmetry.
The mirror symmetry results are later proven by mathematicians using
Kontsevich’s localization methods, Givental; Lian, Liu, Yau.
At higher genus, the only available approach is the BCOV( Bershad-
sky, Cecotti, Ooguri, Vafa) method. One use holomorphic anomaly
equation to compute F (g) recursively in genus g. This was done by
BCOV (in 1993) up to genus 2.

• The BCOV holomorphic anomaly equation

∂̄k̄F
(g) =

1

2
C̄
ij

k̄

(

DiDjF
(g−1) +

g−1
∑

r=1

DiF
(r)DjF

(g−r)

)

• An example of BCOV diagrams, at genus 2.

• However, it is difficult to push the BCOV methods to higher genus.
Two major difficulties are the followings.

1. Holomorphic ambiguity problem. The holomorphic anomaly equa-
tion only determine F (g) recursively in terms of lower genus results
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up to a holomorphic ambiguity, a meromorphic function in the
moduli space with a finite number of unknown constants. One
need find alternative ways to fix these unknown constants.

2. Computational complexity in BCOV method: the number of dia-
grams grows exponentially with genus. A normal laptop can han-
dle the diagrams only up to about genus 6, even for the simplest
one parameter models such as the quintic.

• The calculation was pushed up to genus 3 for the quintic, using further
information from the counting of BPS states known as Gopakumar-
Vafa invariants. Katz, Klemm, Vafa, hep-th/9910181.

• In this talk I report major progress in this question.

1. We solve the holomorphic anomaly equation directly without the
BCOV Feynman diagrams, by using the idea of formulating topo-
logical strings as polynomials Yamaguchi, Yau, hep-th/0406078.
The computational complexity of the method grows only polyno-
mially in genus.

2. We discover novel boundary conditions at the conifold point of
the moduli space, i.e. the “gap” condition c.f. Huang, Klemm,
hep-th/0605195, which fix the holomorphic ambiguity to a large
extend.

• We are able to solve a class of one-parameter Calabi-Yau models to
very high genus, e.g. genus ∼ 26 for the quintic.

• Our main example: the quintic. The quintic has one Kahler modulus
t and its mirror has one complex structure modulus ψ.

• Picard-Fuchs equation, periods, and mirror map.

{(ψ∂ψ)4 − ψ−1(ψ∂ψ − 1

5
)(ψ∂ψ − 2

5
)(ψ∂ψ − 3

5
)(ψ∂ψ − 4

5
)}ω = 0

The equation can be solved by asymptotic series at ψ = ∞,

~Π =









∫

B1

Ω
∫

B2

Ω
∫

A1 Ω
∫

A2 Ω









=









F0

F1

X0

X1









= ω0









2F (0) − t∂tF
(0)

∂tF
(0)

1
t
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The mirror map has a logarithmic behavior

2πit(ψ) = − log(55ψ) +
154

625ψ
+

28713

390625ψ2
+ · · ·

• The Kahler potential and metric

K := − log i(X̄ iFi −X iF̄i), Gψψ̄ := ∂ψ∂ψ̄K

Topological strings as polynomials, Yamaguchi and Yau,
hep-th/0406078

• Define the following generators

Ap :=
(ψ∂ψ)pGψψ̄

Gψψ̄

, Bp :=
(ψ∂ψ)pe−K

e−K
, (p = 1, 2, 3, · · · )

C := Cψψψψ
3, X :=

1

1 − ψ

These generators satisfy the derivative relations

ψ∂ψAp = Ap+1 − AAp, ψ∂ψBp = Bp+1 − BBp, ψ∂ψX = X(X − 1)

• The independent generators are (A1, B1, B2, B3, X). One can use the
Picard-Fuchs equation and special geometry relation to show B4 and
A2 are polynomials of (A1, B1, B2, B3, X).

• Define the topological string amplitudes in “Yukawa coupling frame”

Pg := Cg−1F (g), P (n)
g = Cg−1ψnC

(g)
ψn

• We have the initial data and recursion relation in n

P
(3)
g=0 = 1

P
(1)
g=1 = −31

3
B +

1

12
(X − 1) − 1

2
A +

5

3

P (n+1)
g = ψ∂ψP

(n)
g − [n(A + 1) + (2 − 2g)(B − 1

2
X)]P (n)

g
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• Define a change of variable

(A1, B1, B2, B3, X) → (u, v1, v2, v3, X)

by the followings

B = u, A = v1 − 1 − 2u, B2 = v2 + uv1,

B3 = v3 − uv2 + uv1X − 2

5
uX

• The anti-holomorphic derivative of the generators can be related to each
other. Only ∂ψ̄A1 and ∂ψ̄B1 are independent. The BCOV holomorphic
anomaly equations are

∂Pg

∂u
= 0

(
∂

∂v1
− u

∂

∂v2
− u(u+X)

∂

∂v3
)Pg = −1

2
(P

(2)
g−1 +

g−1
∑

r=1

P (1)
r P

(1)
g−r)

• The Main Proposition: Each Pg, (g ≥ 2) is a degree 3g − 3 inhomoge-
neous polynomial of v1, v2, v3, X, where one assigns the degree 1, 2, 3, 1
for v1, v2, v3, X, respectively. Yamaguchi and Yau.

• The number of terms ng in Pg grows polynomially with genus g.

ng � (3g − 3)4

• The generators (Ai, Bi, X) are modular functions of the monodromy
group of the quintic, a subgroup of Sp(4, Z).

• We use the holomorphic anomaly equation to compute the Pg recur-
sively, up to a holomorphic ambiguity

f (g) =

3g−3
∑

i=0

ciX
i

The degree is fixed by the maximal degree of the poles at the conifold
point.

• There are 3g − 2 unknown constants at each genus g.
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Boundary conditions

• There are three singular points in the complex structure moduli space:
ψ = 0, ψ = 1, ψ = ∞.

• We can expand the topological strings around these singular points. In
the holomorphic limit, the Kahler potential and metric go like

e−K ∼ ω0, Gψψ̄ ∼ ∂ψt,

So in the holomorphic limit, the generators Ap and Bp are

Ap =
(ψ∂ψ)p(∂ψt)

∂ψt
, Bp =

(ψ∂ψ)pω0

ω0
,

• The period ω0 and mirror map t can be solved asymptotically at each
singular point of the moduli space by the Picard-Fuchs equation.

• Boundary condition at the orbifold point ψ = 0. The Picard-Fuchs
equation has 4 power series solutions that go like ω0 ∼ ψ

1

5 , ω1 ∼ ψ
2

5 ,
ω2 ∼ ψ

3

5 , ω3 ∼ ψ
4

5 .

• The topological string amplitudes are

F
(g)
orbifold = lim

ψ̄→0
ω

2(g−1)
0 (

1 − ψ

ψ
)g−1Pg ∼

Pg

ψ
3

5
(g−1)

We expect F
(g)
orbifold to be regular at the orbifold point, based on earlier

works (e.g. Katz, Klemm , Vafa).

• Pg is a power series of ψ, starting from a constant. This imposes

⌈3

5
(g − 1)⌉

number of conditions on the holomorphic ambiguity in Pg.

• Boundary condition at the conifold point ψ = 1. Picard-Fuchs equation
around z = ψ − 1 have four solutions that go like

~Π =









ω0

ω1

ω2

ω3









=









1 + O(z)
z + O(z2)
z2 + O(z3)

ω1 log(z) + O(z4)
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• We define a dual mirror map tD = ω1

ω0
. We find the topological strings

around the conifold point has a “gap” structure in the tD coordinate

F
(g)
conifold = lim

z̄→0
ω

2(g−1)
0 (

1 − ψ

ψ
)g−1Pg

=
(−1)g−1B2g

2g(2g − 2)t2g−2
D

+ O(t0D),

This fixes 2g − 2 coefficients in the holomorphic ambiguity.

• An arbitrary change of the basis ω0 → ω0 + b1ω1 + b2ω2 does not affect
this gap like structure.

• The leading coefficients of the conifold expansion were actually pointed
out long time ago, Ghoshal, Vafa, hep-th/9506122. The gap condition
is first observed recently in the context of SU(2) Seiberg-Witten theory,
Huang, Klemm, hep-th/0605195.

• Near the conifold point of the moduli space, a D3-brane wrapping a van-
ishing 3-cycle appears as a charged, BPS, extremal, and nearly massless
black hole in space-time, Strominger, hep-th/9504090.

• A physical explanation of the gap condition: Integrating out the mass-
less black hole state in a graviphoton background...

• Gopakumar-Vafa-Schwinger Computation: In N = 2 supergravity, we
integrate out a charged BPS hypermultiplet of e = m = t

λ
, and Lorentz

Group SO(4) = SU(2)L × SU(2)R representation

[(
1

2
, 0) + 2(0, 0)]

⊗

(jL, jR)

in a graviphoton background where the self-dual part of the graviphoton
field strength is F+ = λ.

• The Gopakumar-Vafa-Schwinger Computation generates the following
term in the effective action

S =

∫

d4xF (t, λ)R2
+,

where F (t, λ) =

∫ ∞

ǫ

ds

s

Tr(−1)F exp(−st) exp(−2sλσL)

(2 sin( sλ
2

))2
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• In type IIB compactification near the conifold, there is only one light
particle: the massless black hole.

• The topological string near the conifold should be, (up to regular terms
of the period t),

F (λ, t) =

∫ ∞

ǫ

ds

s

exp(−st)
(2 sin( sλ

2
))2

=
∑

(
λ

t
)2g−2 (−1)g−1B2g

2g(2g − 2)
+ O(t0)

This is precisely the gap condition.

• Boundary conditions at infinity ψ = ∞. The constant map contribu-
tion of manifold M , Faber, Pandharipande, math.ag/9810173,

lim
t→∞

F
(g)
A-model =

(−1)g−1B2gB2g−2

4g(2g − 2)(2g − 2)!
χ(M)

• The world sheet instanton corrections

F
(g)
instanton =

∑

β∈H2(M,Z)

r
(g)
β exp(2πitβ)

where r
(g)
β are rational numbers, known as the Gromov-Witten invari-

ants of holomorphic maps.

• Re-organize the world sheet instanton contributions

∞
∑

g=0

λ2g−2F
(g)
instanton =

∞
∑

g=0

∑

β

∞
∑

m=1

n
(g)
β (

e2πitβm

m
)(2 sin

mλ

2
)2g−2

• The Gopakumar-Vafa invariants n
(g)
β are integers counting BPS D0-D2

brane bound states.

• The quintic example: one kahler modulus, β = d is the degree of the
holomorphic map. The GV invariants
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g d=1 d=2 d=3 d=4 d=5
0 2875 609250 317206375 242467530000 229305888887625
1 0 0 609250 3721431625 12129909700200
2 0 0 0 534750 75478987900
3 0 0 0 8625 -15663750
4 0 0 0 0 49250
5 0 0 0 0 1100
6 0 0 0 0 10
7 0 0 0 0 0

• Boundary condition: at each genus, the Gopakumar-Vafa invariants
vanish n

(g)
d = 0 for low degree d holomorphic maps.

Summary of Boundary Conditions at genus g

• Holomorphic ambiguity: 3g − 2 unknown constants.

• The expansion around orbifold point ψ = 0 provides ⌈3
5
(g−1)⌉ bound-

ary conditions.
The expansion around conifold point ψ = 1 provides 2g − 2 boundary
conditions.
The large complex structure modulus/large volume limit ψ = ∞ pro-
vides ag+1 boundary conditions, where ag is the number of low degree
vanishing GV invariants at genus g, sensitive to specific models.

• Count the number of unknown constants

3g − 2 − (⌈3

5
(g − 1)⌉ + 2g − 2 + 1 + ag) = [

2

5
(g − 1)] − ag

• We have enough/redundant data to compute topological strings if

ag ≥ [
2

5
(g − 1)]

• This is true for low genus, (up to g ∼ 51 for the quintic) . However,
asymptotically

ag ∼
√
g, when g → ∞

So far our calculation is limited only by the power of our computational
facilities.
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• The analysis can be straightforwardly generalized to one-parameter
Calabi-Yau models, realized as hypersurfaces or complete intersections
in weight projective spaces.

X5(1
5) X6(1

4, 2), X8(1
4, 4), X10(1

3, 2, 5), X3,3(1
6),

X4,2(1
6), X3,2,2(1

7), X2,2,2,2(1
8) X4,3(1

5, 2), X4,4(1
4, 22),

X6,2(1
5, 3), X6,4(1

3, 22, 3), X6,6(1
2, 22, 32).

• We solve all these 13 models to very high genus. The singular behaviors
around the conifold point is universal.

• On the other hand, we discover a rich variety of singularity structures
around the orbifold point. The 13 models fall into 4 classes.

Four cases

(1). No massless charged state. The F g are regular at the orbifold point
ψ = 0, imposing boundary conditions. This includes models X5(1

5),
X6(1

4, 2),X8(1
4, 4),X10(1

3, 2, 5),X3,3(1
6),X2,2,2,2(1

8),X4,4(1
4, 22),X6,6(1

2, 22, 32).

(2). One massless charged state. The F g exhibit the “gap structure”
similar to the conifold point, imposing boundary conditions. This in-
cludes models X4,2(1

6), X6,2(1
5, 3).

(3). Two massless charged states. The interactions between massless
states destroy the “gap structure”, no boundary conditions at the orb-
ifold point. This includes models X3,2,2(1

7).

(4). Multiple massless charged states. The F g are singular with no
obvious structures at the orbifold point. However the scaling of masses
of these light states imposes some boundary conditions. This includes
the model X4,3(1

5, 2), X6,4(1
3, 22, 3).

Applications for black hole physics

• Compactify M-theory on a compact Calabi-Yau 3-fold. The 5-D su-
pergravity has a BPS black hole solution (BMPV black hole) with
graviphoton charge Q, angular momentum J of the SU(2)L ⊂ SO(4).
The classical entropy of the black hole is one quarter of the horizon
area

S = 2π
√

Q3 − J2
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• There are R2 correction to the black hole entropy, computable by
Wald’s formula,

∆S = 2π

∫

Horizon

∂(∆L)

∂Rµνρσ

ǫµνǫρσ ∼ Q
1

2

• An open problem: How to count the black hole microstates? Much
more difficult than the Strominger-Vafa black hole.

• Katz, Klemm, Vafa (KKV), 1999: The black hole microstates are
counted by topological strings. For a black hole with 2-brane charge d
and SU(2)L angular momentum J = m, the number of states are

Nm
d =

∑

r

nrd

(

2r + 2

r + 1 +m

)

The graviphoton charge are related by the supergravity attractor equa-
tion Q = (2

9
)

1

3
d√
κ
, where κ is the intersection number.

• This is a very natural proposal since the Gopakumar-Vafa invariant nrd
is a supersymmetric index that remains constant in the moduli space.

• Difficulty: For non-compact Calabi-Yaus, the KKV formula can not
be reliably applied to count 5D black hole microstates, since this is
not really a compactification to 5D supergravity. There were not much
computations of the Gopakumar-Vafa invariants for compact Calabi-
Yau available (before our paper).

• We use our new results and the KKV formula the count micro-states.
Consider e.g. angular momentum m = 0,

S = log(N0
d ) =

4π

3
√

2κ
d

3

2 + O(d
1

2 )

Topological string data provide the values

f(d) =
log(N0

d )

d
3

2

=
4π

3
√

2κ
+
b1

d
+
b2

d2
+ · · ·

for d up to a finite degree.
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• For all 13 models, the KKV formula for counting micro-states con-
firms the macroscopic black hole prediction of leading coefficient with
impressively small error of 1∼ 3 % .

Conclusion and Future Directions

• We have made significant progress in solving topological strings on
compact Calabi-Yau spaces.

• It would be interesting to develop algebraic geometric theory to sys-
tematically verify or prove our predictions.

• Continue to explore the fascinating implications for the OSV conjec-
ture and black hole physics, higher curvature corrections to black hole
entropy.

• Topological string partition functions are modular, almost holomorphic
sections of the moduli space, Aganagic et al, Marino et al, Grimm et
al. The modular ring for monodromy group of the quintic is still poorly
understood.

• Discover more boundary conditions in the modili space of compact
Calabi-Yaus. Gromov-Witten theory at the orbifold points? Matrix
models around the orbifold or conifold points?
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