# Quartic anomalous coupling studies at the LHC

Christophe Royon Institute of Physics, Prague, Czech Republic and CERN

LHC Forward Physics WG meeting, Madrid, Spain, 21-24 April 2015



#### Contents:

- Anomalous  $WW\gamma\gamma$  and  $ZZ\gamma\gamma$  couplings
- Anomalous  $\gamma\gamma\gamma\gamma$  couplings: effective model
- Anomalous  $\gamma\gamma\gamma\gamma$  couplings: full model

Search for  $\gamma\gamma WW$ ,  $\gamma\gamma\gamma\gamma\gamma$  quartic anomalous coupling



- Study of the process:  $pp \to ppWW$ ,  $pp \to ppZZ$ ,  $pp \to pp\gamma\gamma$
- Standard Model:  $\sigma_{WW} = 95.6$  fb,  $\sigma_{WW}(W = M_X > 1TeV) = 5.9$  fb
- Process sensitive to anomalous couplings:  $\gamma\gamma WW$ ,  $\gamma\gamma ZZ$ ,  $\gamma\gamma\gamma\gamma\gamma$ ; motivated by studying in detail the mechanism of electroweak symmetry breaking, predicted by extradim. models
- Rich γγ physics at LHC: see E. Chapon, O. Kepka, C. Royon, Phys. Rev. D78 (2008) 073005; Phys. Rev. D81 (2010) 074003; S.Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, Phys.Rev. D89 (2014) 114004 ; S.Fichet, G. von Gersdorff, B. Lenzi, C. Royon, M. Saimpert, JHEP 1502 (2015) 165

# Forward Physics Monte Carlo (FPMC)

- FPMC (Forward Physics Monte Carlo): implementation of all diffractive/photon induced processes
- List of processes
  - two-photon exchange
  - single diffraction
  - double pomeron exchange
  - central exclusive production
- Inclusive diffraction: Use of diffractive PDFs measured at HERA, with a survival probability of 0.03 applied for LHC
- Central exclusive production: Higgs, jets...
- FPMC manual (see M. Boonekamp, A. Dechambre, O. Kepka, V. Juranek, C. Royon, R. Staszewski, M. Rangel, ArXiv:1102.2531)
- Survival probability: 0.1 for Tevatron (jet production), 0.03 for LHC, 0.9 for  $\gamma$ -induced processes
- Output of FPMC generator interfaced with the fast simulation of the ATLAS detector in the standalone ATLFast++ package

# AFP and CT-PPS?



- Tag and measure protons at  $\pm 210~\text{m}:$  AFP in ATLAS, CT-PPS in CMS/Totem
- AFP and CT-PPS detectors: measure proton position (Silicon detectors) and time-of-flight (timing detectors)

#### AFP/CT-PPS acceptance in total mass



- Assume protons to be tagged at 210-220 m
- Sensitivity to high mass central system, X, as determined using AFP
- Very powerful for exclusive states: kinematical constraints coming from AFP/CT-PPS proton measurements

#### Quartic anomalous gauge couplings

• Quartic gauge anomalous  $WW\gamma\gamma$  and  $ZZ\gamma\gamma$  couplings parametrised by  $a_0^W$ ,  $a_0^Z$ ,  $a_C^W$ ,  $a_C^Z$ 

$$\mathcal{L}_{6}^{0} \sim \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$\mathcal{L}_{6}^{C} \sim \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})$$

$$- \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

- Anomalous parameters equal to 0 for SM
- Best limits before LHC from LEP, OPAL (Phys. Rev. D 70 (2004) 032005) of the order of 0.02-0.04, for instance  $-0.02 < a_0^W < 0.02$  GeV<sup>-2</sup>
- New limits from D0/CMS: 1.5  $10^{-4}$  (2.5  $10^{-3}$ ), and 5  $10^{-4}$  (9.3  $10^{-3}$  for CMS (D0) for  $a_0^W$  and  $a_c^W$  with a form factor at 500 GeV
- Dimension 6 operators  $\rightarrow$  violation of unitarity at high energies

#### Quartic anomalous gauge couplings: form factors

• Unitarity bounds can be computed (Eboli, Gonzales-Garcia, Lietti, Novaes):

$$4\left(\frac{\alpha as}{16}\right)^2 \left(1 - \frac{4M_W^2}{s}\right)^{1/2} \left(3 - \frac{s}{M_W^2} + \frac{s^2}{4M_W^4}\right) \le 1$$

where  $a = a_0 / \Lambda^2$ 

- Introducing form factors to avoid quadratical divergences of scattering amplitudes due to anomalous couplings in conventional way:  $a_0^W/\Lambda^2 \rightarrow \frac{a_0^W/\Lambda^2}{(1+W\gamma\gamma/\Lambda_{cutoff})^2}$  with  $\Lambda_{cutoff} \sim 2$  TeV, scale of new physics
- For  $a_0^W \sim 10^{-6} \text{ GeV}^{-2}$ , no violation of unitarity, but results depend on value of  $\Lambda_{cutoff}$  if new particle masses are of the same order as the LHC center-of-mass energy



### Anomalous couplings studies in WW events

- Reach on anomalous couplings studied using a full simulation of the ATLAS detector, including all pile-up effects; only leptonic decays of Ws are considered
- Signal appears at high lepton  $p_T$  and dilepton mass (central ATLAS) and high diffractive mass (reconstructed using forward detectors)
- Cut on the number of tracks fitted to the primary vertex: very efficient to remove remaining pile-up after requesting a high mass object to be produced (for signal, we have two leptons coming from the W decays and nothing else)



#### Results from full simulation

• Effective anomalous couplings correspond to loops of charged particles, Reaches the values expected for extradim models (C. Grojean, J. Wells)

| Cuts                           | Тор  | Dibosons | Drell-Yan | W/Z+jet | Diffr. | $a_0^W / \Lambda^2 = 5 \cdot 10^{-6} \text{ GeV}^{-2}$ |
|--------------------------------|------|----------|-----------|---------|--------|--------------------------------------------------------|
| timing < 10 ps                 |      |          |           |         |        |                                                        |
| $p_T^{lep1} > 150 \text{ GeV}$ | 5198 | 601      | 20093     | 1820    | 190    | 282                                                    |
| $p_T^{lep2} > 20 \text{ GeV}$  |      |          |           |         |        |                                                        |
| M(11)>300 GeV                  | 1650 | 176      | 2512      | 7.7     | 176    | 248                                                    |
| nTracks $\leq 3$               | 2.8  | 2.1      | 78        | 0       | 51     | 71                                                     |
| $\Delta \phi < 3.1$            | 2.5  | 1.7      | 29        | 0       | 2.5    | 56                                                     |
| $m_X > 800 \text{ GeV}$        | 0.6  | 0.4      | 7.3       | 0       | 1.1    | 50                                                     |
| $p_T^{lep1} > 300 \text{ GeV}$ | 0    | 0.2      | 0         | 0       | 0.2    | 35                                                     |

**Table 9.5.** Number of expected signal and background events for  $300 \text{ fb}^{-1}$  at pile-up  $\mu = 46$ . A time resolution of 10 ps has been assumed for background rejection. The diffractive background comprises production of QED diboson, QED dilepton, diffractive WW, double pomeron exchange WW.

• Improvement of "standard" LHC methods by studying  $pp \rightarrow l^{\pm} \nu \gamma \gamma$  (see P. J. Bell, ArXiV:0907.5299) by more than 2 orders of magnitude with 40/300 fb<sup>-1</sup> at LHC (CMS mentions that their exclusive analysis will not improve very much at high lumi because of pile-up)

|                                         | $5\sigma$       | 95% CL          |
|-----------------------------------------|-----------------|-----------------|
| $\mathcal{L} = 40 \ fb^{-1}, \mu = 23$  | $5.5 \ 10^{-6}$ | $2.4 \ 10^{-6}$ |
| $\mathcal{L} = 300 \ fb^{-1}, \mu = 46$ | $3.2 \ 10^{-6}$ | $1.3  10^{-6}$  |

# Reach at LHC

Reach at high luminosity on quartic anomalous coupling using fast simulation (study other anomalous couplings such as  $\gamma\gamma ZZ...$ )

| Couplings         | <b>OPAL</b> limits | Sensitivity (     | $\mathfrak{d} \ \mathcal{L} = 30$ (200) fb $^{-1}$ |
|-------------------|--------------------|-------------------|----------------------------------------------------|
|                   | $[GeV^{-2}]$       | $5\sigma$         | 95% CL                                             |
| $a_0^W/\Lambda^2$ | [-0.020, 0.020]    | 5.4 $10^{-6}$     | $2.6  10^{-6}$                                     |
|                   |                    | $(2.7 \ 10^{-6})$ | $(1.4  10^{-6})$                                   |
| $a_C^W/\Lambda^2$ | [-0.052, 0.037]    | $2.0  10^{-5}$    | 9.4 $10^{-6}$                                      |
|                   |                    | $(9.6 \ 10^{-6})$ | $(5.2  10^{-6})$                                   |
| $a_0^Z/\Lambda^2$ | [-0.007, 0.023]    | $1.4  10^{-5}$    | $6.4  10^{-6}$                                     |
|                   |                    | $(5.5 \ 10^{-6})$ | $(2.5  10^{-6})$                                   |
| $a_C^Z/\Lambda^2$ | [-0.029, 0.029]    | $5.2  10^{-5}$    | $2.4  10^{-5}$                                     |
|                   |                    | $(2.0 \ 10^{-5})$ | $(9.2  10^{-6})$                                   |

- Improvement of LEP sensitivity by more than 4 orders of magnitude with 30/200 fb<sup>-1</sup> at LHC, and of D0/CMS results by  $\sim$ two orders of magnitude (only  $\gamma\gamma WW$  couplings)
- Reaches the values predicted by extra-dimension models

#### SM $\gamma\gamma$ exclusive production



- QCD production dominates at low  $m_{\gamma\gamma}$ , QED at high  $m_{\gamma\gamma}$
- Important to consider W loops at high  $m_{\gamma\gamma}$
- Possibility to measure KMR contribution at low  $m_{\gamma\gamma}$  in high  $\beta^*$  runs: with two protons tagged in TOTEM/ALFA,  $\sigma \sim 372$  fb for  $m_{\gamma\gamma} > 10$  GeV,  $p_T^{\gamma} > 5$  GeV

#### Motivations to look for quartic $\gamma\gamma$ anomalous couplings



• Two effective operators at low energies

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

•  $\gamma\gamma\gamma\gamma$  couplings can be modified in a model independent way by loops of heavy charge particles

$$\zeta_1 = \alpha_{em}^2 Q^4 m^{-4} N c_{1,s}$$

where the coupling depends only on  $Q^4m^{-4}$  (charge and mass of the charged particle) and on spin,  $c_{1,s}$  depends on the spin of the particle This leads to  $\zeta_1$  of the order of  $10^{-14}$ - $10^{-13}$ 

•  $\zeta_1$  can also be modified by neutral particles at tree level (extensions of the SM including scalar, pseudo-scalar, and spin-2 resonances that couple to the photon)  $\zeta_1 = (f_s m)^{-2} d_{1,s}$  where  $f_s$  is the  $\gamma \gamma X$  coupling of the new particle to the photon, and  $d_{1,s}$  depends on the spin of the particle; for instance, 2 TeV dilatons lead to  $\zeta_1 \sim 10^{-13}$ 

★ Warped Extra Dimensions solve hierarchy problem of SM ★ 5<sup>th</sup> dimension bounded by two branes ★ SM on the visible (or TeV) brane ★ The Kaluza Klein modes of the graviton couple with TeV strength  $\mathcal{L}^{\gamma\gamma h} = f^{-2} h_{\mu\nu}^{KK} (\frac{1}{4}\eta_{\mu\nu}F_{\rho\lambda}^2 - F_{\mu\rho}F_{\rho\nu})$   $f \sim \text{TeV}$   $m_{KK} \sim \text{few TeV}$ ★ Effective 4-photon couplings  $\zeta_i \sim 10^{-14} - 10^{-13} \text{ GeV}^{-2}$  possible ★ The radion can produce similar effective couplings

- Which models/theories are we sensitive to using AFP/CT-PPS
- Beyond standard models predict anomalous couplings of  $\sim 10^{-14}$ - $10^{-13}$
- Work in collaboration with Sylvain Fichet, Gero von Gersdorff

#### Search for quartic $\gamma\gamma$ anomalous couplings



- Search for  $\gamma\gamma\gamma\gamma\gamma$  quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Analysis performed at hadron level including detector efficiencies, resolution effects, pile-up...



# Search for $\gamma\gamma\gamma\gamma$ quartic anomalous couplings: Analysis flow

- Studies performed at hadron level but taking into account the main detector/pile-up effects
- By default,  $> 1\gamma$  converted is requested (1 mm resolution), but all  $\gamma$  are also considered, and can handle pile-up thanks to the "pointing" ATLAS calorimeter (CMS leads to slightly worse results)
- pile-up simulated in AFP: 50, 100, 200 pile-up events per bunch crossing are considered
- Exclusive diffractive /DPE/ND backgrounds are considered and the largest one is pile-up
- Main detector effects are included (from ATLAS ECFA studies ATL-PHYS-PUB-2013-009), for instance:
  - Photon conversion probability: 15% in barrel, 30% in the end-caps;  $\gamma$  rapidity,  $\Phi$ , and  $p_T$  resolutions taken into account as well as the reconstruction efficiency
  - Misidentification of electron as a  $\gamma$ : 1%
  - Misidentification of jet as a  $\gamma$ : 1/4000,

# **Considered background**

- Background leading to two photons in the final state: DPE diphoton production, exclusive diphotons (quark box, exclusive KMR), DPE Higgs decaying into  $\gamma\gamma$
- Background related to misidentification: Exclusive dilepton production, dijet production, same for DPE (using misidentification probanilities in ATLAS)
- Pile up background: Non diffractive production and pile up (50, 100, 200), Drell-Yan, dijet, diphoton
- Assume at least 1 photon to be converted, high  $p_T$  photons (above 200 GeV)
- Further reduction using timing detectors: Reject background by a factor 40 for a pile up of 50 (10 ps resolution assumed)



# Search for quartic $\gamma\gamma$ anomalous couplings



- Trigger: 2 high  $p_T$  central photons,  $P_{T_1} > 200$  GeV, no special AFP trigger needed
- Protons are detected in AFP at high  $\xi > \sim 0.04$ : massive objects are produced, we do not need to be very close to the beam
- Exclusivity cuts: diphoton mass compared from missing mass computed using protons, rapidity difference between diphoton and proton systems: suppresses all pile-up backgrounds
- For 300 fb<sup>-1</sup> and a pile-up of 50: 0.2 background event for 32 signal events for an anomalous coupling of 2 10<sup>-13</sup>
- Exclusivity cuts are fundamental to suppress all background and increase the sensitivity
- NB: theoretical uncertainties are larger in the case of non-exclusive production (usual study in ATLAS) since it is sensitive to the poorly known photon structure function at high energy

# Search for quartic $\gamma\gamma$ anomalous couplings: Results from effective theory

| Cut / Process                                                                                                 | Signal<br>(full) | Signal<br>with (without)<br>f.f (EFT) | Excl. | DPE | DY,<br>di-jet<br>+ pile up | $\gamma\gamma$ + pile up |
|---------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|-------|-----|----------------------------|--------------------------|
| $\begin{array}{l} [0.015 < \xi_{1,2} < 0.15, \\ p_{\mathrm{T1},(2)} > 200, (100) \ \mathrm{GeV}] \end{array}$ | 130.8            | 36.9 (373.9)                          | 0.25  | 0.2 | 1.6                        | 2968                     |
| $m_{\gamma\gamma} > 600 { m ~GeV}$                                                                            | 128.3            | 34.9(371.6)                           | 0.20  | 0   | 0.2                        | 1023                     |
| $[p_{\mathrm{T2}}/p_{\mathrm{T1}} > 0.95,$<br>$ \Delta \phi  > \pi - 0.01]$                                   | 128.3            | 34.9 (371.4)                          | 0.19  | 0   | 0                          | 80.2                     |
| $\sqrt{\xi_1\xi_2s} = m_{\gamma\gamma} \pm 3\%$                                                               | 122.0            | 32.9(350.2)                           | 0.18  | 0   | 0                          | 2.8                      |
| $ y_{\gamma\gamma} - y_{pp}  < 0.03$                                                                          | 119.1            | 31.8 (338.5)                          | 0.18  | 0   | 0                          | 0                        |

- No background after cuts for 300 fb<sup>-1</sup> without needing timing detector information
- Exclusivity cuts needed to suppress backgrounds:
  - Without exclusivity cuts using AFP: background of 80.2 for 300 fb<sup>-1</sup> for a signal of 34.9 events ( $\zeta_1 = 2 \ 10^{-13}$ )
  - With exclusivity cuts: 0.18 background for 31.8 signal
- String theory/grand unification models predict couplings via radions/heavy charged particles/dilatons for instance up to  $10^{-14}$ - $10^{-13}$

# $\frac{\text{Search for quartic } \gamma\gamma \text{ anomalous couplings:}}{\text{Results from effective theory}}$

Sensitivities reaching values of extradim models

| Luminosity                          | 300 fb $^{-1}$                                                         | $300 \text{ fb}^{-1}$                                                  | $300 \text{ fb}^{-1}$                                                 | $3000 \text{ fb}^{-1}$                                                    |
|-------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|
| pile-up $(\mu)$                     | 50                                                                     | 50                                                                     | 50                                                                    | 200                                                                       |
| ${f coupling}\ ({f GeV}^{-4})$      | $\geq$ 1 conv. $\gamma$ 5 $\sigma$                                     | $\geq$ 1 conv. $\gamma$ 95% CL                                         | all $\gamma$<br>95% CL                                                | all $\gamma$<br>95% CL                                                    |
| $\zeta_1$ f.f.<br>$\zeta_1$ no f.f. | $\frac{8 \cdot 10^{-14}}{2.5 \cdot 10^{-14}}$                          | $5 \cdot 10^{-14} \\ 1.5 \cdot 10^{-14}$                               | $3 \cdot 10^{-14}$<br>$9 \cdot 10^{-15}$                              | $2.5 \cdot 10^{-14} \\ 7 \cdot 10^{-15}$                                  |
| $\zeta_2$ f.f. $\zeta_2$ no f.f.    | $ \begin{array}{r} 2. \cdot 10^{-13} \\ 5 \cdot 10^{-14} \end{array} $ | $ \begin{array}{r} 1. \cdot 10^{-13} \\ 4 \cdot 10^{-14} \end{array} $ | $ \begin{array}{c} 6 \cdot 10^{-14} \\ 2 \cdot 10^{-14} \end{array} $ | $ \begin{array}{r} 4.5 \cdot 10^{-14} \\ 1.5 \cdot 10^{-14} \end{array} $ |

# Sensitivity in the $(\zeta_1, \zeta_2)$ plane



- Sensitivities for charged particle production (loops) in the  $(\zeta_1, \zeta_2)$  plane
- Yellow, grey and red:  $5\sigma$ ,  $3\sigma$ , 95% CL limits with 300 fb<sup>-1</sup> and  $\mu = 50$
- Contributions from electric particles with spin 1/2 and 1, charge Q<sub>Jeff</sub> = 3, mass =1 TeV; warped KK graviiton with mass 3 TeV (κ =2), brane localized photon; strongly interacting heavy dilaton (SIHD) with mass 3 TeV coupled to a composite photon
- Sensitivities to KK gravitons up to masses of 6.5 TeV (for  $\kappa = 2$ , coupling strength of the order 1), and to dilatons up to 4.8 TeV, which is the best sensitivity at the LHC



- Sensitivities for neutral particle resonant production in the  $(m, f_S)$  plane
- Thick lines correspond to 5  $\sigma$  discoveries and thin lines to 95% CL limits

# Full amplitude calculation

- Effective field theory valid if  $S << 4m^2$ , S smaller than the threshold production of real particles
- Since the maximum proton missing mass is  $\sim 2$  TeV at the 14 TeV LHC, the effective theory needs to be corrected for masses of particles below  $\sim 1$  TeV  $\rightarrow$  use of form factor which creates an uncertainty on the results (depends on the exact value of form factors)
- Solution: compute the full momentum dependence of the 4 photon amplitudes: computed for fermions and bosons
- Full amplitude calculation for generic heavy charged fermion/vector contribution
- Existence of new heavy charged particles enhances the  $\gamma\gamma\gamma\gamma$  couplings in a model independant way
- Enhancement parametrised with particle mass and effective charge  $Q_{eff}=QN^{1/4}$  where N is the multiplicity

#### Search for quartic $\gamma\gamma$ anomalous couplings: Results from full theory

| Cut / Process                                                                                           | Signal<br>(full) | Signal<br>with (without)<br>f.f (EFT) | Excl. | DPE | DY,<br>di-jet<br>+ pile up | $\gamma\gamma$ + pile up |
|---------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|-------|-----|----------------------------|--------------------------|
| $\begin{bmatrix} 0.015 < \xi_{1,2} < 0.15, \\ p_{\text{T1},(2)} > 200, (100) \text{ GeV} \end{bmatrix}$ | 130.8            | $36.9\ (373.9)$                       | 0.25  | 0.2 | 1.6                        | 2968                     |
| $m_{\gamma\gamma} > 600 { m ~GeV}$                                                                      | 128.3            | 34.9(371.6)                           | 0.20  | 0   | 0.2                        | 1023                     |
| $[p_{\rm T2}/p_{\rm T1} > 0.95,   \Delta \phi  > \pi - 0.01]$                                           | 128.3            | 34.9(371.4)                           | 0.19  | 0   | 0                          | 80.2                     |
| $\sqrt{\xi_1\xi_2s} = m_{\gamma\gamma} \pm 3\%$                                                         | 122.0            | 32.9 (350.2)                          | 0.18  | 0   | 0                          | 2.8                      |
| $ y_{\gamma\gamma} - y_{pp}  < 0.03$                                                                    | 119.1            | 31.8 (338.5)                          | 0.18  | 0   | 0                          | 0                        |

- No background after cuts for 300 fb<sup>-1</sup> without needing timing detector information
- For signal: 119.1 events for  $Q_{eff} = 4$ , m = 340 GeV
- Results for full calculation lay between the effective field result with/without form factor as expected since effective calculation not valid in the region of  $S\sim m^2$

# Full amplitude calculation

• 5  $\sigma$  discovery sensitivity on the effective charge of new charged fermions and vector boson for various mass scenarii for 300  $fb^{-1}$  and  $\mu = 50$ 

| Mass~(GeV)              | 300 | 600 | 900 | 1200 | 1500 |
|-------------------------|-----|-----|-----|------|------|
| $Q_{\rm eff}$ (vector)  | 2.2 | 3.4 | 4.9 | 7.2  | 8.9  |
| $Q_{\rm eff}$ (fermion) | 3.6 | 5.7 | 8.6 | -    | -    |

- Unprecedented sensitivites at hadronic colliders reaching the values predicted by extra-dim models - For reference, we also display the result of effective field theory (without form factor) which deviates at low masses from the full calculation
- For Q<sub>Jeff</sub> = 4, we are sensitive to new vectors (fermions) up to 700 (370) GeV for a luminosity of 300 fb<sup>-1</sup>





#### **Conclusion**

- Proton tagging will allow us to control background in searches for  $WW\gamma\gamma$ ,  $ZZ\gamma\gamma$  quartic anomalous couplings
- Gain on sensitivity of about two orders of magnitude with respect to CMS results using proton tagging for  $\gamma\gamma WW$  and  $\gamma\gamma ZZ$  anomalous couplings
- Unprecedented sensitivities to  $\gamma\gamma\gamma\gamma$  anomalous couplings reaching the values predicted by extra-dim models: effective theories and full models are used
- Proton tagging is crucial to suppress the background (mainly pile up) for exclusive events; matching between proton and diphoton information (mass, rapidity)
- Timing detectors are crucial for WW production, less important (not used in the analysis) for  $\gamma\gamma$  production

