Quartic anomalous coupling studies at the LHC

Christophe Royon

Institute of Physics, Prague, Czech Republic and CERN

LHC Forward Physics WG meeting, Madrid, Spain, 21-24 April ²⁰¹⁵

Contents:

- \bullet Anomalous $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings
- \bullet Anomalous $\gamma\gamma\gamma\gamma$ couplings: effective model
- \bullet Anomalous $\gamma\gamma\gamma\gamma$ couplings: full model

Search for $\gamma\gamma WW$, $\gamma\gamma\gamma\gamma$ quartic anomalous coupling

- Study of the process: $pp \to ppWW$, $pp \to ppZZ$, $pp \to pp\gamma\gamma$
- Standard Model: $\sigma_{WW} = 95.6$ fb, $\sigma_{WW}(W = M_X > 1 TeV) = 5.9$ fb
- $\bullet\,$ Process sensitive to anomalous couplings: $\gamma\gamma WW$, $\gamma\gamma ZZ$, $\gamma\gamma\gamma\gamma;$ motivated by studying in detail the mechanism of electroweak symmetry breaking, predicted by extradim. models
- $\bullet\,$ Rich $\gamma\gamma$ physics at LHC: see E. Chapon, O. Kepka, C. Royon, Phys. Rev. D78 (2008) 073005; Phys. Rev. D81 (2010) 074003; S.Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, Phys.Rev. D89 (2014) ¹¹⁴⁰⁰⁴ ; S.Fichet, G. von Gersdorff, B. Lenzi, C. Royon, M. Saimpert, JHEP ¹⁵⁰² (2015) ¹⁶⁵

Forward Physics Monte Carlo (FPMC)

- FPMC (Forward Physics Monte Carlo): implementation of all diffractive/photon induced processes
- List of processes
	- two-photon exchange
	- single diffraction
	- double pomeron exchange
	- central exclusive production
- Inclusive diffraction: Use of diffractive PDFs measured at HERA, with ^a survival probability of 0.03 applied for LHC
- Central exclusive production: Higgs, jets...
- FPMC manual (see M. Boonekamp, A. Dechambre, O. Kepka, V. Juranek, C. Royon, R. Staszewski, M. Rangel, ArXiv:1102.2531)
- Survival probability: 0.1 for Tevatron (jet production), 0.03 for LHC, 0.9 for γ -induced processes
- Output of FPMC generator interfaced with the fast simulation of the ATLAS detector in the standalone $ATLFast++$ package

AFP and CT-PPS?

- \bullet Tag and measure protons at ± 210 m: AFP in ATLAS, CT-PPS in CMS/Totem
- AFP and CT-PPS detectors: measure proton position (Silicondetectors) and time-of-flight (timing detectors)

AFP/CT-PPS acceptance in total mass

- Assume protons to be tagged at 210-220 ^m
- Sensitivity to high mass central system, X, as determined using AFP
- Very powerful for exclusive states: kinematical constraints coming fromAFP/CT-PPS proton measurements

Quartic anomalous gauge couplings

• Quartic gauge anomalous $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings parametrised by a_0^W , a_0^Z , a_C^W , a_C^Z

$$
\mathcal{L}_{6}^{0} \sim \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}
$$
\n
$$
\mathcal{L}_{6}^{C} \sim \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})
$$
\n
$$
- \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}
$$

- Anomalous parameters equal to ⁰ for SM
- Best limits before LHC from LEP, OPAL (Phys. Rev. ^D ⁷⁰ (2004) 032005) of the order of 0.02-0.04, for instance $-0.02 < a_0^W < 0.02$ GeV^{-2}
- New limits from D0/CMS: $1.5 \; 10^{-4} \; (2.5 \; 10^{-3})$, and $5 \; 10^{-4} \; (9.3 \; 10^{-3})$ for CMS (D0) for a_0^W and a_c^W with a form factor at 500 GeV
- Dimension 6 operators \rightarrow violation of unitarity at high energies

Quartic anomalous gauge couplings: form factors

• Unitarity bounds can be computed (Eboli, Gonzales-Garcia, Lietti, Novaes):

$$
4\left(\frac{\alpha as}{16}\right)^2 \left(1 - \frac{4M_W^2}{s}\right)^{1/2} \left(3 - \frac{s}{M_W^2} + \frac{s^2}{4M_W^4}\right) \le 1
$$

where $a = a_0/\Lambda^2$

- Introducing form factors to avoid quadratical divergences of scattering amplitudes due to anomalous couplings in conventional way: $a_0^W/\Lambda^2 \to \frac{a_0^W/\Lambda^2}{(1+W\gamma\gamma/\Lambda_{cutoff})^2}$ with $\Lambda_{cutoff} \sim 2$ TeV, scale of new physics
- For $a_0^W \sim 10^{-6}$ GeV⁻², no violation of unitarity, but results depend on value of Λ_{cutoff} if new particle masses are of the same order as the LHC center-of-mass energy

Anomalous couplings studies in WW events

- Reach on anomalous couplings studied using ^a full simulation of the ATLAS detector, including all pile-up effects; only leptonic decays of ^W^s are considered
- \bullet Signal appears at high lepton p_T and dilepton mass (central ATLAS) and high diffractive mass (reconstructed using forward detectors)
- Cut on the number of tracks fitted to the primary vertex: very efficient to remove remaining pile-up after requesting ^a high mass object to be produced (for signal, we have two leptons coming from the W decays
and nothing else) and nothing else)

Results from full simulation

• Effective anomalous couplings correspond to loops of charged particles, Reaches the values expected for extradim models (C. Grojean, J. Wells)

Table 9.5. Number of expected signal and background events for 300 fb⁻¹ at pile-up $\mu = 46$. A time resolution of 10 ps has been assumed for background rejection. The diffractive background comprises production of QED diboson, QED dilepton, diffractive WW, double pomeron exchange WW.

• Improvement of "standard" LHC methods by studying $pp\to l^{\pm}\nu\gamma\gamma$ (see P. J. Bell, ArXiV:0907.5299) by more than 2
orders of magnitude with 40/300 fb⁻¹ at LHC (CMS mentions orders of magnitude with 40/300 fb⁻¹ at LHC (CMS mentions that their exclusive analysis will not improve very much at highlumi because of pile-up)

Reach at LHC

Reach at high luminosity on quartic anomalous coupling using fast simulation (study other anomalous couplings such as $\gamma \gamma ZZ...$)

- Improvement of LEP sensitivity by more than ⁴ orders of magnitude with 30/200 fb⁻¹ at LHC, and of D0/CMS results by ~two orders of magnitude (only $\gamma\gamma WW$ couplings)
Production in the contract of the contract of
- Reaches the values predicted by extra-dimension models

$\textsf{SM} \, \, \gamma \gamma$ exclusive production

- $\bullet\,$ QCD production dominates at low $m_{\gamma\gamma}$, QED at high $m_{\gamma\gamma}$
- Important to consider W loops at high $m_{\gamma\gamma}$
- Possibility to measure KMR contribution at low $m_{\gamma\gamma}$ in high β^* runs: with two protons tagged in TOTEM/ALFA, $\sigma \sim$ 372 fb for $m_{\gamma\gamma} > 10$ GeV, $p_T^\gamma > 5$ GeV

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

• Two effective operators at low energies

$$
\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}
$$

 $\bullet\;\gamma\gamma\gamma\gamma$ couplings can be modified in a model independent way by loops of heavy charge particles

$$
\zeta_1 = \alpha_{em}^2 Q^4 m^{-4} N c_{1,s}
$$

where the coupling depends only on Q^4m^{-4} (charge and mass of the charged particle) and on spin, $c_{1,s}$ depends on the spin of the particle This leads to ζ_1 of the order of 10^{-14} - 10^{-13}

 \bullet ζ_1 can also be modified by neutral particles at tree level (extensions of the SM including scalar, pseudo-scalar, and spin-2 resonances that couple to the photon) $\zeta_1 = (f_sm)^{-2}d_{1,s}$ where f_s is the $\gamma\gamma X$ coupling of the new particle to the photon, and $d_{1,s}$ depends on the spin of the particle; for instance, 2 TeV dilatons lead to $\zeta_1\sim 10^{-13}$

X Warped Extra Dimensions solve hierarchy problem of SM X 5th dimension bounded by two branes **X** SM on the visible (or TeV) brane Planck brane Tel/brane **X** The Kaluza Klein modes of the graviton couple with TeV strength SM fields $\mathcal{L}^{\gamma\gamma h} = f^{-2} h_{\mu\nu}^{\text{KK}} \left(\frac{1}{4} \eta_{\mu\nu} F_{\rho\lambda}^2 - F_{\mu\rho} F_{\rho\nu} \right)$ graviton KK graviton $f \sim \text{TeV}$ $m_{\text{KK}} \sim \text{few TeV}$ **X** Effective 4-photon couplings $\zeta_i \sim 10^{-14} - 10^{-13}$ GeV⁻² possible **X** The radion can produce similar effective couplings

- $\bullet\,$ Which models/theories are we sensitive to using AFP/CT-PPS
- Beyond standard models predict anomalous couplings of $\sim\!\!10^{-14}\!\!-\!\!10^{-13}$
- Work in collaboration with Sylvain Fichet, Gero von Gersdorff

Search for quartic $\gamma\gamma$ anomalous couplings

- $\bullet\,$ Search for $\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Analysis performed at hadron level including detector efficiencies, resolution effects, pile-up...

Search for $\gamma\gamma\gamma\gamma$ quartic anomalous couplings: Analysis flow

- Studies performed at hadron level but taking into account the maindetector/pile-up effects
- $\bullet\,$ By default, $>1\gamma$ converted is requested $(1\,$ mm resolution), but all γ are also considered, and can handle pile-up thanks to the "pointing" ATLAS calorimeter (CMS leads to slightly worse results)
- pile-up simulated in AFP: 50, 100, ²⁰⁰ pile-up events per bunchcrossing are considered
- $\bullet\,$ Exclusive diffractive $/DPE/ND$ backgrounds are considered and the largest one is pile-up
- Main detector effects are included (from ATLAS ECFA studies ATL-PHYS-PUB-2013-009), for instance:
	- – $-$ Photon conversion probability: 15% in barrel, 30% in the end-caps; γ rapidity, Φ , and p_T resolutions taken into account as well as the reconstruction efficiency
	- – $-$ Misidentification of electron as a γ : 1%
	- $-$ Micidentitication of iet as a α : 1/4006 $-$ Misidentification of jet as a γ : $1/4000$,

Considered background

- Background leading to two photons in the final state: DPE diphotonproduction, exclusive diphotons (quark box, exclusive KMR), DPEHiggs decaying into $\gamma\gamma$
- Background related to misidentification: Exclusive dilepton production, dijet production, same for DPE (using misidentification probanilities inATLAS)
- Pile up background: Non diffractive production and pile up (50, 100, 200), Drell-Yan, dijet, diphoton
- \bullet Assume at least 1 photon to be converted, high p_T photons (above 200 GeV)
- Further reduction using timing detectors: Reject background by ^a factor ⁴⁰ for ^a pile up of ⁵⁰ (10 ps resolution assumed)

Search for quartic $\gamma\gamma$ anomalous couplings

- \bullet Trigger: 2 high p_T central photons, $P_{T_1} > 200$ GeV, no special AFP trigger needed
- Protons are detected in AFP at high $\xi > \sim 0.04$: massive objects are produced, we do not need to be very close to the beam
- Exclusivity cuts: diphoton mass compared from missing mass computed using protons, rapidity difference between diphoton and proton systems: suppresses all pile-up backgrounds
- For 300 fb⁻¹ and a pile-up of 50: 0.2 background event for 32 signal events for an anomalous coupling of 2×10^{-13}
- Exclusivity cuts are fundamental to suppress all background andincrease the sensitivity
- NB: theoretical uncertainties are larger in the case of non-exclusive production (usual study in ATLAS) since it is sensitive to the poorly known photon structure function at high energy

Search for quartic $\gamma\gamma$ anomalous couplings: Results from effective theory

- No background after cuts for 300 fb $^{-1}$ without needing timing detector information
- Exclusivity cuts needed to suppress backgrounds:
	- – $-$ Without exclusivity cuts using AFP: background of 80.2 for 300 fb $^{-1}$ for a signal of 34.9 events $(\zeta_1=2 \; 10^{-13})$
- With exclusivity cuts: 0.18 background for 31.8 signal
- String theory/grand unification models predict couplings via radions/heavy charged particles/dilatons for instance up to $10^{-14}\text{-}10^{-13}$

Search for quartic $\gamma\gamma$ anomalous couplings: Results from effective theory

Sensitivities reaching values of extradim models

Luminosity	$300 fb^{-1}$	$300 fb^{-1}$	$300 fb^{-1}$	$3000 fb^{-1}$
pile-up (μ)	50	50	50	200
coupling	≥ 1 conv. γ	≥ 1 conv. γ	all γ	all γ
(GeV^{-4})	5 σ	95% CL	95% CL	95% CL
ζ_1 f.f.	$8 \cdot 10^{-14}$	$5 \cdot 10^{-14}$	$3 \cdot 10^{-14}$	$2.5 \cdot 10^{-14}$
ζ_1 no f.f.	$2.5 \cdot 10^{-14}$	$1.5 \cdot 10^{-14}$	$9 \cdot 10^{-15}$	$7 \cdot 10^{-15}$
ζ_2 f.f.	$2. \cdot 10^{-13}$	$1. \cdot 10^{-13}$	$6 \cdot 10^{-14}$	$4.5 \cdot 10^{-14}$
ζ_2 no f.f.	$5 \cdot 10^{-14}$	$4 \cdot 10^{-14}$	$2 \cdot 10^{-14}$	$1.5 \cdot 10^{-14}$

Sensitivity in the (ζ_1,ζ_2) plane

- \bullet Sensitivities for charged particle production (loops) in the (ζ_1,ζ_2) plane
- Yellow, grey and red: 5 σ , 3 σ , 95% CL limits with 300 fb $^{-1}$ and $\mu =$ 50
- \bullet Contributions from electric particles with spin $1/2$ and 1 , charge $Q_{Jeff} = 3$, mass $=$ 1 TeV; warped KK graviiton with mass 3 TeV $(\kappa=2)$, brane localized photon; strongly interacting heavy dilaton (SIHD) with mass ³ TeV coupled to ^a composite photon
- Sensitivities to KK gravitons up to masses of 6.5 TeV (for $\kappa = 2$, coupling strength of the order 1), and to dilatons up to 4.8 TeV, whichis the best sensitivity at the LHC

- $\bullet\,$ Sensitivities for neutral particle resonant production in the (m, f_S) plane
- \bullet Thick lines correspond to 5 σ discoveries and thin lines to 95% CL limits

Full amplitude calculation

- Effective field theory valid if $S << 4m^2$, S smaller than the threshold production of real particles
- Since the maximum proton missing mass is \sim 2 TeV at the 14 TeV LHC, the effective theory needs to be corrected for masses of particles below ∼ 1 TeV → use of form factor which creates an uncertainty on
the results (denends on the exact value of form factors) the results (depends on the exact value of form factors)
- Solution: compute the full momentum dependence of the ⁴ photonamplitudes: computed for fermions and bosons
- Full amplitude calculation for generic heavy charged fermion/vector contribution
- $\bullet~$ Existence of new heavy charged particles enhances the $\gamma\gamma\gamma\gamma$ couplings in ^a model independant way
- Enhancement parametrised with particle mass and effective charge $Q_{eff} = Q N^{1/4}$ where N is the multiplicity

Search for quartic $\gamma\gamma$ anomalous couplings: Results from full theory

- No background after cuts for 300 fb $^{-1}$ without needing timing detector information
- For signal: 119.1 events for $Q_{eff} = 4$, $m =$ 340 GeV
- Results for full calculation lay between the effective field result with/without form factor as expected since effective calculation not valid in the region of $S\sim m^2$

Full amplitude calculation

• 5σ discovery sensitivity on the effective charge of new charged fermions and vector boson for various mass scenarii for 300 fb^{-1} and $\mu=50$

- Unprecedented sensitivites at hadronic colliders reaching the values predicted by extra-dim models - For reference, we also display the result of effective field theory (without form factor) which deviates at lowmasses from the full calculation
- $\bullet\,$ For $Q_{Jeff}=4$, we are sensitive to new vectors (fermions) up to 700 $\,$ (370) GeV for a luminosity of 300 fb⁻¹

Conclusion

- Proton tagging will allow us to control background in searches for $WW\gamma\gamma,\ ZZ\gamma\gamma$ quartic anomalous couplings
- Gain on sensitivity of about two orders of magnitude with respect to CMS results using proton tagging for $\gamma\gamma WW$ and $\gamma\gamma ZZ$ anomalous
couplings couplings
- \bullet Unprecedented sensitivities to $\gamma\gamma\gamma\gamma$ anomalous couplings reaching the values predicted by extra-dim models: effective theories and full models are used
- Proton tagging is crucial to suppress the background (mainly pile up) for exclusive events; matching between proton and diphoton information (mass, rapidity)
- Timing detectors are crucial for WW production, less important (not
used in the analysis) for exampled into used in the analysis) for $\gamma\gamma$ production

