Chapter 8: current status

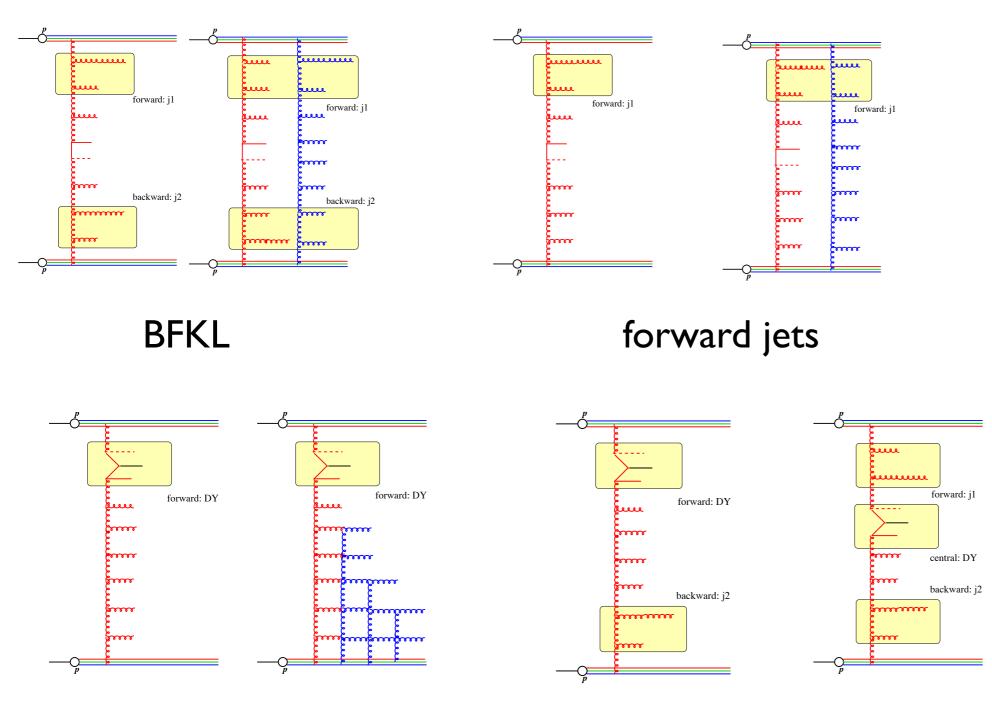
"BFKL and Saturation"

Authors:

JB: Introduction, BFKL part

Hannes Jung: Introduction, BFKL part, Forward di-jets

Cyrille Marquet: Drell Yan and saturation


Contents

11 Introduction		1			
12	1 BI	KL and saturation	2		
13	1.1	Introduction	2		
14	1.2	Forward backward jet production in $p\bar{p}$ and pp : the BFKL program	4		
15	1.2.1	Theoretical remarks	4		
16	1.2.2	Signals based upon inclusive all-order summation	4	1	Madrigal Martinez et al;
17	1.2.3	MPI vs BFKL contribution	7	BFKL	Ducloue et al.
18	1.2.4	Exclusive radiation patterns:		DIKL	Szczurek et. al
19		towards a new class of BFKL observables	11		Safronov et al
20	1.2.5	Summary and outlook of this part	13		
21	1.2.6	Experimental aspects	13		
22	1.2.7	RunII expectations	17		
23	1.3	Inclusive forward jet production in pp	18		
24	1.3.1	Dijet production at forward and very-forward rapidities	18	di-jets	Kutak et al
25	1.3.2	Trijet production at forward-central and purely forward rapidities	20	•	
26	1.3.3	Forward jet production - measurements at very large rapidities	22		
27	1.4	Saturation physics in p+p and p+A collisions	24		
28	1.4.1	Forward Drell-Yan production - collinear vs small-x approach	24	saturatio	
29	1.4.2	Forward Drell-Yan production - Further prospects in the collinear approach	26		Gay Ducati et al
30	1.4.3	Forward Drell-Yan production - Further prospects in the small-x approach	29		Lewandowska
31	1.4.4	Forward photon production and gluon saturation - theoretical overview and measurement			Peitzmann
32		proposal	33		
33	1.5	Large-x physics in p+p and p+A collisions	37	high x	Brodkey
34	1.5.1	Heavy quarks	37		Brodksy
35	A	Title of appendix	47		
34	A.1	Subsection title in appendix	47		

10

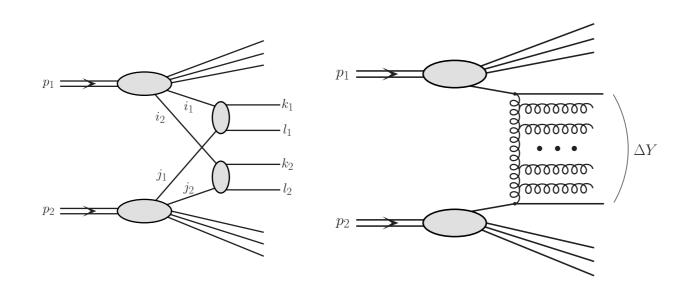
Introduction:

text for each topic and schematic overview

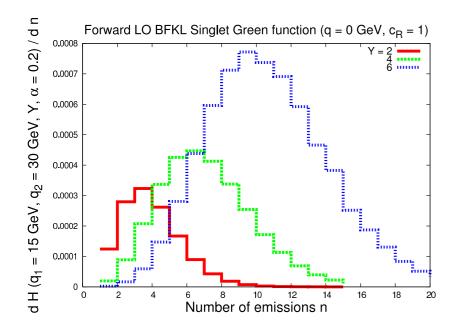
Drell-Yan and saturation

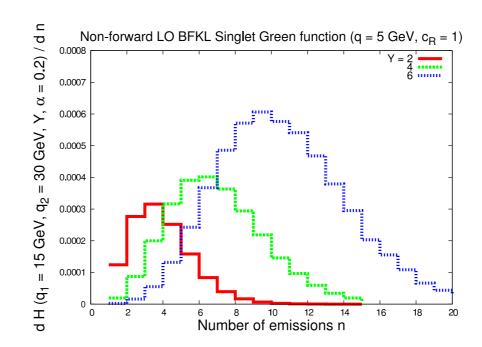
BFKL - part:

Motivation:


reggeized gluon as new d.o.f.,

BFKL also in electroweak (unitarity problem in WW) and gravity


BFKL - signals based upon all-order summation: importance of scales (small-x in DIS, MN-Jets),


energy dependence (intercept) angular decorrelations (C_0 and C_2/C_1 vs Y)

DPS-contributions (7 TeV, I 4 TeV, E-jet 35, E-jet=10)

BFKL - exclusive: Comparison moments CCFM - BFKL BFKL Monte Carlo

Comparison fixed-order vs. BFKL

Previous measurements, experimental aspects:

D0

CMS (inclusive to exclusive dijet ratio; azimuthal decorrelation) ATLAS (azimuthal decorrelation)

RUNII expectations, note on experimental techniques

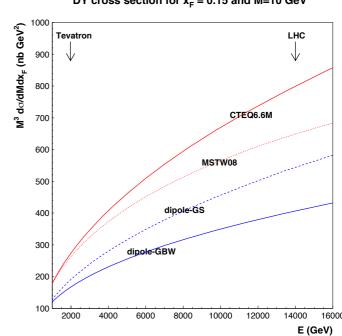
Part on Forward jets:

Key questions:

high energy factorization, unintegrated pdfs, saturation.

Di-jets (nuclear modification factor, saturation; Castor)

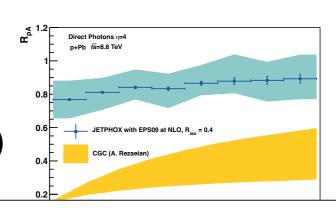
Tri-jets


Measurements at very large rapidities (Castor)

Drell-Yan and saturation:

Should have short introductory paragraph on motivation?

collinear approach, formalism for color dipole


Compare both approaches for $M^2d\sigma/dMdx_f$ (results for E772 data, predictions for LHC): can discriminate.

Prospects in collinear approach: determination of parton densities (scale uncertainties, higher twist, nuclear parton densities in pA)

Further prospects in small-x approach: different saturation models (GBW, CGC), spectra in p_T . Comparison with E866, Atlas.

Forward photoproduction and saturation: nuclear modification factor with photons (FoCal at Alice)

Large -x region:

High x_F measurements allow studies of intrinsic heavy quarks

Still to be done:

Introductions (overall, partial) conclusions (overall) references, typos

Recent corrected version by Hannes, to be read