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Motivations

One of the important longstanding theoretical questions raised by QCD is
its behaviour in the perturbative Regge limit s≫ −t
We want to identify and test suitable observables in order to test these
peculiar dynamics
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⇒ select semi-hard processes with s≫ p2T i ≫ Λ2
QCD where p2T i are

typical transverse scales, all of the same order
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QCD in the perturbative Regge limit

At leading logarithmic (LL) accuracy (resumming terms (αs ln s)
n), the

scattering amplitude can be written as:
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∼ s ∼ s (αs ln s) ∼ s (αs ln s)2

this can be put in the following form :

← Impact factor (process-dependent)

← Green’s function
obeys the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation

← Impact factor
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Higher order corrections

Often LL calculations don’t describe experimental data very well
⇒ What about higher orders?

The next-to-leading logarithmic (NLL) corrections to the BFKL kernel are
known (Lipatov, Fadin; Camici, Ciafaloni)
Corresponds to resumming also αs(αs ln s)n terms

Impact factors are known in some cases at NLL

γ∗ → γ∗ at t = 0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao;
Balitski, Chirilli)

Forward jet production (Bartels, Colferai, Vacca;
Caporale, Ivanov, Murdaca, Papa, Perri)

small cone approximation (Ivanov, Papa; Colferai, Niccoli)

Forward jet with rapidity gap (Hentschinski, Madrigal,Murdaca, Sabio Vera)

Inclusive production of a pair of hadrons separated by a large interval of
rapidity (Ivanov, Papa)

γ∗
L → ρL in the forward limit (Ivanov, Kotsky, Papa)
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Mueller-Navelet jets

Mueller-Navelet jets were proposed as a possible test of BFKL dynamics at
hadron colliders

Consider two jets separated by a large
interval rapidity, i.e. each of them almost
fly in the direction of the hadron “close“ to
it, and with similar transverse momenta

In a pure LO collinear treatment, these two
jets should be emitted exactly back to
back: ϕ = 0 (ϕ = φJ,1 − φJ,2 − π)

A BFKL calculation predicts some
decorrelation because of the emission of
soft gluons in the rapidity interval

hadron 1

hadron 2

jet 1

jet 2
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Master formulas

kT -factorized differential cross section

x1

x2

k1, φ1

k2, φ2

→
→

kJ1, φJ1, xJ1

kJ2, φJ2, xJ2

dσ

d|kJ1| d|kJ2|dyJ1 dyJ2
=

∫

dφJ1 dφJ2

∫

d2
k1 d

2
k2

×Φ(kJ1, xJ1,−k1)

×G(k1,k2, ŝ)

×Φ(kJ2, xJ2,k2)

with Φ(kJ2, xJ2,k2) =
∫

dx2 f(x2)V (k2, x2) f ≡ PDF xJ = |kJ |√
s
eyJ
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Mueller-Navelet jets: LL vs NLL

LL BFKL

rapidity gap

rapidity gap

jet 1

jet 2

∑

(αs ln s)
n

NLL BFKL

rapidity gap

rapidity gap

jet 1

jet 2

∑

(αs ln s)
n + αs

∑

(αs ln s)
n
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Master formulas

It is convenient to define the coefficients Cn as

Cn ≡
∫

dφJ1 dφJ2 cos
(

n(φJ1 − φJ2 − π)
)

×
∫

d2
k1 d

2
k2 Φ(kJ1, xJ1,−k1)G(k1,k2, ŝ)Φ(kJ2, xJ2,k2)

n = 0 =⇒ differential cross-section

C0 =
dσ

d|kJ1|d|kJ2|dyJ1 dyJ2

n > 0 =⇒ azimuthal decorrelation

Cn
C0

= 〈cos
(

n(φJ,1 − φJ,2 − π)
)

〉 ≡ 〈cos(nϕ)〉

sum over n =⇒ azimuthal distribution

1

σ

dσ

dϕ
=

1

2π

{

1 + 2
∞
∑

n=1

cos (nϕ) 〈cos (nϕ)〉
}
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Results

Comparison with data

The following results are for

√
s = 7 TeV

35GeV < |kJ1| , |kJ2| < 60GeV

0 < |y1| , |y2| < 4.7

And we compare these with experimental data on the azimuthal correlations of
Mueller-Navelet jets at the LHC from CMS (CMS-PAS-FSQ-12-002)
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Results

Azimuthal correlation 〈cosϕ〉
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CMS

C1

C0
= 〈cosϕ〉 ≡ 〈cos(φJ1 − φJ2 − π)〉

Y ≡ |y1 − y2|

pure LL
LO vertex + NLL Green fun.
NLO vertex + NLL Green fun.

35GeV < |kJ1| < 60GeV

35GeV < |kJ2| < 60GeV

0 < |y1| < 4.7

0 < |y2| < 4.7

The NLO corrections to the jet vertex lead to a large increase of the correlation
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Results

Azimuthal correlation 〈cosϕ〉
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〈cosϕ〉 ≡ 〈cos(φJ1 − φJ2 − π)〉

Y

NLL BFKL
µ → µ/2
µ → 2µ√
s0 → √

s0/2√
s0 → 2

√
s0

CMS data

35GeV < |kJ1| < 60GeV

35GeV < |kJ2| < 60GeV

0 < |y1| < 4.7

0 < |y2| < 4.7

NLL BFKL predicts a too small decorrelation

The NLL BFKL calculation is still rather dependent on the scales,
especially the renormalization / factorization scale
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Results

A LL calculation cannot describe the experimental data

A NLL calculation does not really provide a better agreement

The NLL calculation still depends strongly on the choice of the
renormalization scale µR

An all-order calculation would be independent of the choice of µR. This
feature is lost if we truncate the perturbative series
⇒ How to choose the renormalization scale?

We used the Brodsky-Lepage-Mackenzie (BLM) procedure to fix the
renormalization scale
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Results

The Brodsky-Lepage-Mackenzie (BLM) procedure resums the self-energy
corrections to the gluon propagator at one loop into the running coupling.

First attempts to apply BLM scale fixing to BFKL processes lead to
problematic results. Brodsky, Fadin, Kim, Lipatov and Pivovarov suggested
that one should first go to a physical renormalization scheme like MOM and
then apply the ’traditional’ BLM procedure, i.e. identify the β0 dependent part
and choose µR such that it vanishes.

We follow this prescription for the full amplitude at NLL.

13 / 30



Results with BLM

Azimuthal correlation 〈cosϕ〉

NLL BFKL
NLL BFKL+BLM
CMS
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〈cosϕ〉

Y

35GeV < |kJ1| < 60GeV

35GeV < |kJ2| < 60GeV

0 < |y1| < 4.7

0 < |y2| < 4.7

Using the BLM scale setting, the agreement with data becomes much better
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Results with BLM

Azimuthal correlation 〈cos 2ϕ〉
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Y

35GeV < |kJ1| < 60GeV

35GeV < |kJ2| < 60GeV

0 < |y1| < 4.7

0 < |y2| < 4.7

Using the BLM scale setting, the agreement with data becomes much better
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Results with BLM

Azimuthal correlation 〈cos 2ϕ〉/〈cosϕ〉
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〈cos 2ϕ〉/〈cosϕ〉
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35GeV < |kJ1| < 60GeV

35GeV < |kJ2| < 60GeV

0 < |y1| < 4.7

0 < |y2| < 4.7

This observable is much less dependant on µ than 〈cosnϕ〉
Already the case at LL (Sabio Vera, Schwennsen)
The good agreement with data is not affected by the BLM procedure
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Results with BLM

Azimuthal distribution (integrated over 6 < Y < 9.4)

NLL BFKL
NLL BFKL+BLM
CMS

 0.01
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1
σ

dσ
dϕ

ϕ

With the BLM scale setting the azimuthal distribution is in good agreement
with the data across the full ϕ range.
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Comparison with fixed-order

Using the BLM scale setting:

The agreement of 〈cosnϕ〉 with the data becomes much better

The agreement for 〈cos 2ϕ〉/〈cosϕ〉 is still good and unchanged as this
observable is weakly dependent on µR

The azimuthal distribution is in much better agreement with the data

But the configuration chosen by CMS with kJmin1 = kJmin2 does not allow us
to compare with a fixed-order O(α3

s) treatment (i.e. without resummation)

These calculations are unstable when kJmin1 = kJmin2 because the
cancellation of some divergencies is difficult to obtain numerically
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Comparison with fixed-order

Results for an asymmetric configuration

In this section we choose the cuts as

35GeV < |kJ1| , |kJ2| < 60GeV

50GeV < Max(|kJ1|, |kJ2|)
0 < |y1| , |y2| < 4.7

And we compare our results with the NLO fixed-order code Dijet (Aurenche,
Basu, Fontannaz) in the same configuration
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Comparison with fixed-order

Azimuthal correlation 〈cos 2ϕ〉/〈cosϕ〉
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〈cos 2ϕ〉/〈cosϕ〉

Y

35GeV < |kJ1| < 60GeV

35GeV < |kJ2| < 60GeV

50GeV < Max(|kJ1|, |kJ2|)

0 < |y1| < 4.7

0 < |y2| < 4.7

This observable is very stable in a BFKL calculation and shows a sizable
difference between with a fixed-order treatment
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Energy-momentum conservation

It is necessary to have kJmin1 6= kJmin2 for comparison with fixed order
calculations but this could be problematic for BFKL because of
energy-momentum conservation: there is no strict energy-momentum
conservation in BFKL.

This was studied at LL accuracy by Del Duca & Schmidt. They found that, at
this order, a BFKL calculation strongly overestimates the cross section
compared to an exact calculation when |kJ1| and |kJ2| are not very similar.

One could expect that after taking into account NLL corrections, the violation
of energy-momentum conservation should be less severe.
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Energy-momentum conservation

In practice, Del Duca & Schmidt introduced an effective rapidity Yeff defined as

Yeff ≡ Y
σ2→3

σBFKL,O(α3
s
)

where σ2→3 is the exact O(α3
s) contribution to the gg → ggg process, and

σBFKL,O(α3
s
) is obtained by expanding the BFKL result in powers of αs and

truncating to order O(α3
s).

If one replaces Y by Yeff in the BFKL calculation, expands in powers of αs and
truncates to order α3

s, the exact result is recovered.

A value of Yeff significantly different from Y means that the BFKL
approximation is a too strong assumption in the kinematics under study.

We follow the same general procedure, but we also take into account NLL
corrections
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Energy-momentum conservation

The partonic cross section schematically reads:

upper vertex Green’s function lower vertex
[

V (0) + αsV
(1)

]

⊗ Exp
[

ᾱsχ0Y + ᾱ2
sχ1Y

]

⊗
[

V (0) + αsV
(1)

]

Or, expanding in powers of αs:

[

V (0) + αsV
(1)

]

⊗
[

1 + ᾱsχ0Y + ᾱ2
sχ1Y + ...

]

⊗
[

V (0) + αsV
(1)

]
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Energy-momentum conservation

There are three O(α3
s) contributions (V (0) and V (1) both contain an αs factor):

The LL one, studied by Del Duca and Schmidt

[

V (0) + αsV
(1)

]

⊗
[

1 + ᾱsχ0Y + ᾱ2
sχ1Y + ...

]

⊗
[

V (0) + αsV
(1)

]

Two jets at LO and one emission from the Green’s function

The one coming from the NLO jet vertex

[

V (0) + αsV
(1)

]

⊗
[

1 + ᾱsχ0Y + ᾱ2
sχ1Y + ...

]

⊗
[

V (0) + αsV
(1)

]

[

V (0) + αsV
(1)

]

⊗
[

1 + ᾱsχ0Y + ᾱ2
sχ1Y + ...

]

⊗
[

V (0) + αsV
(1)

]

One jet at NLO and no emission from the Green’s function

(there is no contribution from the NLL corrections to the Green’s function at this

order)
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Energy-momentum conservation

Thus we compare:

exact 2→ 3 BFKL

y1

y2

y3

y1

y2

y3

large rapidity gap

large rapidity gap

+

y1

y2

y3

large rapidity gap

+

y1

y2

y3

large rapidity gap
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Energy-momentum conservation

Variation of Yeff/Y as a function

of kJ2 for fixed kJ1 = 35 GeV (with√
s = 7 TeV, Y = 8):
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 0.2

 0.4
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LO
NLO

Yeff/Y

kJ2 (GeV)

With the LO jet vertex, Yeff is much smaller than Y when kJ1 and kJ2

are significantly different

This is the region important for comparison with fixed order calculations

The improvement coming from the NLO jet vertex is very large in this
region

For kJ1 = 35 GeV and kJ2 = 50 GeV, typical of the values we used for
comparison with fixed order, we get Yeff

Y
≃ 0.98 at NLO vs. ∼ 0.6 at LO

26 / 30



Cross section

Originally Mueller and Navelet proposed to study the cross section for this
process to get access the partonic cross section

The LL differential cross section reads

dσ
d|kJ1| d|kJ2| dyJ1 dyJ2

=
(

αsCA

kJ1kJ2

)2

xJ,1 f(xJ,1) xJ,2 f(xJ,2)
∫

dν
(

k
2

J1

k2

J2

)iν

eω(0,ν)Y

with f(x) ≡ fg(x) +
CF

CA
fq(x), xJ = kJ√

s
eyJ , ω(0, ν) = ᾱχ(ν) and

χ(ν) = 2Ψ(1)−Ψ( 1
2
+ iν)−Ψ( 1

2
− iν)

If we vary
√
s together with yJ,1 and yJ,2 while keeping xJ,1 and xJ,2 fixed, we

get (for |kJ1| = |kJ2|):
σ√

s1

σ√
s2

=

∫

dν eω(0,ν)Y1

∫

dν eω(0,ν)Y2

Using the saddle-point approximation to perform the ν integration they
obtained

σ̃(Y ) ≡
∫

dν eω(0,ν)Y ≈ e
αsNc

π
ln(16) Y π

√

αsNc14ζ(3)Y
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Cross section

Variation of the cross section as a function of Y for fixed xJ,1, xJ,2

(|kJ1| = |kJ2| = 35 GeV):

LL BFKL (saddle point)
LL BFKL
NLL BFKL
NLL BFKL+BLM

 1

σ/σ2.76TeV

Y
5.88

(2.76 TeV)

7.74

(7 TeV)

8.98

(13 TeV)

The inclusion of the NLL corrections change the picture dramatically
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Jet+J/ψ

To study BFKL dynamics one could also study similar processes where one of
the two jets (or both) is replaced with something else, for example a J/ψ

The J/ψ vertex is given by the following diagrams (leading color-singlet
contribution):

The cross section seems to be very small

We can’t go to low p⊥ for the J/ψ, else BFKL should not be reliable
(p⊥jet ∼ 20− 30 GeV)

Importance of color octet contributions?

Importance of NLO corrections to the J/ψ vertex?
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Conclusions

We studied Mueller-Navelet jets at full (vertex + Green’s function) NLL
accuracy and compared our results with the first data from the LHC

The agreement with CMS data at 7 TeV is greatly improved by using the
BLM scale fixing procedure

A measurement with asymmetric pT cuts would be useful to compare with
a fixed-order treatment

Energy-momentum conservation seems to be less severely violated at NLL
accuracy
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