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Outline
● For yet another time, a few words on the BFKL

equation
● The need for a Monte Carlo approach
● The LO/NLO BFKL equation in the color octet

and color singlet (the usual) representation
● Looking into the core of the BFKL ladder
● The BKP equation – The Odderon
● Outlook



  

SAME OLD NECESSARY STUFF
TO SET UP THE STAGE



  

High energy limit in QCD
● We want the elastic
amplitude of the process
with Mandelstam variables
s, t in pQCD
● We need to have a hard
scale
● We want the amplitude in
the high energy (Regge)
limit where
● The hard scale ensures
that
● The problem then
becomes a problem of
resumming terms of the
form  

Q2≫ΛQCD
2

s≫∣t∣,Q2

αs(Q
2)≪1

Keep in mind that we want to work entirely in
momentum space.



  

Ladder diagrams



  

The BFKL equation and Multi-
Regge kinematics I

Decompose into Sudakov variables, e.g.

Tracking leading logarithms only suggests a 
restriction of the kinematical conf iguration to 
the so-called 
Multi-Regge kinematics (MRK):

s
0
  is a typical normalization scale for the BFKL equation



  

The BFKL equation and Multi-
Regge kinematics II

There are also virtual (loop)
corrections which are encoded
into modifying the gluon
propagators in the t-channel such
that they become the so-called
Reggeized gluon propagators.

Reggeized gluon

The propagator of a reggeized gluon is:



  

The LL BFKL equation and the
Multi-Regge kinematics

schematically

Multi-Regge limit: 
Regge limit in all sub-channels,
strong ordering in rapidity:

LO BFKL:
Fadin, Kuraev, Lipatov (1977),
Balitsky, Lipatov (1978)

s≫ si≫t i∼Q
2

     

Y∼ln (s) , y i∼ln (si) , y i≫ yi−1



  

Quasi-Multi-Regge kinematics I

NLO BFKL:                                       Fadin, Lipatov (1998)
Ciafaloni, Gamici (1998)

To have the BFKL equation to NNL
accuracy, resum terms of the form:

● The ways to obtain a term of the type above is by either losing a logarithm of s 
starting from an amplitude at LL or by including loop corrections to the vertices. 
● For the real emission corrections, the key feature that generates these 
logarithmic terms is the strong ordering in rapidity. 
●Thus, if we allow for a state where two of the emitted particles are close to 
each other, we are in the Quasi-Multi-Regge-kinematics (QMRK):

● The relations above still hold with the exception of a pair of particles. The pair 
can be a pair of gluons or a quark anti-quark pair.



  

Quasi-Multi-Regge kinematics II

NLO BFKL:                                       Fadin, Lipatov (1998)
Ciafaloni, Gamici (1998)

To have the BFKL equation to NNL
accuracy, resum terms of the form:



  

Why a Monte Carlo approach?
● We don't always know the analytic solution
● Even if we know it, we still want to store and analyze information
about “differential” quantities (e.g. rapidities, transverse momenta,
angles) that will  be lost once we perform the integrations
analytically. We want this for two reasons:

    1. Because then we can compare theoretical predictions to a
         greater set of observables

    2. Because there are lots of things we can still learn about
         concepts we use every day and maybe we don't fully
         understand
● We want to have a common language with people that work and
are familiar with fixed order calculations and who are the majority
in the “pheno” community – the interaction will help both sides
● We want to work in momentum space



  

DIFFERENT COLOR
REPRESENTATIONS OF THE

SYSTEM OF TWO REGGEIZED
GLUONS



  

Some generic statements on the
BFKL dynamics

● Usually one has in mind the BFKL equation for
the case of forward scattering (momentum
transfer t=0 and vacuum quantum numbers
exchanged in the t-channel (color singlet,
Pomeron)

● The BFKL equation though, was from the
beginning developed for arbitrary t and for all
possible t-channel color states. The BFKL
kernel for the latter case is know to NLO

Fadin, Gorbachev (2000)
Fadin, Fiore (2005)



  

Color state of the two gluons
This -Nc is a color
factor, assuming that
the color state of the
two gluons in the graph
is the color singlet. If
this is the case, then
the kernel is IR finite!

A few words on color  

For QCD, the possible states are:

with color factors:



  

Why the color octet representation is
important

Symmetric octet

● It was in a generalized leading logarithmic approximation, and by iterating the BFKL kernel
in the s-channel, where the Bartels-Kwiecinski-Praszalowicz (BKP) equation was proposed 

Bartels (1980)
Kwiecinski, Praszalowicz (1980)

● BKP was found to have a hidden integrability  being equivalent to a periodic spin chain of a
XXX Heisenberg ferromagnet. This was the first example of the existence of integrable
systems in QCD

Lipatov (1986, 1990, 1993)
● It will be directly connected to any numerical solution of the BKP, if any such work is to

be done with the aim to perform phenomenological studies for the Odderon

Antisymmetric octet

● Corrections to the Bern-Dixon-Smirnov (BDS) iterative ansatz (Bern, Dixon, Smirnov, 2005)
for the n-point maximally helicity violating (MHV) and planar amplitudes were found in
MRK in the six-point amplitude at two loops 

 Bartels, Lipatov, Sabio Vera (2009, 2010)

in other words, it is a fundamental ingredient of the finite remainder of scattering amplitudes
with arbitrary number of external legs and internal loops



  

Let us rewrite the BFKL equation in
a different format

Gluon
Green's
Function

Monte
Carlo

C
R
 = ½ for octet

C
R
 = 1 for singlet



  

MONTE CARLO SOLUTION TO
THE BFKL EQUATION



  

In a manner, we are back to our old
diagram:



  

Solving BFKL with Monte Carlo
integration techniques

● Many people have worked on it, the origin goes back to the late 90's:

Kwiecinski, Lewis, Martin (1996), Schmidt (1996), Orr, Stirling (1998)

Very
simplified
-pictorial-
view, the
main
elements
and ideas
are here
though

Note the change in the naming of the gluon Regge trajectory once more



  

The ladder in a different depiction:
● Two projectiles collide and produce two

hard jets (Q2 is a hard scale so that we
can use perturbation theory) and n
gluons “flying” in the s-channel (gluon-1,
gluon-2,...,gluon-n).

● In the t-channel, a reggeized gluon is
exchanged. The purple blobs are the 
so-called Lipatov effective vertices.

● Could numerical methods help us tackle
the problem of calculating the process?

● We can use Monte Carlo methods to
obtain a numerical solution to the BFKL
equation. 

Any sort of explicit information can be stored during an MC run. 
Jets may be “tagged”, experimental cuts can be imposed, 
angular information may be monitored and differential distributions can
be produced. This makes it a whole lot easier to compare against
experimental data or to get a deeper insight when the aim is more theoretical.



  

The ladder in a different depiction:
To calculate this process at LO, one has to
solve the BFKL Eq. and obtain the gluon
Green’s function (GGF) F(q1, q2; Y). 

q1 and q2  are the momenta of the
reggeized gluons above gluon-1 and below
gluon-n respectively. Y is the rapidity span
from gluon-1 to gluon-n.  In principle, one
needs to consider an infinite sum of terms:
the 1st one with no gluon (n=0),
the 2nd one with one gluon emission (n=1),
the 3rd one with two gluon emission, etc.

Every term is an integral over the emitted
gluon momenta and their individual
rapidities. Depending on Y, one can
truncate the sum to a finite N (max n=N) in
order to have a “numerically acceptable”
result.



  

Numerical results



  

Numerical results



  

The NLO BFKL equation in the color
octet

Fadin, Lipatov (2012)



  

           where



  

Numerical results



  

BKP – The Odderon
● Pomeron is the state of two interacting reggeized gluons in

the t-channel in the color singlet. It has the quantum
numbers of the vacuum 

● Odderon is the state of three interacting gluons exchanged
in the t-channel in the color singlet but with
C =-1 and P=-1

● Any pair of two gluons in the Odderon                                  
forms symmetric color octet subsystems

Ladder structure of the Odderon. BKP resums
term of the form

NLO corrections recently available
Bartels, Fadin, Lipatov, Vacca (2012)

 



  

In the BKP framework, the usual ladder picture has to be modif ied. 

There are now three reggeized gluons exchanged in the t-channel and they 
can interact, locally in rapidity, in pairs through the exchange of ordinary 
gluons. 

The ladder is no more one with two rails but rather one with three rails and 
each rung can connect any two of them. 

The whole system is in the color singlet representation whereas any subset of 
two reggeized gluons is in the symmetric color octet representation. 

There would not be hardly any hope to pursue an iterative                     
solution through the Monte Carlo approach if it were not 
for the fact that any pair of the three reggeized gluons is in 
the color octet representation which, as we saw previously,
 leads to a much faster convergence compared to the 
color singlet state.

BKP – The Odderon



  

Conclusions – Outlook
● We have studied the LO and NLO BFKL equation using Monte Carlo

techniques. By using numerical methods, it is possible to probe
regions that analytic work cannot access  

● The experience gained will be used for having a numerical solution of
the BKP, the LO BKP project is currently underway.We would like to
have a solid phenomenological study program for Odderon searches

Project in colaboraton wit 
Agustn Sabio Vera

● First NLO study in momentum space of the angular decorrelation of
Mueller-Navelet jets at hadron colliders

Project in colaboraton wit
 F. Caporale,
B. Murdaca 

A. Sabio Vera
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