Diffractive production of open charm and bottom mesons at the LHC: theoretical predictions and experimental capabilities

Marta Łuszczak

Institut of Physics

University of Rzeszow

21-25 April, 2015 IFT UAM-CSIC, Madrid, Spain Introduction

- Single and central diffraction
 - theoretical framework
 - diffractive production of $c\bar{c}$ and $b\bar{b}$
- Hadronization of heavy quarks
- Diffractive production of open charm and bottom
- Conclusions

Based on:

M. Łuszczak, R. Maciuła and A. Szczurek, Phys. Rev. D**91**, 054024 (2015), arXiv:1412.3132

Single- and central-diffractive production of heavy quarks

single- diffractive production

central- diffractive production

- leading-order gluon-gluon fusion and quark-antiquark anihilation partonic subprocesses are taken into consideration
- the extra corrections from subleading reggeon exchanges are explicitly calculated

<<p>(日)、

Theoretical framework

In this approach (Ingelman-Schlein model) one assumes that the Pomeron has a well defined partonic structure, and that the hard process takes place in a Pomeron–proton or proton–Pomeron (single diffraction) or Pomeron–Pomeron (central diffraction) processes.

$$\begin{aligned} \frac{d\sigma_{SD^{(1)}}}{dy_1 dy_2 dp_t^2} &= \frac{1}{16\pi^2 \hat{s}^2} \times \left[|\mathcal{M}_{gg \to Q\bar{Q}}|^2 \cdot x_1 g^D(x_1, \mu^2) x_2 g(x_2, \mu^2) \right. \\ &+ \left. |\mathcal{M}_{q\bar{q} \to Q\bar{Q}}|^2 \cdot \left(x_1 q^D(x_1, \mu^2) x_2 \bar{q}(x_2, \mu^2) + x_1 \bar{q}^D(x_1, \mu^2) x_2 q(x_2, \mu^2) \right) \right], \\ \frac{d\sigma_{SD^{(2)}}}{dy_1 dy_2 dp_t^2} &= \frac{1}{16\pi^2 \hat{s}^2} \times \left[|\mathcal{M}_{gg \to Q\bar{Q}}|^2 \cdot x_1 g(x_1, \mu^2) x_2 g^D(x_2, \mu^2) \right. \\ &+ \left. |\mathcal{M}_{q\bar{q} \to Q\bar{Q}}|^2 \cdot \left(x_1 q(x_1, \mu^2) x_2 \bar{q}^D(x_2, \mu^2) + x_1 \bar{q}(x_1, \mu^2) x_2 q^D(x_2, \mu^2) \right) \right], \\ \frac{d\sigma_{CD}}{dy_1 dy_2 dp_t^2} &= \frac{1}{16\pi^2 \hat{s}^2} \times \left[|\mathcal{M}_{gg \to Q\bar{Q}}|^2 \cdot x_1 g^D(x_1, \mu^2) x_2 g^D(x_2, \mu^2) \right. \\ &+ \left. |\mathcal{M}_{q\bar{q} \to Q\bar{Q}}|^2 \cdot \left(x_1 q^D(x_1, \mu^2) x_2 \bar{q}^D(x_2, \mu^2) + x_1 \bar{q}^D(x_1, \mu^2) x_2 q^D(x_2, \mu^2) \right) \right], \end{aligned}$$

- standard collinear MSTW08LO parton distributions (A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt)
- diffractive distribution function (diffractive PDF)

・ロト ・ ア・ ・ ヨト

Theoretical framework

The diffractive distribution function (diffractive PDF) can be obtained by a convolution of the flux of pomerons $f_{\mathbf{P}}(x_{\mathbf{P}})$ in the proton and the parton distribution in the pomeron, e.g. $g_{\mathbf{P}}(\beta, \mu^2)$ for gluons:

$$g^{D}(x,\mu^{2}) = \int dx_{\mathbf{P}} d\beta \,\delta(x-x_{\mathbf{P}}\beta)g_{\mathbf{P}}(\beta,\mu^{2})\,f_{\mathbf{P}}(x_{\mathbf{P}}) = \int_{x}^{1} \frac{dx_{\mathbf{P}}}{x_{\mathbf{P}}}\,f_{\mathbf{P}}(x_{\mathbf{P}})g_{\mathbf{P}}(\frac{x}{x_{\mathbf{P}}},\mu^{2})\,.$$

The flux of Pomerons $f_{\mathbf{P}}(x_{\mathbf{P}})$:

$$f_{\mathbf{P}}(x_{\mathbf{P}}) = \int_{t_{min}}^{t_{max}} dt f(x_{\mathbf{P}}, t),$$

with t_{min}, t_{max} being kinematic boundaries.

Both pomeron flux factors $f_{\mathbf{P}}(x_{\mathbf{P}}, t)$ as well as parton distributions in the pomeron were taken from the H1 collaboration analysis of diffractive structure function at HERA.

・ロト ・ 日 ・ ・ ヨ ・ ・

Results for $c\bar{c}$ and $b\bar{b}$

• the multiplicative factors are approximately $S_G = 0.05$ for single-diffractive production and $S_G = 0.02$ for central-diffractive one for the nominal LHC energy ($\sqrt{s} = 14$ TeV)

<ロト <回ト < 回ト < 回ト

Results for $c\bar{c}$ and $b\bar{b}$

• in the case of pomeron exchange the upper limit in the convolution formula is taken to be 0.1 and for reggeon exchange 0.2 ($x_P < 0.1$, $x_R < 0.2$)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

• the whole Regge formalism does not apply above these limits

Results for $c\bar{c}$ and $b\bar{b}$

• the individual single-diffractive mechanisms have maxima at large rapidities, while the central-diffractive contribution is concentrated at midrapidities. This is a consequence of limiting integration over x_P to $0.0 < x_P < 0.1$ and over x_R to $0.0 < x_R < 0.2$

Hadronization of heavy quarks

- phenomenology ightarrow fragmentation functions extracted from e^+e^- data
- <u>often used</u> (older parametrizations): Peterson et al., Braaten et al., Kartvelishvili et al.
- more up-to-date: charm nonperturbative fragmentation functions determined from recent Belle, CLEO, ALEPH and OPAL data: Kneesch-Kniehl-Kramer-Schienbein (KKKS08) + DGLAP evolution!
- FONLL \rightarrow Braaten et al. (charm) and Kartvelishvili et al. (bottom) GM-VFNS \rightarrow KKKS08 + evolution
- numerically performed by rescalling transverse momentum

at a constant rapidity (angle)

from heavy quarks to heavy mesons:

$$\frac{d\sigma(y, p_t^M)}{dyd^2 p_t^M} \approx \int \frac{D_{Q \to M}(z)}{z^2} \cdot \frac{d\sigma(y, p_t^Q)}{dyd^2 p_t^Q} dz$$

where: $p_t^Q = rac{p_t^M}{z}$ and $z \in (0,1)$

approximation

rapidity unchanged in the fragmentation process $\rightarrow y_Q = y_M$

Fragmentation functions for heavy quarks

- default set: Peterson FF with $\varepsilon_c = 0.05$ and $\varepsilon_b = 0.004$ values extracted by H1, ALEPH and OPAL experiments
- Cacciari *et al.* (FONNL framework) \Rightarrow rather harder functions are suggested BCFY FF with $r_c = 0.1$ and Kartvelisvili FF with $\alpha_b = 29.1$ our choice: Peterson FF with $\varepsilon_c = 0.02$ and $\varepsilon_b = 0.001$

<ロト <回ト < 回ト < 回ト

Predictions of integrated cross sections for LHC experiments

TABLE I: Integrated cross sections for diffractive production of open charm and bottom mesons in different measurement modes for ATLAS, LHCb and CMS experiments at $\sqrt{s} = 14$ TeV.

Acceptance	Mode	Integrated cross sections, [nb]		
		single-diffractive	central-diffractive	non-diffractive EXP data
ATLAS, $ y < 2.5$ $p_{\perp} > 3.5 \text{ GeV}$	$D^0 + \overline{D^0}$	3555.22 (<i>IR</i> : 25%)	177.35 (<i>IR</i> : 43%)	-
LHCb, $2 < y < 4.5$ $p_{\perp} < 8 \text{ GeV}$	$D^0 + \overline{D^0}$	31442.8 (IR: 31%)	2526.7 (<i>IR</i> : 50%)	1488000 ± 182000
$\begin{array}{l} \text{CMS, } y < 2.4 \\ p_{\perp} > 5 \ \text{GeV} \end{array}$	$(B^+ + B^-)/2$	349.18 (IR: 24%)	14.24 (<i>IR</i> : 42%)	$28100 \pm 2400 \pm 2000$
LHCb, $2 < y < 4.5$ $p_{\perp} < 40 \text{ GeV}$	$B^+ + B^-$	867.62 (<i>IR</i> : 27%)	31.03 (<i>IR</i> : 43%)	$41400 \pm 1500 \pm 3100$
LHCb, $2 < y < 4$ $3 < p_{\perp} < 12 \text{ GeV}$	$D^0\overline{D^0}$	179.4 (<i>IR</i> : 28%)	7.67 (<i>IR</i> : 45%)	$6230 \pm 120 \pm 230$
• single-diffraction: $\frac{IR}{IP+IR} \approx 24 - 31\%$				
• central-diffraction: $\frac{IPIR+IRIP+IRIR}{IPIP+IPIR+IRIP+IRIR} \approx 42 - 50\%$				
• $\frac{\text{single} - \text{diffractive}}{\text{non} - \text{diffractive}} \approx 2 - 3\%$ $\frac{\text{central} - \text{diffractive}}{\text{non} - \text{diffractive}} \approx 0.03 - 0.07\%$				

Results for D^0 mesons production

Marta Łuszczak

æ

Results for B^{\pm} mesons production

Results for $D^0\overline{D^0}$ mesons production

Results

Double differential cross sections as a function of D^0 and $\overline{D^0}$ rapidities within the LHCb detector acceptance for single- (left and middle panels) and central-diffractive (right panels) production at $\sqrt{s} = 14$ TeV. The top and bottom panels correspond to the pomeron and reggeon exchange mechanisms respectively.

- Cross sections for single and central diffractive production of $c\bar{c}$ and $b\bar{b}$ have been calculated.
- Large and measurable cross section for charm single diffractive production.
- Cross sections for D^0 , B^{\pm} and $D^0 \overline{D^0}$ mesons have been calculated for different experiments (cuts).
- LHCb wish to study such processes (G. Wilkinson).