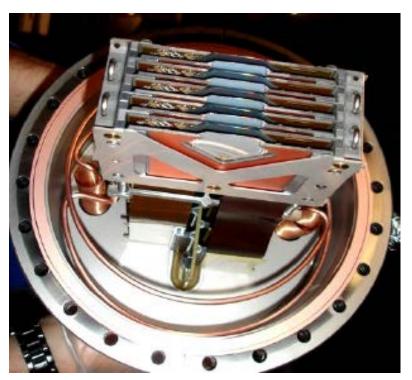
LHC Working Group on Forward Physics and Diffraction

21-25 April 2015 Instituto de Física UAM/CSIC Madrid Total cross section measurements

A comparison of the ATLAS and TOTEM techniques to measure σ_{tot} and small angle elastic scattering

Per Grafstrom University of Bologna and CERN


Measurement of the total cross-section and soft diffraction by the ATLAS and TOTEM experiments at the LHC

Per Grafstrom

Dipartimento di Fisica e Astronomia, University of Bologna, Viale Berti Pichat 6/2, 40127 – Bologna, Italy Physics Department, CERN, CH-1211 Geneva 23, Switzerland per.grafstrom@cern.ch International Journal of Modern Physics A Vol. 30, No. 8 (2015) 1542007 (24 pages)
© World Scientific Publishing Company DOI: 10.1142/S0217751X15420075

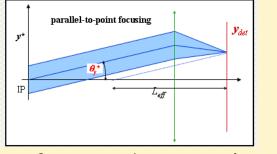
OCHO

Detectors TOTEM ATL

Planar silicon detectors Stack of 10 Insensitive region < 60-70µm Space resolution 11µm per stack

ATLAS/ALFA

Scintillating fibres 10 staggered planes Insensitive region < 20-30µm Space resolution 35 µm

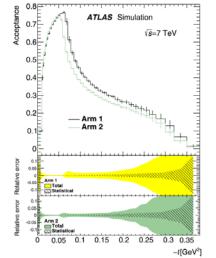

Roman Pots and their position

Similarities and differences ATLAS/TOTEM measurements OPTICS

In general for small angle elastic scattering:

- Divergence smaller than angles to be measured $\Rightarrow \sqrt{\epsilon/\beta^*}$ small \Rightarrow large β^* ; ATLAS/TOTEM used $\beta^*=90m$
- "parallell to point" in at least one plane ATLAS/TOTEM in vertical plane

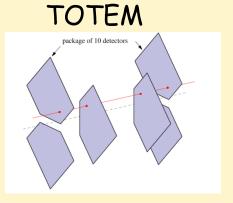
• Large effective lever arm in at least one plane for good t-resolution. $\theta_y = y/L_y^{eff}$ ATLAS/TOTEM vertical plane

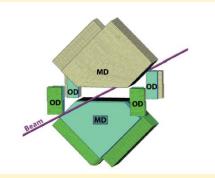

However

Difference in horizontal lever arm ($\theta_x = x/L_x^{eff}$)

TOTEM ~ 0 m for clean separation of diffractives ATLAS ~ 10 m \Rightarrow Different methods for *t*-reconstruction

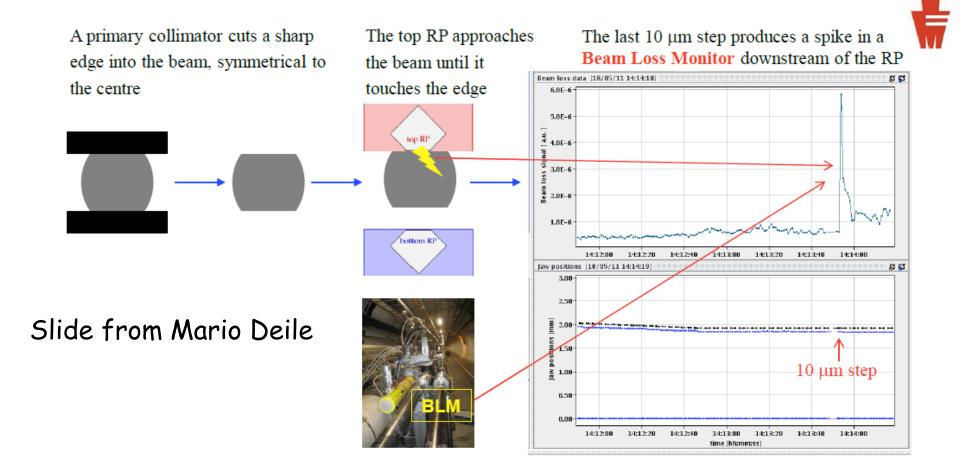
Similarities and differences ATLAS/TOTEM measurements Conditions for data taking and triggering


- 1-2 bunches with 7x 10¹⁰ protons; some few low intensity bunches; one non- colliding bunch
- Luminosity typically $5 \times 10^{27} 10^{28} / \text{cm}^2 \text{s}$
- Detectors roughly 5 mm from the beam
- Basically the same acceptance
- *t* range $5 \times 10^{-3} \rightarrow 0.4 \text{ GeV}^2$
- Triggers based upon back-to-back topology with >99 % eff.


ATLAS trigger scintillators covering the detector TOTEM OR's of 16 strips and loose track roads

Similarities and differences ATLAS/TOTEM measurements Alignment

- Pots relative to the beam.
 Define beam with sharp edge. Move in in small step and detect beam interactions with pot-window using Beam Loss Monitor
- 2. Relative position of each detector using tracks


ATLAS

3. Global alignment on both sides using the symmetry of the kinematics of elastics

Precision:	Horizontal	Vertical
TOTEM	1-2 μm	30 μ m
ATLAS	1-2 μm	80 μ m

Beam-Based Roman Pot Alignment (Scraping) Standard Procedure for LHC Collimators

TOTEM

Similarities and differences ATLAS/TOTEM measurements *t* - reconstruction

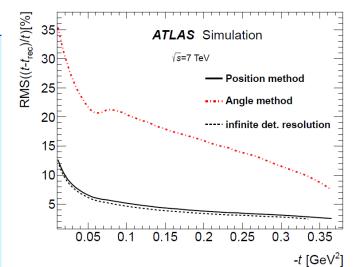
Here we have a clear difference ATLAS/TOTEM ... a bit tricky to explain...

- Several possibilities to reconstruct t from the measurement at the Roman Pot
- The problem is simplified by the back-to-back topology and identical vertex position for left and right protons.
- Using those simplifications the scattering angle at the IP can be calculated either from a measurement of the position or the angle at the Roman Pot.
- Which method is best depends on factors like resolution and sensitivities to the optics

VERTICAL PLANE

The resolution in the vertical plane is determined by the beam divergence and thus the difference in spatial resolution between TOTEM and ATLAS does not matter

- the calculation of θ_y at the IP is straight forward due to the "parallell to point" optics and the large lever arm.
- Best resolution and smallest sensitivity to optics is obtained by transforming the *position measurement* at *the RP* to *an angle at the IP*.
- TOTEM/ATLAS identical


HORIZONTAL PLANE TOTEM

- The effective lever arm small (~ 0 m)
- Thus TOTEM calculates θ_x at the IP using *the horizontal angle at the RP*
- The $\theta_{\rm x}$ resolution at the IP depends strongly on the angular resolution at the RP
- TOTEM has relative good angular resolution (5-10 μrad) at the RP.

HORIZONTAL PLANE ATLAS

- The effective lever arm ~10 m
- ATLAS has less good angular resolution at the RP
- ATLAS has chosen as default method to determine the angle at the IP from the *position measurement at the RP* because of the better resolution in the position measurement.
- Drawback- higher sensitivity to Optics

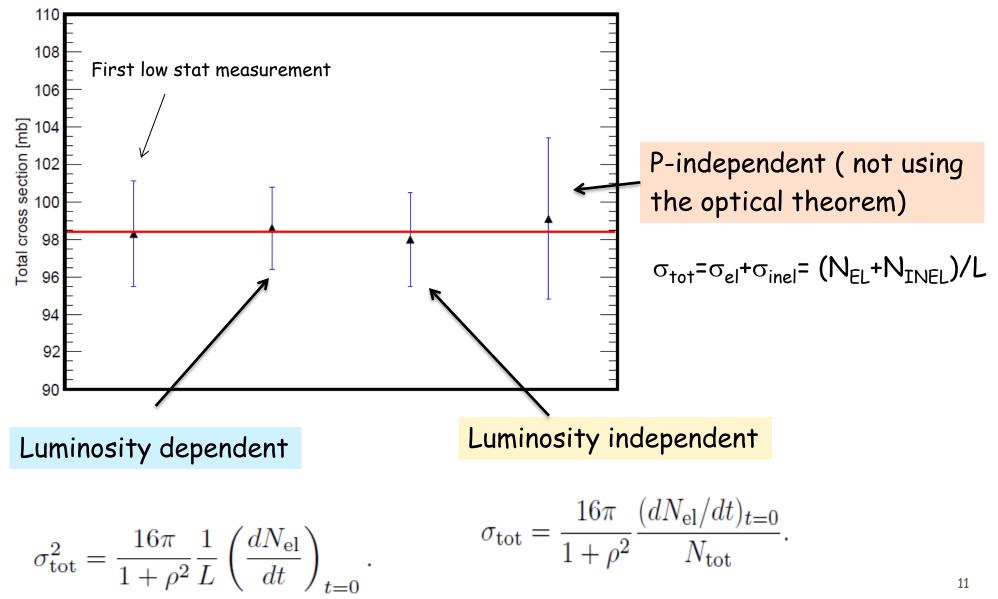
To overcome this difficulty and better understand the sensitivity to the optics , ATLAS has constrained the optics using the elastics and checked results by using four different methods to reconstruct *t*

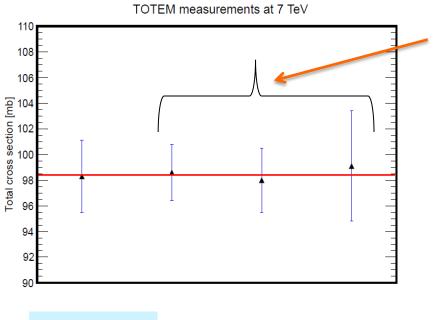
Similarities and differences ATLAS/TOTEM measurements Event selection and background


Event selection - straight forward

- Back-to-back topology
- \Rightarrow left-right correlation
- Position-angle correlation on each side independently
- TOTEM also uses horizontal vertex position (L and R)

 $\begin{bmatrix} 25 \\ 20 \\ 15 \\ 0 \\ -5 \\ -10 \\ -5 \\ -20 \\ -5 \\ -25 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20$

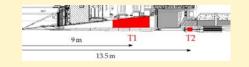

Background - low


- TOTEM uses vertex dist. in X
 obtains 0.8 % ± 0.4 %
- ATLAS uses topology left upper(lower)-right upper(low obtains 0.4 % ± 0.2 %

The TOTEM results at 7 TeV

TOTEM measurements at 7 TeV

The three measurements are obviously correlated
Three independent ingredients are measured
1) Luminosity,
2) The inelastic rate,
3) Differential elastic rate
Each method use at least 2 out of 3 of the ingredients
⇒ Correlations are unavoidable

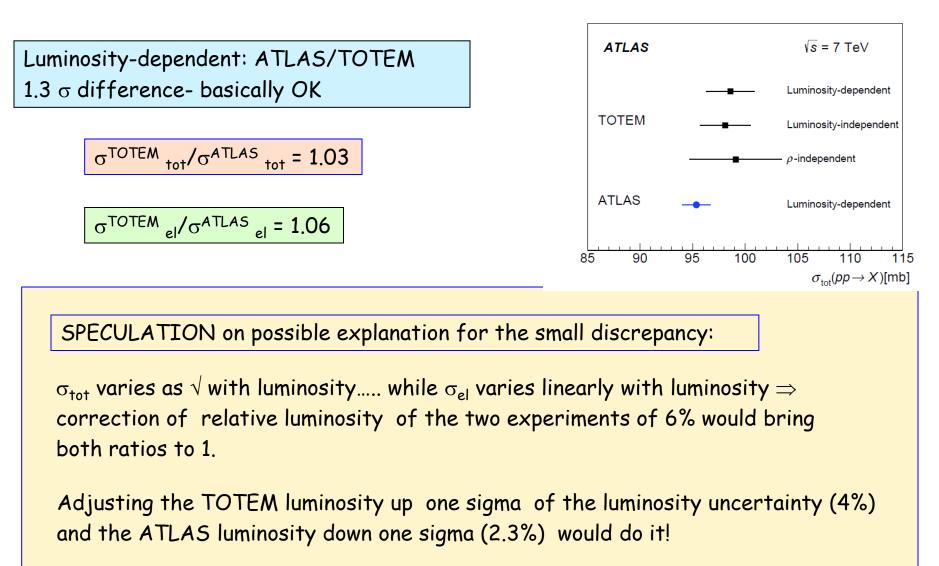

However

- The fact that the three values are very close indicates that the measurements are basically correct
- A significant mistake in one of the three ingredients
 ⇒ two out of the three could agree but not the third
- In order to generate three values of the cross section so close to each other and still being significantly incorrect would require a conspiracy in the miss measurement of all three ingredients

The ATLAS result

ATLAS $\eta\text{-coverage}$: $-5 < \eta < 5$

(TOTEM covers with T2 : $5.3 < \! \mid\! \eta\!\mid < 6.5$ moreover with T1 tracking in : $3.1 < \! \mid\! \eta\!\mid < 4.7$)

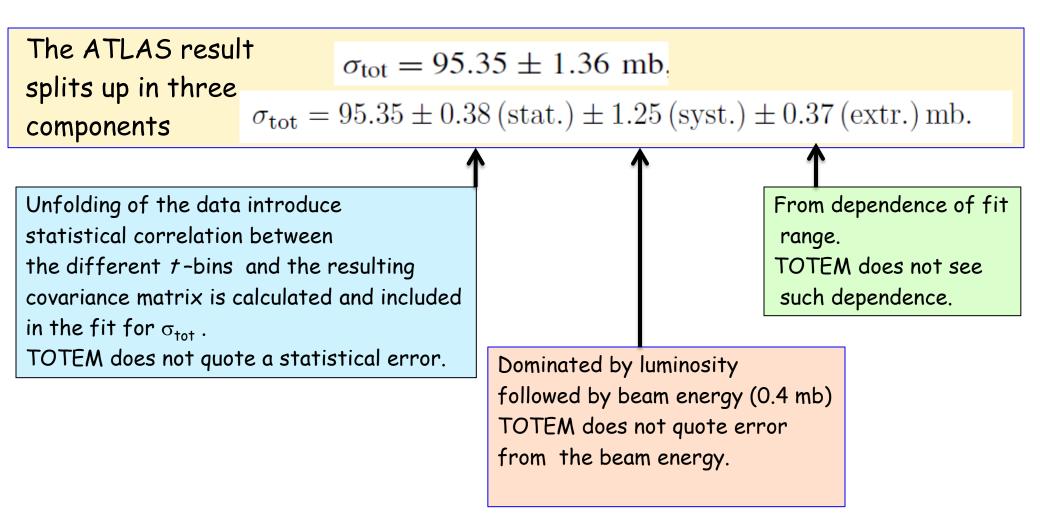


 \Rightarrow Difficult to determine the inelastic rate precisely for ATLAS \Rightarrow Luminosity-independent and p-independent methods give large errors

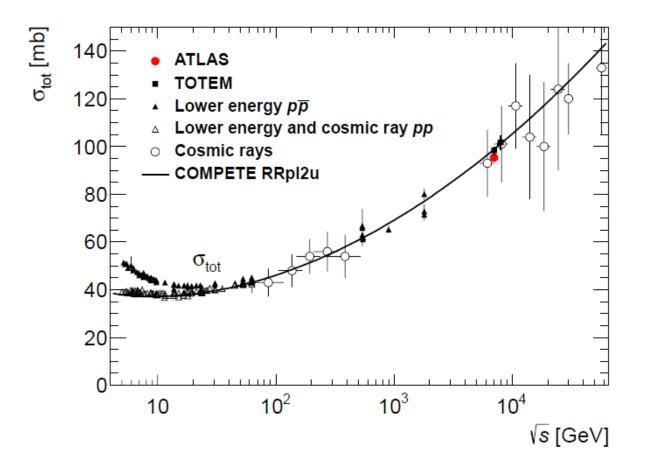
The ATLAS result with the luminosity-dependent method:

 $\sigma_{\rm tot} = 95.35 \pm 1.36 \text{ mb}$

Comparison of the ATLAS/TOTEM results



Observe that after such an adjustment the σ_{tot} from the luminosity-independent measurement would be completely compatible with the other measurements.


Comparison of the uncertainties in the ATLAS/TOTEM results

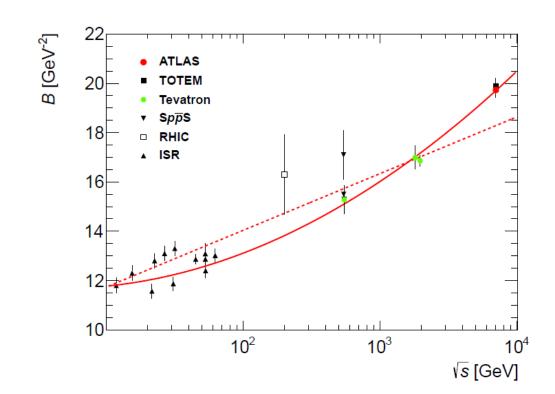
TOTEM Luminosity-dependent	$\sigma_{\rm tot} = 98.6 \pm 2.2 \mathrm{mb}.$	Luminosity error 4 % completely dominant
TOTEM Luminosity-independent	$\sigma_{\rm tot} = 98.0 \pm 2.5 \mathrm{mb}.$	Uncertainties from inelastic and elastic rate close to equal
TOTEM P-independent	$\sigma_{\rm tot} = 99.1 \pm 4.3 \rm mb.$	Luminosity error completely dominant
ATLAS Luminosity-dependent	$\sigma_{\rm tot} = 95.35 \pm 1.36 {\rm mb}$	Luminosity error 2.3 % dominant

Further comparison of the uncertainties in the ATLAS/TOTEM results

Comparison of the ATLAS/TOTEM results with others

The slope parameter B

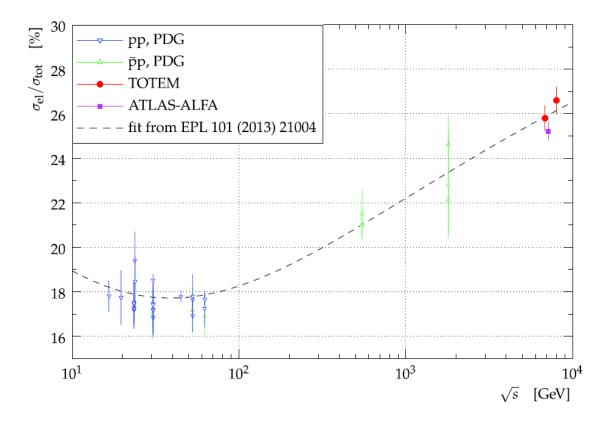
Use pure exponential $e^{-B|t|}$ to describe differential elastic cross section for small t-values


ATLAS with fit up $-t = 0.1 \text{ GeV}^2$ obtains B=19.73 ±0.14(stat)±0.26(syst) GeV⁻²

TOTEM with fit up - $t = 0.2 \text{ GeV}^2$ obtains B=19.9 ±0.3 (syst) GeV⁻²

$$B = B_0 + 2\alpha_p^{\text{eff}} \ln(s/s_0)$$

Dotted line: Donnachie-Landshoff α'^{eff}_{p} = 0.25 GeV⁻²


Full line: Quadratic form from Schegelsky and Ryskin

The ratio σ_{el}/σ_{tot}

Measure of the opacity of the proton

The ratio σ_{el}/σ_{tot} would be $\frac{1}{2}$ for the proton being opaque black disc

Prospects and Future Plans

Finish analysis of 8 TeV data (ATLAS)

 \Box Measure σ_{tot} at 13 TeV

Reach the Coulomb interference region to measure p (and the luminosity in yet a different way)

BACK-UP

Similarities and differences ATLAS/TOTEM measurements Unfolding

Not evident that I will treat this...may be skip

7.2. Other results on soft diffraction