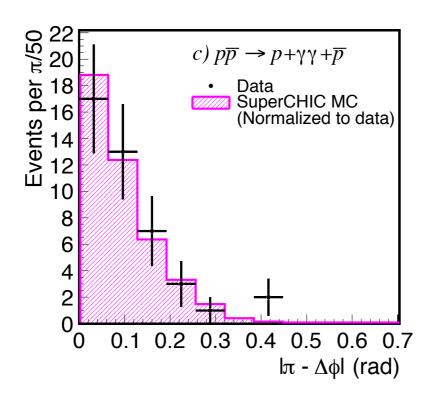
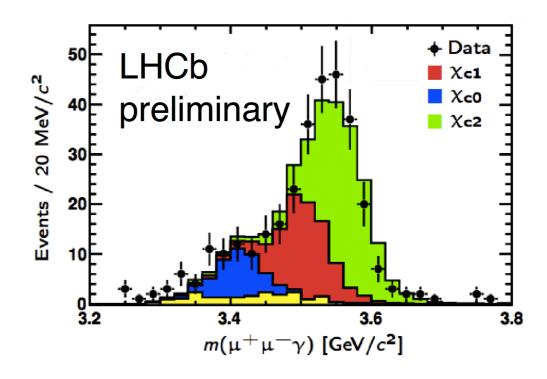
Superchic v2 : a new Monte Carlo for central exclusive production

Lucian Harland-Lang (UCL)

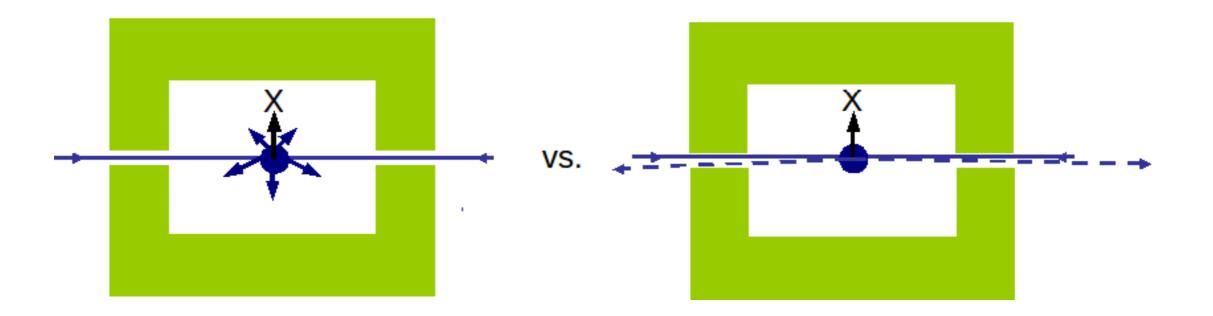

LHC WG on forward physics and diffraction Madrid, 23 April 2015


In collaboration with Valery Khoze and Misha Ryskin

1

Outline

- CEP: brief introduction.
- Superchic 2: what's new.
- Present results for two specific processes:
 - J/\u03c6 photoproduction
 Jet production

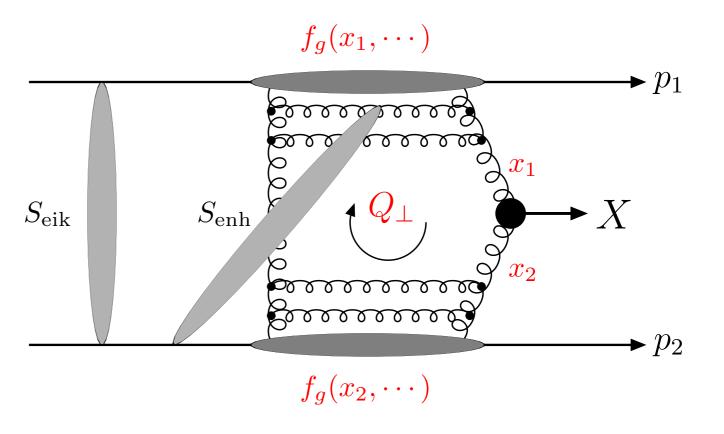

Central exclusive production (CEP) is the interaction

 $pp(\bar{p}) \rightarrow p + X + p(\bar{p})$

• Protons remain intact after collision. Only object of interest X is produced ($X = \text{jets}, J/\psi, \pi^+\pi^-, W^+W^-...$):

• Clean experimental environment (in absence of pile-up).

• Can measure outgoing protons - reconstruct X 4-momentum, proton distributions...



Saturday, 15 N Center 14 (principally) occur through $I\!P I\!P I\!P \gamma$ and $\gamma\gamma$ interactions Also: Odderon

'Durham Model' of Central Exclusive Production

(QCD mediated)

- The generic process pp → p + X + p is modeled perturbatively by the exchange of two t-channel gluons.
- The use of pQCD is justified by the presence of a hard scale $\sim M_X/2$. This ensures an infrared stable result via the Sudakov factor: the probability of no additional perturbative emission from the hard process.
- The possibility of additional soft rescatterings filling the rapidity gaps is encoded in the 'eikonal' and 'enhanced' survival factors, $S_{\rm eik}^2$ and $S_{\rm enh}^2$.
- In the limit that the outgoing protons scatter at zero angle, the centrally produced state X must have $J_Z^P = 0^+$ quantum numbers.

SuperCHIC v1

A MC event generator including⁸:

LHL talk at EDS Blois 2013

- Simulation of different CEP processes, including all spin correlations:
 - $\chi_{c(0,1,2)}$ CEP via the $\chi_c \to J/\psi\gamma \to \mu^+\mu^-\gamma$ decay chain.
 - $\chi_{b(0,1,2)}$ CEP via the equivalent $\chi_b \to \Upsilon \gamma \to \mu^+ \mu^- \gamma$ decay chain.
 - $\chi_{(b,c)J}$ and $\eta_{(b,c)}$ CEP via general two body decay channels
 - Physical proton kinematics + survival effects for quarkonium CEP at RHIC.
 - Exclusive J/ψ and Υ photoproduction. $+ \psi(2S)$
 - $\gamma\gamma$ CEP.
 - Meson pair ($\pi\pi$, KK, $\eta\eta$...) CEP.
- More to come (dijets, open heavy quark, Higgs...?).

 \rightarrow Additional processes to add, but also theoretical improvements to be included.

SuperCHIC v2

New MC for CEP under development. Based on original SuperCHIC, but with significant extensions.

- Theoretical developments:
 - Correct inclusion of Sudakov factor T.D. Coughlin and J.R. Forshaw, JHEP 1001 (2010) 121
 - Consistent treatment of 'skewed' gluon PDFs LHL, Phys. Rev. D88 (2013) 3,034029
 - Full (differential) treatment of soft survival effects
- LHAPDF interface.
- Complete calculation performed 'on-line', and structured so that additional processes can be easily added.

• Processes generated:

- New SM Higgs boson
- New \rightarrow Jets: gg, heavy/massless $q\overline{q}$, ggg, massless $gq\overline{q}$
- New Double quarkonia: $J/\psi J/\psi$, $J/\psi \psi(2S)$ and $\psi(2S)\psi(2S)$
 - Light meson pairs: $\pi\pi$, KK, $\rho\rho$, $\eta(')\eta(')$, $\phi\phi$
 - ▶ $\chi_{c,b}$: two body and J/ψ , $\Upsilon + \gamma$ channels
 - $in \eta_{c,b}$
 - Photoproduction: J/ψ , $\psi(2S)$ and Υ HERA fit
- New Two-photon interactions: W^+W^- , $\mu^+\mu^-$ and e^+e^-

Theoretical improvements

• Sudakov factor:

$$T(\boldsymbol{Q}_{\perp},\mu) = \exp\left(-\int_{\boldsymbol{Q}_{\perp}^2}^{\hat{s}/4} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \frac{\alpha_s(k_{\perp}^2)}{2\pi} \int_0^{1-\Delta} \mathrm{d}z \left[zP_{gg}(z) + \sum_q P_{qg}(z)\right]\right)$$

with $\Delta = k_{\perp}/M_X$ T.D. Coughlin and J.R. Forshaw, JHEP 1001 (2010) 121 Different value taken in Durham results before the CF paper, but this correct prescription used after. Accounted for in MC.

• Skewed gluon PDF often related to standard unintegrated gluon by $f_g(x, x', Q_{\perp}^2, \mu^2) \approx \tilde{R}_g \frac{\partial}{\partial \ln(Q_{\perp}^2)} \left[xg(x, Q_{\perp}^2) \sqrt{T(Q_{\perp}, \mu^2)} \right]$

with 'skewness factor' \tilde{R}_g . However more exact form can be readily implemented in MC: LHL, Phys. Rev. D88 (2013) 3, 034029

$$f_g(x, x', Q_{\perp}^2, \mu^2) = \frac{\partial}{\partial \ln(Q_{\perp}^2)} \left[H_g\left(\frac{x}{2}, \frac{x}{2}; Q_{\perp}^2\right) \sqrt{T(Q_{\perp}, \mu^2)} \right]$$

with $H_g\left(\frac{x}{2}, \frac{x}{2}, Q^2\right) = \frac{4x}{\pi} \int_{x/4}^1 dy \ y^{1/2} (1-y)^{1/2} \ g\left(\frac{x}{4y}, Q^2\right)$

Survival factor

• Survival factor, S_{eik}^2 : probability of no additional soft proton-proton interactions, spoiling exclusivity of final-state.

 Not a constant: depends sensitively on the outgoing proton p⊥vectors. Physically- survival probability will depend on impact parameter of colliding protons. Further apart → less interaction, and S²_{eik} → 1.
 b_t and p⊥ : Fourier conjugates.

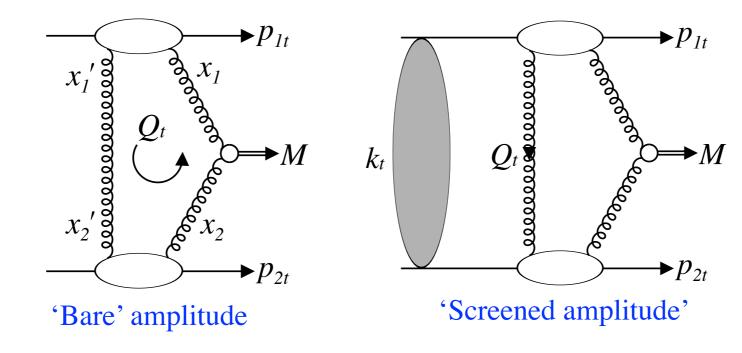
 \rightarrow Need to include survival factor differentially in MC.

• Averaged survival factor given by (in impact parameter space)

Opacity, relates to prob. of no inelastic scattering

$$\langle S_{\text{eik}}^2 \rangle = \frac{\int d^2 \mathbf{b}_{1t} d^2 \mathbf{b}_{2t} |T(s, \mathbf{b}_{1t}, \mathbf{b}_{2t})|^2 \exp(-\Omega(s, b_t))}{\int d^2 \mathbf{b}_{1t} d^2 \mathbf{b}_{2t} |T(s, \mathbf{b}_{1t}, \mathbf{b}_{2t})|^2} \qquad \text{il}$$

One-channel for illustration

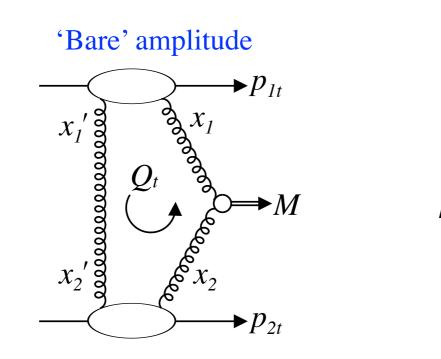

in p_{\perp} space this is equivalent to

'Bare' amplitude

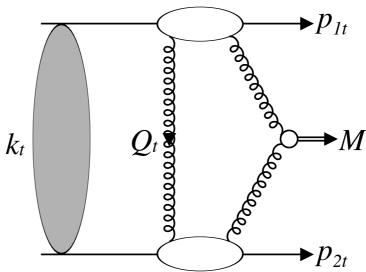
$$\langle S_{\rm eik}^2 \rangle = \frac{\int d^2 \mathbf{p}_{1\perp} d^2 \mathbf{p}_{2\perp} |T(s, \mathbf{p}_{1\perp}, \mathbf{p}_{2\perp}) + T^{\rm res}(s, \mathbf{p}_{1\perp}, \mathbf{p}_{2\perp})|^2}{\int d^2 \mathbf{p}_{1\perp} d^2 \mathbf{p}_{2\perp} |T(s, \mathbf{p}_{1\perp}, \mathbf{p}_{2\perp})|^2}$$

where 'screened' amplitude is given by

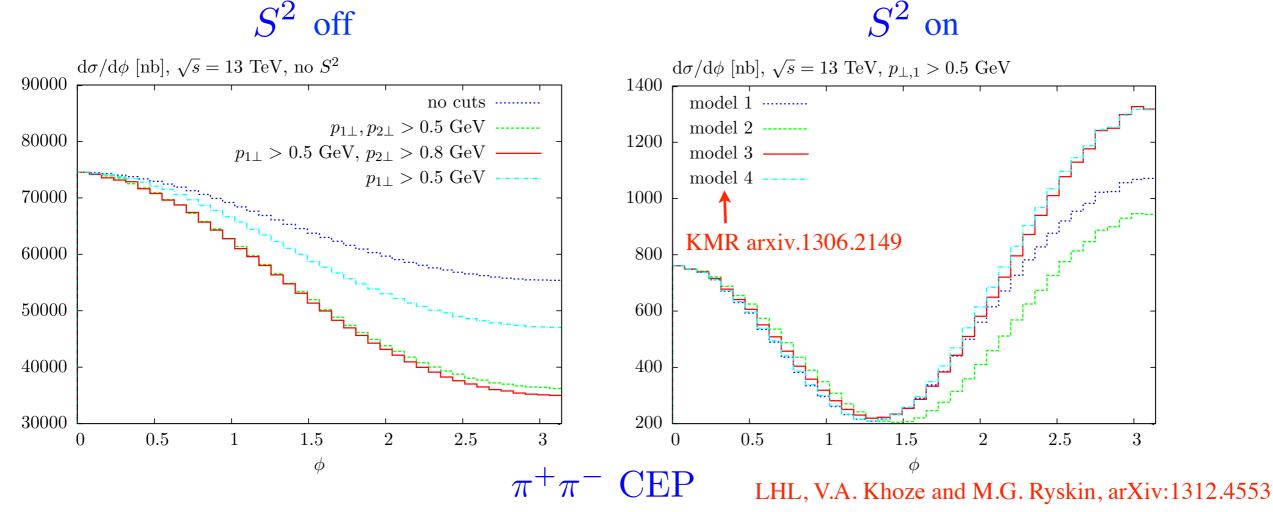
$$T^{\rm res}(s, \mathbf{p}_{1\perp}, \mathbf{p}_{2\perp}) = \frac{i}{s} \int \frac{\mathrm{d}^2 \mathbf{k}_{\perp}}{8\pi^2} T_{\rm el}(s, \mathbf{k}_{\perp}^2) T(s, \mathbf{p'}_{1\perp}, \mathbf{p'}_{2\perp})$$



• In p_{\perp} space we can therefore write

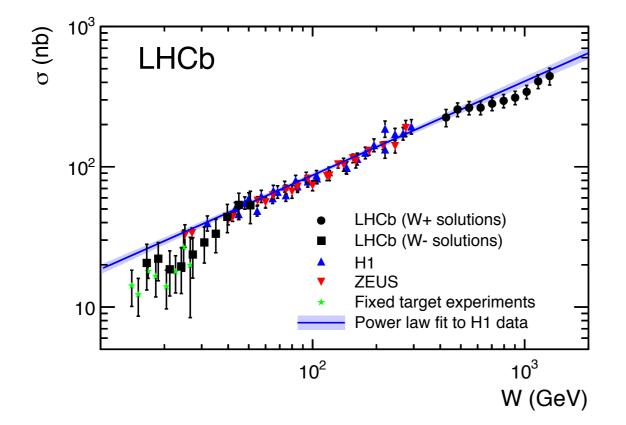

with

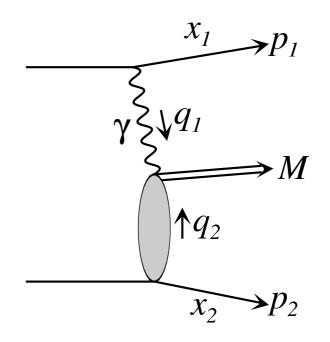
$$\frac{d\sigma}{dy_{X}} = \int d^{2}\mathbf{p}_{1_{\perp}} d^{2}\mathbf{p}_{2_{\perp}} \frac{|T(s, \mathbf{p}_{1_{\perp}}, \mathbf{p}_{2_{\perp}}))|^{2}}{16^{2}\pi^{5}} S_{eik}^{2}(s, \mathbf{p}_{1_{\perp}}, \mathbf{p}_{2_{\perp}}) , \\
Not a constant! \\
S_{eik}^{2}(s, \mathbf{p}_{1_{\perp}}, \mathbf{p}_{2_{\perp}}) \equiv \frac{|T(s, \mathbf{p}_{1_{\perp}}, \mathbf{p}_{2_{\perp}}) + T^{res}(s, \mathbf{p}_{1_{\perp}}, \mathbf{p}_{2_{\perp}})|^{2}}{|T(s, \mathbf{p}_{1_{\perp}}, \mathbf{p}_{2_{\perp}})|^{2}} ,$$


These expressions, suitably generated to multi-channel case, are used in the MC to give the correct differential treatment of $S_{\rm eik}^2$ KMR, Eur. Phys. J. C73 (2013) 2503

'Screened amplitude'

• The observation of CEP with tagged protons also provides additional information about survival factors...




- Distribution in angle ϕ between outgoing protons strongly effected, in model dependent way.
- In particular true when larger values of proton p_{\perp} are selected. Cancellation between screened and unscreened amplitudes leads to characteristic 'diffractive dip' structure

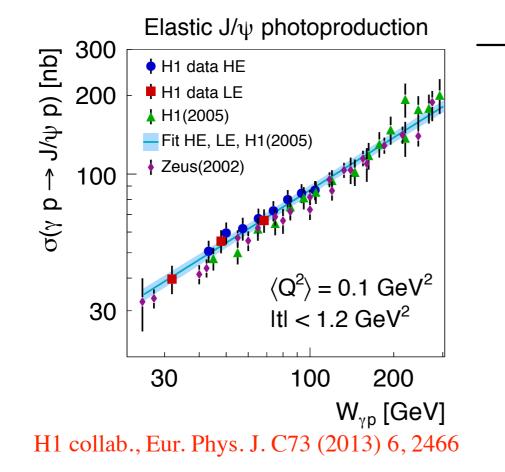
V. A. Khoze, A.D. Martin and M.G. Ryskin, hep-ph/0203122 LHL, V.A. Khoze, M.G. Ryskin and W.J. Stirling, arXiv:1011.0

Example process: J/ψ photoproduction

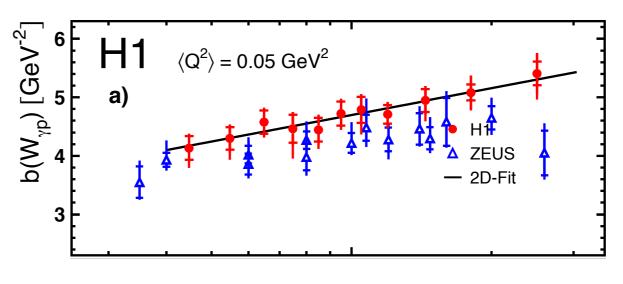
- C-odd J/ψ : produced exclusively through $\gamma I\!\!P$ fusion.
- Observed by LHCb and ALICE at the LHC. LHCb collab., J. Phys. G41 (2014) 055002 ALICE collab., Phys. Rev. Lett. 113 (2014) 23, 232504
- Survival effects less important compared to pure QCD CEP, but not negligible, in particular for precise comparisons.

J/ψ photoproduction: theory

• Different approaches to modeling J/ψ photoproduction available.


S.P Jones et al., J. Phys. G41 (2014) 055009 L. Motyka, G. Watt, Phys. Rev. D78 (2008) 0124023

• In Superchic, take simple fit to HERA data:


$$\frac{\mathrm{d}\sigma^{\gamma p \to V p}}{\mathrm{d}q_{2_{\perp}}^{2}} = N_{V} \left(\frac{W_{\gamma p}}{1\,\mathrm{GeV}}\right)^{\delta_{V}} b_{V} e^{-b_{V}q_{2_{\perp}}^{2}} \qquad b_{V} = b_{0} + 4\alpha' \log\left(\frac{W_{\gamma p}}{90\,\mathrm{GeV}}\right)$$
$$V = \psi$$

H1 find: $\delta_{\psi} = 0.67 \pm 0.03 \,\text{GeV}^2$ $N_{\psi} = 81 \pm 3 \,\text{nb}$ Anti-correlated

In what follows we take $\delta_{\psi} = 0.64 \,\text{GeV}^2$ $N_{\psi} = 81 \,\text{nb}$

 \rightarrow Lower end of cross sections allowed by fit

H1 collab., Eur. Phys. J. C46 (2006) 585-603

J/ψ photoproduction: results

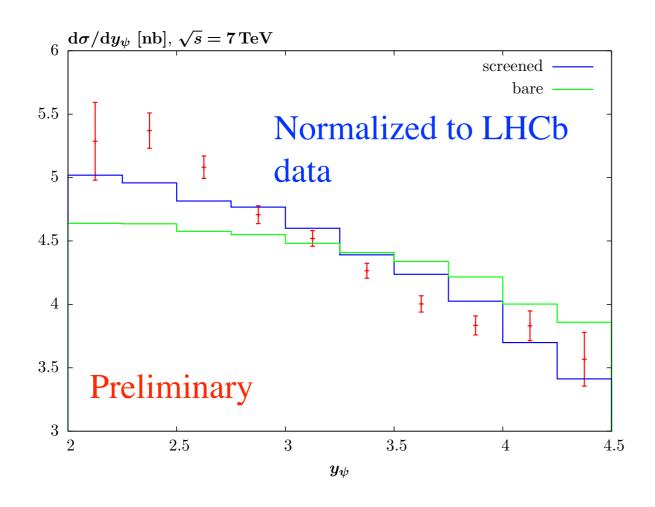
• We find:

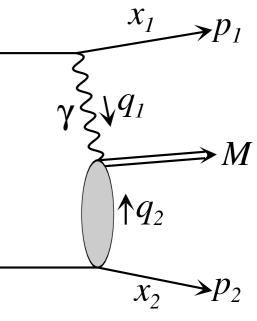
LHCb acceptance, $\mu^+\mu^-$ decay including spin corr.

		$2 < \eta^{\mu} < 4.5$				
		$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$			
	$\sigma^{\psi}_{ m bare}$	360	512			
$\sigma\mathrm{[pb]}$	$\sigma^{\psi}_{ m sc.}$	278	405			
	$\langle S_{\rm eik}^2 \rangle$	0.77	0.79			

• LHCb measure:

$$\sigma^{J/\psi \to \mu^+ \mu^-} (2 < \eta^\mu < 4.5) = 291 \pm 7 \pm 19 \,\mathrm{pb}$$


recall these predictions are (roughly) the lowest values in good agreement with the H1 fit (can be up to $\sim 40\%$ higher).


$$\rightarrow$$
 Predictions with screening effects favoured.

What about differential tests?

Rapidity distribution

- Photon virtuality has kinematic minimum $Q_{1,\min}^2 = \frac{\xi_1^2 m_p^2}{1-\xi_1}$ where $\xi_1 \approx \frac{M_{\psi}}{\sqrt{s}} e^{y_{\psi}}$ assuming photon emitted from proton 1 positive z-direction \rightarrow Forward production \Rightarrow higher photon Q^2 and less peripheral interaction \Rightarrow Smaller S_{eik}^2
 - Predicted rapidity distribution steeper due to survival effects:

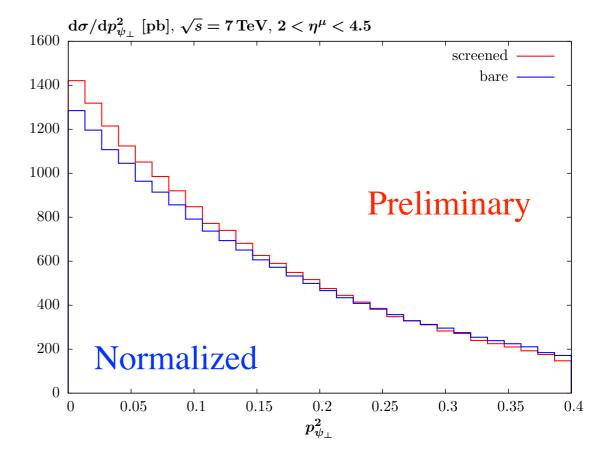
Screened prediction gives better description. Somewhat model dependent (don't have to assume HERA fit)...

p_{\perp} distribution

• Proton p_{\perp} transferred directly to J/ψ . Higher $p_{\psi_{\perp}} \Rightarrow$ less peripheral, and stronger screening. \Rightarrow Survival effects will steepen $p_{\psi_{\perp}}$ distribution.

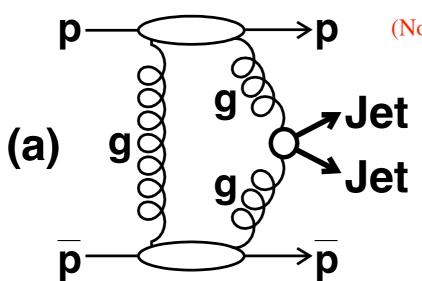
• Fit as an exponential $\sim \exp(-bp_{\psi_{\perp}}^2)$ with

 $b_{\rm el}^{\rm bare} = 5.0 \,{\rm GeV}^{-2}$ $b_{\rm el}^{\rm sc.} = 5.5 \,{\rm GeV}^{-2}$


with $\sim \pm 0.1 \,\text{GeV}^{-2}$ error from parameter uncertainty in HERA fit to $\gamma I\!\!P$ vertex.

$$b_V = b_0 + 4\alpha' \log\left(\frac{W_{\gamma p}}{90 \,\text{GeV}}\right)$$

• LHCb have measured this quite precisely:


$$b_{\rm el}^{\psi} = 5.70 \pm 0.11 \,{\rm GeV}^{-2}$$

→ Survival effects again greatly improve description. Arguably less modeldependent. Crucial to include in any precise phenomenological predictions.

Example process: jet production

• We are interested in the exclusive signal, in which case we have

For inelastic DPE: e.g. POMWIG, B.E. Cox and J.R. Forshaw, Comput.Phys.Commun. 144 (2002) 104-110

(Note does not include survival factor)

• The parton-level dijet amplitude is given by the usual Durham expression:

$$T = \pi^2 \int \frac{d^2 \mathbf{Q}_{\perp} \,\mathcal{M}(gg \to X)}{\mathbf{Q}_{\perp}^2 (\mathbf{Q}_{\perp} - \mathbf{p}_{1_{\perp}})^2 (\mathbf{Q}_{\perp} + \mathbf{p}_{2_{\perp}})^2} \, f_g(x_1, x_1', Q_1^2, \mu^2; t_1) f_g(x_2, x_2', Q_2^2, \mu^2; t_2)$$

Where
$$X = gg, q\overline{q}, ggg, q\overline{q}g$$

Dijet production

• We need the amplitudes for

$$gg \to gg$$
 and $gg \to q\overline{q}$

For colour singlet gluons. $J_z = 0$ selection rule \Rightarrow dominant contribution will come from amplitude for incoming gluons with (++, --)helicities. These are given by

$$\mathcal{M}\left(g(\pm)g(\pm) \to g(\pm)g(\pm)\right) = \delta^{CD} \frac{N_c}{N_c^2 - 1} \frac{32\pi\alpha_s}{(1 - \cos^2\theta)}$$

Other final state helicities give vanishing amplitudes

$$\mathcal{M}\left(g(\pm)g(\pm)\to q_h\overline{q}_{\bar{h}}\right) = \frac{\delta^{cd}}{2N_c} \frac{16\pi\alpha_s}{\left(1-\beta^2\cos^2\theta\right)} \frac{m_q}{M_X} \left(\beta h\pm 1\right) \delta_{h,\bar{h}}$$

For massless quarks this vanishes!

Helicity non-conservation along quark line

 \rightarrow Quark jets dynamically suppressed by selection rule

Production subprocess

• If we consider the exclusive cross section ratio, we find

$$\frac{\mathrm{d}\sigma(q\overline{q})/\mathrm{d}t}{\mathrm{d}\sigma(gg)/\mathrm{d}t} \approx \frac{N_c^2 - 1}{4N_c^3} \frac{m_q^2}{M_X^2} = \frac{2}{27} \frac{m_q^2}{M_X^2}$$

Additional suppression from colour and spin 1/2 quarks

• Taking e.g. $m_b = 4.5 \text{ GeV}$ and $M_X = 40 \text{ GeV}$ we then get

$$\frac{\mathrm{d}\sigma(b\overline{b})/\mathrm{d}t}{\mathrm{d}\sigma(gg)/\mathrm{d}t} \approx 10^{-3}$$

Huge suppression in b quark jets (increasing with M_X). Completely unlike inclusive case. See also: $H \rightarrow b\overline{b}$

$$\rightarrow$$
 What about light quark jets?

Light quark jets

• For light quark jets $(m_q \rightarrow 0)$ the leading order $J_z = 0$ production amplitude (dominant for CEP) will vanish. \Rightarrow Must consider sub-leading $|J_z| = 2$ contribution. Find that:

$$\mathcal{M}(g(\pm)g(\mp) \to q_h \overline{q}_{\overline{h}}) = \frac{\delta^{cd}}{2N_c} 8\pi \alpha_s \left(\frac{1 \pm h\cos\theta}{1 \mp h\cos\theta}\right)^{1/2} \delta_{h,-\overline{h}}$$

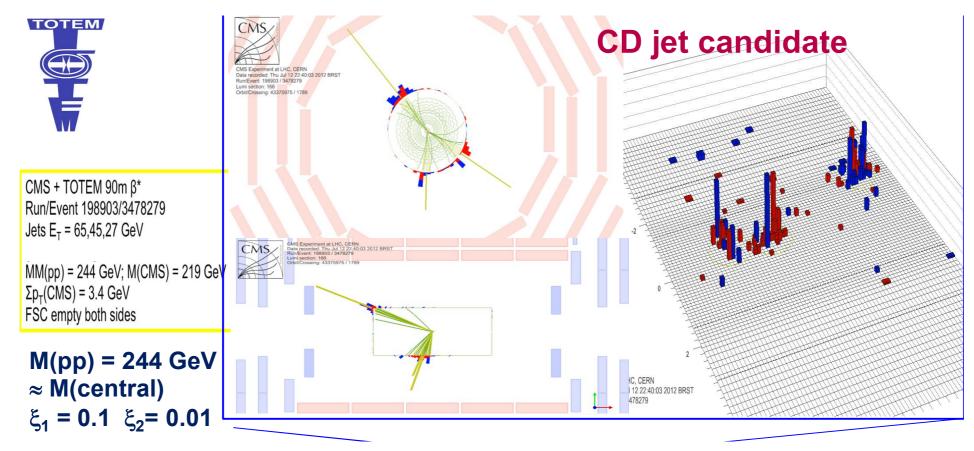
• In general such a $|J_z| = 2$ contribution is suppressed in CEP by

$$\frac{\sigma(|J_z|=2)}{\sigma(J_z=0)} \sim \frac{\left\langle p_{\perp}^2 \right\rangle^2}{\left\langle Q_{\perp}^2 \right\rangle^2} \xleftarrow{10^{-2}}$$

Average outgoing proton transverse momentum (sub- GeV^2)

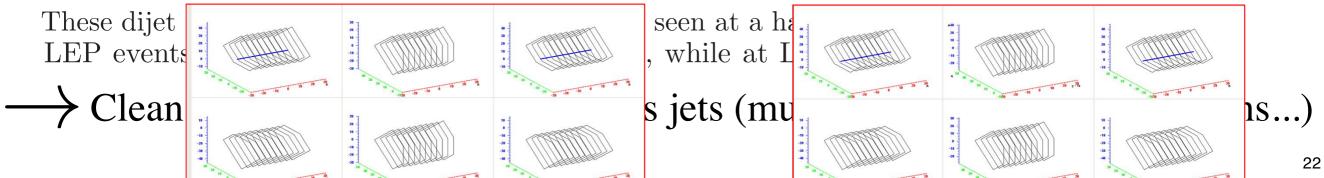
Average gluon transverse momentum in loop $\sim \text{several GeV}^2$

• Combining these we have

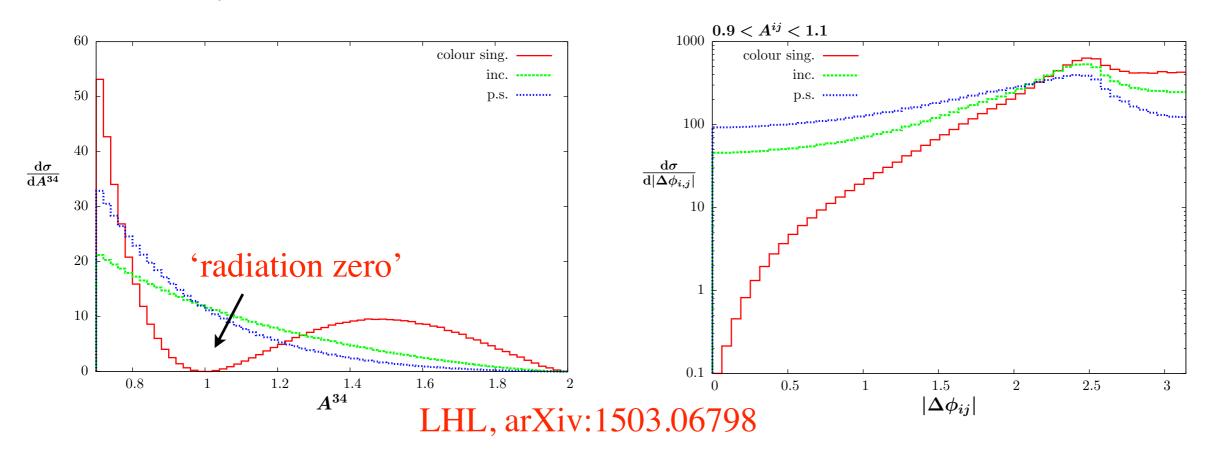

$$\frac{\mathrm{d}\sigma^{J_z=\pm 2}(q\overline{q})/\mathrm{d}t}{\mathrm{d}\sigma(gg)/\mathrm{d}t} \approx \frac{N_c^2 - 1}{16N_c^3} \frac{\left\langle p_{\perp}^2 \right\rangle^2}{\left\langle Q_{\perp}^2 \right\rangle^2} \sim 10^{-4}_{\text{For one flavour}} \approx \frac{10^{-4}}{16N_c^3} \approx \frac{10^{-4}}{16N_c^3} \approx 10^{-4}_{\mathrm{For one flavour}}$$

 \rightarrow Huge suppression in light quark jets

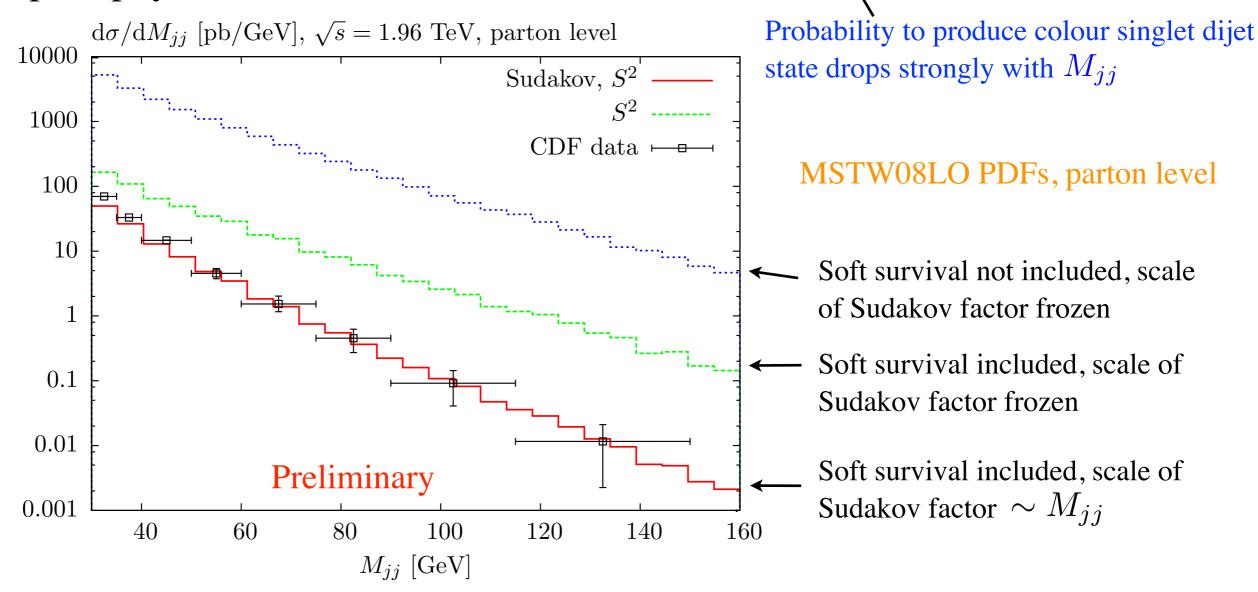
Gluon jet dominance


From the above considerations, we expect dijet events to be almost entirely (colour singlet) gg Verified in CDF data sample of $b\overline{b}$ jets

CEP of dijets offers the possibility of observing the isolated production of gluon jets at the LHC.


CMS + TOTEM event displays

Mike Albrow's EDS 2013 summary talk, arXiv:1310.7047 :


Trijet production

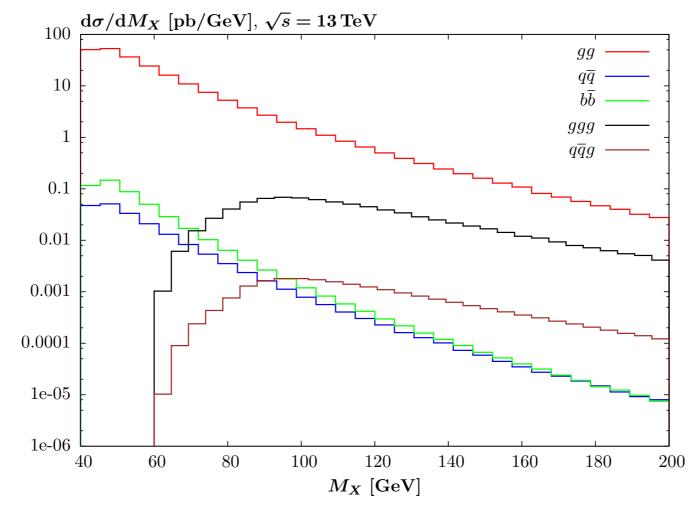
- Consider three-jet production, proceeds via $gg \rightarrow ggg$ and $gg \rightarrow q\overline{q}g$
- $q\overline{q}g$: configuration with g becoming soft/collinear to q/\overline{q} driven by two-jet $q\overline{q}$ amplitude, which vanishes for $J_z = 0$ gluons and $m_q = 0$.
- \rightarrow Expect relative enhancement of 'Mercedes-like' configuration for $q\overline{q}g$ events.
- In addition, new result: both ggg and $q\overline{q}g$ amplitudes for c.s. initial gluons completely vanish for certain configurations, if all particle momenta lie in a plane ($\Delta \phi_{ij} = 0, \pi$ for final--state particles). Under study.

CDF Collab., Phys.Rev.D77:052004,2008 Tevatron cross sections

- Can compare results of the MC with the CDF measurement.
- See clearly how both soft survival effects and Sudakov factor (non-pert. and pert. physics) are crucial to describe data.

Made with particular choice of S^2 model and PDFs \Rightarrow more measurements (different \sqrt{s} ...) needed to test theory further...

Also, caveat: only parton level!


LHC cross sections

• Predictions for $\sqrt{s} = 13$ TeV : σ [pb] $|\eta_j| < 2.5$ anti $-k_t$, R = 0.6

	$M_X(\min)$	gg	$q\overline{q}$	$b\overline{b}$	ggg	$gq\overline{q}$
$ p_{\perp,j} > 20 \mathrm{GeV}$:	→ 75	120	0.073	0.12	6.0	0.14
	→ 150	4.0	1.4×10^{-3}	1.7×10^{-3}	0.78	0.02
$ p_{\perp,j} > 40 \text{ GeV}$	→ 250	0.13	5.2×10^{-5}	5.2×10^{-5}	0.018	5.0×10^{-4}

one flavour

MMHT14 LO PDFs

Summary and outlook

• Have discussed new 'Superchic 2' MC. Builds on previous MC, but with significant changes/extensions:

- Theoretical improvements, most important a fully differential treatment of survival effects. Crucial to have this in many cases.
- Completely re-structured: LHAPDF interface, and complete calculation performed 'on-line', structured so that additional processes can be easily added.
- New processes added: jets, Higgs, two-photon interactions, double quarkonia...
- In the immediate future: $D\overline{D}$ production will be included. Other processes?
- Will be released on O(Month) timescale, with accompanying paper.