Mueller-Navelet jets at LHC: matching NLL BFKL with fixed NLO calculations

Dimitri Colferai (colferaief fiinntit)

University of Firenze and INFN Firenze
In collaboration with A. Niccoli (Univ. Firenze)

Forward physics and diffraction, Madrid, April 23-rd, 2015

Motivation and Outline

- Motivations
- One of the important longstanding theoretical questions: the behaviour of QCD in the high-energy (Regge) limit $s \gg-t$
- We expect a new kind of dynamics (BFKL dynamics) beyond fixed order perturbative predictions, with amplitudes and cross section governed by power-like behaviour s^{ω}
- For (semi-)hard processes $s \gg-t \gg \Lambda_{\mathrm{QCD}}^{2}$, P.Th still applicable with all-order resummation of logarithmic coefficients $\left(\alpha_{\mathrm{S}} \log s\right)^{n}$
- Outline
- Process suited for study of high energy QCD: Mueller-Navelet dijets
- Review the theoretical description of MN jets within the BFKL approach
- CMS analysis (2012) \rightarrow comparison with BFKL and with MonteCarlo
- Improvement by matching fixed NLO with resummed BFKL: method and preliminary results
- Importance of using the proper jet algorithm (in narrow-jet approx)

Mueller-Navelet jets

One of most famous testing processes for studying PT high-energy QCD at hadron colliders [Mueller Navelet 1987]

Final states with two jets with similar E_{T} and large rapidity separation

- Comparable hard scales (jet energies)
 limit the logarithms of collinear type $\log \left(E_{1} / E_{2}\right)$
- Big separation in rapidity $Y \equiv y_{1}-y_{2} \quad \Rightarrow \quad \operatorname{large} \log \left(s / E_{J}^{2}\right) \sim Y$

Anything can be emitted between the jets

MN Jets in LL approximation

MN jet factorization formula is a convolution of 5 objects

Starting from LL factorization formula $\left[J \equiv\left(y, E_{T}, \phi\right)\right]$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma(s)}{\mathrm{d} J_{1} \mathrm{~d} J_{2}}=\sum_{a, b} & \int_{0}^{1} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \int \mathrm{~d} \boldsymbol{k}_{1} \mathrm{~d} \boldsymbol{k}_{2} \\
& \times f_{a}\left(x_{1}\right) \\
& \times V_{a}^{(0)}\left(x_{1}, \boldsymbol{k}_{1} ; J_{1}\right) \\
& \times G_{\mathrm{LL}}\left(x_{1} x_{2} s, \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \\
& \times V_{b}^{(0)}\left(x_{2}, \boldsymbol{k}_{2} ; J_{2}\right) \\
& \times f_{b}\left(x_{2}\right)
\end{aligned}
$$

where $\frac{\partial}{\partial \log s} G\left(s, \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)=\int \mathrm{d} \boldsymbol{k} K\left(\boldsymbol{k}_{1}, \boldsymbol{k}\right) G\left(s, \boldsymbol{k}, \boldsymbol{k}_{2}\right), \quad K=\alpha_{\mathrm{S}} K_{0}$

- Kinematics characterized by large rapidity gaps among particles
- At LL level the jet vertex condition is trivial (only 1 parton)

MN Jets in NLL approximation

[Bartels, DC, Vacca '02] computed NLL calculations of impact factors for Mueller-Navelet jets

Proved NLL factorization formula $\left[J \equiv\left(y, E_{T}, \phi\right)\right]$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma(s)}{\mathrm{d} J_{1} \mathrm{~d} J_{2}}=\sum_{a, b} & \int_{0}^{1} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \int \mathrm{~d} \boldsymbol{k}_{1} \mathrm{~d} \boldsymbol{k}_{2} \\
& \times f_{a}\left(x_{1}\right) \\
& \times V_{a}^{(1)}\left(x_{1}, \boldsymbol{k}_{1} ; J_{1}\right) \\
& \times G_{\mathrm{NL}}\left(x_{1} x_{2} s, \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \\
& \times \boldsymbol{V}_{b}^{(1)}\left(x_{2}, \boldsymbol{k}_{2} ; J_{2}\right) \\
& \times f_{b}\left(x_{2}\right)
\end{aligned}
$$

where $\frac{\partial}{\partial \log s} G\left(s, \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)=\int \mathrm{d} \boldsymbol{k} K\left(\boldsymbol{k}_{1}, \boldsymbol{k}\right) G\left(s, \boldsymbol{k}, \boldsymbol{k}_{2}\right), \quad K=\alpha_{\mathrm{s}} K_{0}+\alpha_{\mathrm{s}}^{2} K_{1}$

- Pairs of particles can be emitted without rapidity gaps
- At NL level the jet vertex condition is non-trivial (e.g. depends on jet radius R and algorithm)

With LHC we can test these ideas!

CMS analysis of MN jets at 7 TeV

Analysis of the azimuthal decorrelation of the two jets [CMS: FSQ-12-002-pas]

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \phi} \quad \| \quad\langle\cos (m \phi)\rangle=\frac{C_{m}(Y)}{C_{0}(Y)} \equiv \frac{\int \mathrm{d} \phi \frac{\mathrm{~d}^{2}(\sigma \cos (m \phi))}{\mathrm{d} \phi \mathrm{~d} Y}}{\mathrm{~d} \sigma / \mathrm{d} Y}
$$

- Distinguishes BFKL dynamics from fixed order one: they provide different amount of particle emissions between jets, which is responsible for their decorrelation
- $\langle\cos (m \phi)\rangle$ has reduced theoretical scale uncertainties being a ratio of differential cross sections

CMS analysis of MN jets at 7 TeV

Angular distribution $\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \phi} \quad$ with $\quad \phi \equiv\left|\pi-\phi_{1}-\phi_{2}\right|$
Data selection: $E_{T 1,2}>35 \mathrm{GeV},\left|y_{i}\right|<4.7$

CMS analysis of MN jets at 7 TeV

Angular distribution $\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \phi} \quad$ with $\quad \phi \equiv\left|\pi-\phi_{1}-\phi_{2}\right|$

$$
3<\Delta y \equiv Y<6
$$

Some MC are close to data somewhere in ϕ

CMS analysis of MN jets at 7 TeV

Angular distribution $\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \phi} \quad$ with $\quad \phi \equiv\left|\pi-\phi_{1}-\phi_{2}\right|$
Data selection: $E_{T 1,2}>35 \mathrm{GeV},\left|y_{i}\right|<4.7 \quad 6<\Delta y \equiv Y<9.4$

Some MC are close to data somewhere in ϕ
Overall description is not very good

CMS analysis of MN jets at 7 TeV

Data: $E_{T 1,2}>35 \mathrm{GeV},\left|y_{i}\right|<4.7 \quad \Delta y \equiv Y \equiv\left|y_{1}-y_{2}\right|<9.4$

$$
\langle\cos (m \phi)\rangle=\frac{C_{m}(Y)}{C_{0}(Y)} \equiv \frac{\int \mathrm{d} \phi \frac{\mathrm{~d}^{2}(\sigma \cos (m \phi))}{\mathrm{d} \phi \mathrm{~d} Y} \mathrm{C}^{2}}{\mathrm{~d} \sigma / \mathrm{d} Y}
$$

CMS analysis of MN jets at 7 TeV

Data: $E_{T 1,2}>35 \mathrm{GeV},\left|y_{i}\right|<4.7 \quad \Delta y \equiv Y \equiv\left|y_{1}-y_{2}\right|<9.4 \quad m=1$

The larger Y, the more radiation and decorrelation
BFKL was expected to predict more radiation than fixed order \Rightarrow more decorrelation
Some MC agree with data
NLL BFKL estimate has problems $\quad\langle\cos \phi\rangle>1$ for $\mu_{R}=\mu_{F}=E_{T} / 2$

CMS analysis of MN jets at 7 TeV

Data: $E_{T 1,2}>35 \mathrm{GeV},\left|y_{i}\right|<4.7 \quad \Delta y \equiv Y \equiv\left|y_{1}-y_{2}\right|<9.4 \quad m=2$

The larger Y, the more radiation and decorrelation
BFKL was expected to predict more radiation than fixed order \Rightarrow more decorrelation
Some MC agree with data
NLL BFKL still unable to reproduce data

CMS analysis of MN jets at 7 TeV

Data: $E_{T 1,2}>35 \mathrm{GeV},\left|y_{i}\right|<4.7 \quad \Delta y \equiv Y \equiv\left|y_{1}-y_{2}\right|<9.4 \quad m=1,2$

Ratio $\frac{C_{2}}{C_{1}}=\frac{\langle\cos (2 \phi)\rangle}{\langle\cos \phi)\rangle}$

MCs don't agree well with data
NLL BFKL in perfect agreement with data

- Neither BFKL NLL nor fixed order MC give a satisfactory description of data yet
- BFKL NLL still suffers from large scale uncertainties $\sim 10 \div 15 \%$

NLL with BLM scale fixing

[Ducloué,Szymanowski, Wallon '13] proposed to tame large scale dependence of BFKL by fixing μ_{R} with BLM procedure

$$
\mu_{R}^{2}=\exp \left[\frac{1}{2} \chi_{0}-\frac{5}{3}+2\left(1+\frac{2}{3} I\right)\right] E_{T 1} E_{T 2}
$$

NLL with BLM scale fixing

[Ducloué,Szymanowski, Wallon '13] proposed to tame large scale dependence of BFKL by fixing μ_{R} with BLM procedure

$$
\mu_{R}^{2}=\exp \left[\frac{1}{2} \chi_{0}-\frac{5}{3}+2\left(1+\frac{2}{3} I\right)\right] E_{T 1} E_{T 2}
$$

NLL BFKL + BLM provides good description of data

NLL with BLM scale fixing

[Ducloué,Szymanowski, Wallon '13] proposed to tame large scale dependence of BFKL by fixing μ_{R} with BLM procedure

$$
\mu_{R}^{2}=\exp \left[\frac{1}{2} \chi_{0}-\frac{5}{3}+2\left(1+\frac{2}{3} I\right)\right] E_{T 1} E_{T 2}
$$

NLL BFKL + BLM provides good description of data

NLL with BLM scale fixing

[Ducloué,Szymanowski, Wallon '13] proposed to tame large scale dependence of BFKL by fixing μ_{R} with BLM procedure

$$
\mu_{R}^{2}=\exp \left[\frac{1}{2} \chi_{0}-\frac{5}{3}+2\left(1+\frac{2}{3} I\right)\right] E_{T 1} E_{T 2}
$$

NLL BFKL + BLM provides good description of data

NLL with BLM scale fixing

[Ducloué,Szymanowski, Wallon '13] proposed to tame large scale dependence of BFKL by fixing μ_{R} with BLM procedure

$$
\mu_{R}^{2}=\exp \left[\frac{1}{2} \chi_{0}-\frac{5}{3}+2\left(1+\frac{2}{3} I\right)\right] E_{T 1} E_{T 2} \sim 20^{2} E_{T 1} E_{T 2}
$$

Very large renorm. scale

NLL BFKL + BLM provides good description of data

Other methods

- [Ducloué,Szymanowski,Wallon '14]
try to take into account energy-momentum conservation by using an effective rapidity $Y_{\text {eff }}$, as suggested by [Del Duca, Schmidt]
- [Caporale, Ivanov, Murdaca, Papa '14]
consider various representations of the NLL cross section by fixing energy scales with PMS, FAC, BLM

Underlying idea: to effectively include higher-orders

Why not including known NLO order?

Matching BFKL with Fixed NLO

Our aim is to merge fixed NL order and NLL BFKL resummation

- more reliable results \Rightarrow improve description of data
- correctly reproduce not only ratios but absolute values

Matching BFKL with Fixed NLO

Our aim is to merge fixed NL order and NLL BFKL resummation

- more reliable results \Rightarrow improve description of data
- correctly reproduce not only ratios but absolute values

Standard matching procedure:

- add to BFKL the full perturbative NLO result $\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)$
- subtract the $\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)$ part already included in BFKL

Matching BFKL with Fixed NLO

Our aim is to merge fixed NL order and NLL BFKL resummation

- more reliable results \Rightarrow improve description of data
- correctly reproduce not only ratios but absolute values

Standard matching procedure:

- add to BFKL the full perturbative NLO result $\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)$
- subtract the $\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)$ part already included in BFKL

Results for cross section and C_{m} coefficients

- The implementation is still work in progess
- Preliminary results of central values (no error estimate yet)

Matching (sym. jets $E_{1}, E_{2}>35 \mathrm{GeV}$)

Cross section: NLL BFKL $\quad+\quad$ NLO pert. $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)^{3} \quad-\quad$ BFKL $\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma(s)}{\mathrm{d} J_{1} \mathrm{~d} J_{2}}= & \sum_{a, b} \int_{0}^{1} \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right)\{ \\
& \int \mathrm{d} \boldsymbol{k}_{1} \mathrm{~d} \boldsymbol{k}_{2}\left[V_{a}^{(0+1)}\left(x_{1}, \boldsymbol{k}_{1} ; J_{1}\right) G_{\mathrm{NLL}}\left(x_{1} x_{2} s, \boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) V_{b}^{(0+1)}\left(x_{2}, \boldsymbol{k}_{2} ; J_{2}\right)\right] \\
+ & \frac{\mathrm{d} \hat{\sigma}^{(N L O)}\left(x_{1}, x_{2}\right)}{\mathrm{d} J_{1} \mathrm{~d} J_{2}} \\
- & \int \mathrm{d} \boldsymbol{k}_{1} \mathrm{~d} \boldsymbol{k}_{2}\left[V_{a}^{(0)}\left(x_{1}, \boldsymbol{k}_{1} ; J_{1}\right) \delta^{2}\left(\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right) V_{b}^{(0)}\left(x_{2}, \boldsymbol{k}_{2} ; J_{2}\right)\right] \\
- & \int \mathrm{d} \boldsymbol{k}_{1} \mathrm{~d} \boldsymbol{k}_{2}\left[V_{a}^{(1)}\left(x_{1}, \boldsymbol{k}_{1} ; J_{1}\right) \delta^{2}\left(\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right) V_{b}^{(0)}\left(x_{2}, \boldsymbol{k}_{2} ; J_{2}\right)\right] \\
- & \int \mathrm{d} \boldsymbol{k}_{1} \mathrm{~d} \boldsymbol{k}_{2}\left[V_{a}^{(0)}\left(x_{1}, \boldsymbol{k}_{1} ; J_{1}\right) \delta^{2}\left(\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right) V_{b}^{(1)}\left(x_{2}, \boldsymbol{k}_{2} ; J_{2}\right)\right] \\
- & \left.\int \mathrm{d} \boldsymbol{k}_{1} \mathrm{~d} \boldsymbol{k}_{2}\left[V_{a}^{(0)}\left(x_{1}, \boldsymbol{k}_{1} ; J_{1}\right) \alpha_{\mathrm{s}} \log \frac{\hat{s}}{s_{0}} K_{0}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) V_{b}^{(0)}\left(x_{2}, \boldsymbol{k}_{2} ; J_{2}\right)\right]\right\}
\end{aligned}
$$

Matching (sym. jets $E_{T 1}, E_{T 2}>35 \mathrm{GeV}$)

$$
\mathrm{C}_{0}=\mathrm{d} \mathrm{\sigma} / \mathrm{dY}
$$

Matching (sym. jets $E_{T 1}, E_{T 2}>35 \mathrm{GeV}$)

$C_{0}=d \sigma / d Y$

LO+NLO cross section obtained with NLOJET++ [Nagy] is negative!
Large errors due to very slow convergence in MC integration

Matching (sym. jets $E_{T 1}, E_{T 2}>35 \mathrm{GeV}$)

$C_{0}=d \sigma / d Y$

LO+NLO cross section obtained with NLOJET++ [Nagy] is negative!
Large errors due to very slow convergence in MC integration
However, also the subtraction is negative
Their difference is moderate

Matching (sym. jets $E_{T 1}, E_{T 2}>35 \mathrm{GeV}$)

$C_{0}=d \sigma / d Y$

LO+NLO cross section obtained with NLOJET++ [Nagy] is negative!
Large errors due to very slow convergence in MC integration
However, also the subtraction is negative
Their difference is moderate
Matched cross section is positive, of the same magnitude of NLL BFKL prediction

Matching (azimuthal coeff. C_{1})

$C_{1}=d \sigma \cos \phi / d Y$

$C_{1}=d \sigma \cos \phi / d Y$

Matching (azimuthal coeff. C_{1})

$C_{1}=d \sigma \cos \phi / d Y$

Large errors of NLO calculation due to very slow convergence in MC integration

Matching (azimuthal coeff. C_{1})

$C_{1}=d \sigma \cos \phi / d Y$

Large errors of NLO calculation due to very slow convergence in MC integration Moderate difference between NLO and subtraction

Matching (azimuthal coeff. C_{1})

$C_{1}=d \sigma \cos \phi / d Y$

Large errors of NLO calculation due to very slow convergence in MC integration Moderate difference between NLO and subtraction Matched C_{1} of the same magnitude of NLL BFKL prediction but definitely different at intermediate $Y \simeq 4 \div 6$

PT instability of symmetric jets

It is well known that cross section of jets at NLO is very sensitive to the asymmetry parameter $\Delta=E_{T 1}-E_{T 2}$ [Frixione,Ridolf '97]
The leading collinear singularity for real emission is given by

$$
\begin{aligned}
\sigma^{(r)} & \propto \int \mathrm{d} \boldsymbol{k}_{1} \mathrm{~d} \boldsymbol{k}_{2} \Theta\left(\left|\boldsymbol{k}_{1}\right|-E\right) \Theta\left(\left|\boldsymbol{k}_{2}\right|-(E+\Delta)\right) \frac{1}{\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right)^{2}+\epsilon^{2}} \\
& =A(\Delta, \epsilon)+B \log (\epsilon)-C(\Delta+\epsilon) \log (\Delta+\epsilon)
\end{aligned}
$$

thus fixed order PTh is not reliable in this case (finite, but infinite deriv at $\Delta=0$)

PT instability of symmetric jets

It is well known that cross section of jets at NLO is very sensitive to the asymmetry parameter $\Delta=E_{T 1}-E_{T 2}$ [Frixione,Ridolfi '97]
The leading collinear singularity for real emission is given by

$$
\begin{aligned}
\sigma^{(r)} & \propto \int \mathrm{d} \boldsymbol{k}_{1} \mathrm{~d} \boldsymbol{k}_{2} \Theta\left(\left|\boldsymbol{k}_{1}\right|-E\right) \Theta\left(\left|\boldsymbol{k}_{2}\right|-(E+\Delta)\right) \frac{1}{\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right)^{2}+\epsilon^{2}} \\
& =A(\Delta, \epsilon)+B \log (\epsilon)-C(\Delta+\epsilon) \log (\Delta+\epsilon)
\end{aligned}
$$

thus fixed order PTh is not reliable in this case (finite, but infinite deriv at $\Delta=0$)

An analogous singularity occurs in the PT expansion of LL BFKL [Andersen, Del Duca et al. '01]

$$
\sigma_{g g} \propto \frac{1}{(E+\Delta)^{2}}\left[1-\alpha_{\mathrm{s}} Y\left(\frac{2 E \Delta+\Delta^{2}}{E^{2}} \log \frac{2 E \Delta+\Delta^{2}}{(E+\Delta)^{2}}+2 \log \frac{E}{E+\Delta}\right)\right]
$$

In the matching procedure such collinear $\Delta \log (\Delta)$ cancels out to a large extent, therefore the matching procedure should be safe
$\left\langle\boldsymbol{E}_{\boldsymbol{T}}\right\rangle$ cut: $\quad \frac{1}{2}\left(E_{T 1}+E_{T 2}\right)>35 \mathrm{GeV}$

$\left\langle\boldsymbol{E}_{\boldsymbol{T}}\right\rangle$ cut: $\quad \frac{1}{2}\left(E_{T 1}+E_{T 2}\right)>35 \mathrm{GeV}$

same in log scale

$\left\langle\boldsymbol{E}_{T}\right\rangle$ cut: $\quad \frac{1}{2}\left(E_{T 1}+E_{T 2}\right)>35 \mathrm{GeV}$
$C_{0}=d \sigma / d Y(n b)$

same in log scale

$\left\langle\boldsymbol{E}_{T}\right\rangle$ cut: $\quad \frac{1}{2}\left(E_{T 1}+E_{T 2}\right)>35 \mathrm{GeV}$

$\mathrm{C}_{0}=\mathrm{d} \sigma / \mathrm{dY}(\mathrm{nb})$

Procedure is more stable than that for symmetric jets

$\left\langle\boldsymbol{E}_{T}\right\rangle$ cut: $\quad \frac{1}{2}\left(E_{T 1}+E_{T 2}\right)>35 \mathrm{GeV}$

$\mathrm{C}_{0}=\mathrm{d} \mathrm{\sigma} / \mathrm{dY}$ (nb)

$$
\mathrm{C}_{1}=\mathrm{d} \sigma^{*} \cos (\Delta \phi) / d Y \quad(\mathrm{nb})
$$

same in log scale

$\left\langle\boldsymbol{E}_{T}\right\rangle$ cut: $\quad \frac{1}{2}\left(E_{T 1}+E_{T 2}\right)>35 \mathrm{GeV}$

$\mathrm{C}_{0}=\mathrm{d} \mathrm{\sigma} / \mathrm{dY}$ (nb)

$$
\mathrm{C}_{1}=\mathrm{d} \sigma^{*} \cos (\Delta \phi) / d Y \quad(\mathrm{nb})
$$

$\left\langle\boldsymbol{E}_{\boldsymbol{T}}\right\rangle$ cut: $\quad \frac{1}{2}\left(E_{T 1}+E_{T 2}\right)>35 \mathrm{GeV}$

$\mathrm{C}_{0}=\mathrm{d} \mathrm{\sigma} / \mathrm{dY}$ (nb)

$$
\mathrm{C}_{1}=\mathrm{d} \sigma^{*} \cos (\Delta \phi) / \mathrm{dY} \quad(\mathrm{nb})
$$

$\left\langle\boldsymbol{E}_{T}\right\rangle$ cut: $\quad \frac{1}{2}\left(E_{T 1}+E_{T 2}\right)>35 \mathrm{GeV}$
 $C_{0}=d \sigma / d Y(n b)$

$$
\mathrm{C}_{1}=\mathrm{d} \sigma^{*} \cos (\Delta \phi) / \mathrm{dY} \quad(\mathrm{nb})
$$

same in log scale

Future developments

- Increase "statistics" to reduce MC errors
- Estimate of errors due to variation of:
- μ_{R} and μ_{F} scales
- energy scale s_{0}
- PDF uncertainties
- We strongly suggest experimentalists to perform MN jet analysis with average E_{T} cut: $\frac{1}{2}\left(E_{T 1}+E_{T 2}\right)>E_{\text {cut }}$ in order to avoid perturbative sensitivity to phase space corner $E_{T 1}=E_{T 2}=E_{\mathrm{cut}}$ $\Longrightarrow \quad$ smaller theoretical uncertainties

Jet algorithm and NJA

- Narrow-jet approximation (NJA):
semi-analytic expansion of jet vertices at small "cone size" R [Ivanov-Papa'12]

$$
f \otimes V=A \log (R)+B+\mathcal{O}\left(R^{2}\right)
$$

- Useful approximation for fast (and accurate) computation of jet vertices

Jet algorithm and NJA

- Narrow-jet approximation (NJA):
semi-analytic expansion of jet vertices at small "cone size" R [Ivanov-Papa'12]

$$
f \otimes V=A \log (R)+B+\mathcal{O}\left(R^{2}\right)
$$

- Useful approximation for fast (and accurate) computation of jet vertices
- Used several times in order to compute MN-jets observables, but inconsistently.
- Experimental jet reconstruction uses k_{\perp}-algorithm (IR safe)
- Original NJA computed by using an old (and IR unsafe) algorithm [Furman '82]
- The coefficient A is algorithm-independend, B is not

Jet algorithm and NJA

- Narrow-jet approximation (NJA):
semi-analytic expansion of jet vertices at small "cone size" R [Ivanov-Papa'12]

$$
f \otimes V=A \log (R)+B+\mathcal{O}\left(R^{2}\right)
$$

- Useful approximation for fast (and accurate) computation of jet vertices
- Used several times in order to compute MN-jets observables, but inconsistently.
- Experimental jet reconstruction uses k_{\perp}-algorithm (IR safe)
- Original NJA computed by using an old (and IR unsafe) algorithm [Furman '82]
- The coefficient A is algorithm-independend, B is not
- We recomputed NJA vertices with k_{\perp}-algorithm [DC, Niccoli '15]
- Sizeable impact of algorithm on jet observables:
$\sim 15 \%$ on cross section and $\sim 6 \%$ on angular ratios

NJA in Furman and kT algorithms

$$
\begin{aligned}
I_{q}= & \frac{\alpha_{\mathrm{s}}}{2 \pi}\left(k^{2}\right)^{\gamma} \mathrm{e}^{\mathrm{i} n \phi} \int_{x_{J}}^{1} \frac{\mathrm{~d} \zeta}{\zeta} \sum_{a=q, \bar{q}} f_{a}\left(\frac{x_{J}}{\zeta}\right)\left\{\left[P_{q q}(\zeta)+\frac{C_{A}}{C_{F}} P_{g q}(\zeta)\right] \log \frac{k^{2}}{\mu_{F}^{2}}+\right. \\
& -2 \zeta^{-2 \gamma}\left[P_{q q}(\zeta)+P_{g q}(\zeta)\right] \log \frac{R}{\langle\max (\zeta, \bar{\zeta})\rangle_{C}}-\frac{\beta_{0}}{2} \log \frac{k^{2}}{\mu_{R}^{2}} \delta(1-\zeta) \\
& +C_{A} \delta(1-\zeta)\left\{\chi_{n \nu}^{(0)} \log \frac{s_{0}}{k^{2}}+\frac{85}{18}+\frac{\pi^{2}}{2}+\frac{1}{2}\left[\psi^{\prime}\left(1+\gamma+\frac{n}{2}\right)-\psi^{\prime}\left(\frac{n}{2}-\gamma\right)-\chi_{n \nu}^{(0)} 2\right]\right\} \\
& +\left(1+\zeta^{2}\right)\left\{C_{A}\left[\frac{\left(1+\zeta^{-2 \gamma}\right) \chi_{n \nu}^{(0)}}{2(1-\zeta)_{+}}-\zeta^{-2 \gamma}\left(\frac{\log (1-\zeta)}{1-\zeta}\right)_{+}\right]\right. \\
& \left.+\left(C_{F}-\frac{C_{A}}{2}\right)\left[\frac{\bar{\zeta}}{\zeta^{2}} I_{2}-\frac{2 \log \zeta}{\bar{\zeta}}+2\left(\frac{\log (1-\zeta)}{1-\zeta}\right)\right]\right\} \\
& +\delta(1-\zeta)\left[C_{F}\left(3 \log 2-\frac{\pi^{2}}{3}-\frac{9}{2}+\left\langle\mathbf{3}-\frac{\boldsymbol{\pi}^{2}}{\mathbf{3}}-\mathbf{3} \log \mathbf{2}\right\rangle{ }_{K}\right)-\frac{10}{9} n_{f} T_{R}\right] \\
& \left.+C_{A} \zeta+C_{F} \bar{\zeta}+\frac{1+\bar{\zeta}^{2}}{\zeta}\left[C_{A} \frac{\bar{\zeta}}{\zeta} I_{1}+2 C_{A} \log \frac{\bar{\zeta}}{\zeta}+C_{F} \zeta^{-2 \gamma}\left(\chi_{n \nu}^{(0)}-2 \log \bar{\zeta}\right)\right]\right\}
\end{aligned}
$$

where $\gamma \equiv \mathrm{i} \nu-1 / 2, \beta_{0} \equiv\left(11 C_{A}-4 n_{f} T_{R}\right) / 3$

NJA in Furman and kT algorithms

$$
\begin{aligned}
I_{g}= & \frac{\alpha_{\mathrm{s}}}{2 \pi}\left(k^{2}\right)^{\gamma} \mathrm{e}^{\mathrm{i} n \phi} \int_{x_{J}}^{1} \frac{\mathrm{~d} \zeta}{\zeta} f_{g}\left(\frac{x_{J}}{\zeta}\right) \frac{C_{A}}{C_{F}}\left\{\left[P_{g g}(\zeta)+\frac{C_{A}}{C_{F}} 2 n_{F} P_{q g}(\zeta)\right] \log \frac{k^{2}}{\mu_{F}^{2}}+\right. \\
& -2 \zeta^{-2 \gamma}\left[P_{g g}(\zeta)+2 n_{f} P_{q g}(\zeta)\right] \log \frac{R}{\langle\max (\zeta, \bar{\zeta})\rangle_{\boldsymbol{C}}}-\frac{\beta_{0}}{2} \log \frac{k^{2}}{4 \mu_{R}^{2}} \delta(1-\zeta) \\
& +C_{A} \delta(1-\zeta)\left\{\chi_{n \nu}^{(0)} \log \frac{s_{0}}{k^{2}}+\frac{1}{2}\left[\psi^{\prime}\left(1+\gamma+\frac{n}{2}\right)-\psi^{\prime}\left(\frac{n}{2}-\gamma\right)-\chi_{n \nu}^{(0)}{ }^{2}\right]\right. \\
& \left.+\frac{1}{12}+\frac{\pi^{2}}{6}+\left\langle\frac{\mathbf{1 3 1}}{\mathbf{3 6}}-\frac{\boldsymbol{\pi}^{\mathbf{2}}}{\mathbf{3}}-\frac{\mathbf{1 1}}{\mathbf{3}} \log \mathbf{2}\right\rangle_{K}\right\} \\
+ & 2 C_{A}\left(1-\zeta^{-2 \gamma}\right)\left[\left(\frac{1}{\zeta}-2+\zeta \bar{\zeta}\right) \log \bar{\zeta}+\frac{\log (1-\zeta)}{1-\zeta}\right] \\
+ & 2 C_{A}\left[\frac{1}{\zeta}+\frac{1}{(1-\zeta)+}-2+\zeta \bar{\zeta}\right]\left[\left(1+\zeta^{-2 \gamma}\right) \chi_{n \nu}^{(0)}-2 \log \zeta+\frac{\bar{\zeta}^{2}}{\zeta^{2}} I_{2}\right] \\
& {\left[2 \frac{C_{F}}{C_{A}} \zeta \bar{\zeta}+\left(\zeta^{2}+\bar{\zeta}^{2}\right)\left(\frac{C_{F}}{C_{A}} \chi_{n \nu}^{(0)}+\frac{\bar{\zeta}}{\zeta} I_{3}\right)\right.} \\
& \left.\left.+\delta(1-\zeta)\left(-\frac{1}{12}+\left\langle\frac{\mathbf{2}}{\mathbf{3}} \log \mathbf{2}-\frac{\mathbf{2 3}}{\mathbf{3 6}}\right\rangle_{\boldsymbol{K}}\right)\right]\right\}
\end{aligned}
$$

Furman VS kT algorithm in NJA

Differential cross section ($R=0.5$)

NJA within 4-6\% of exact result
Wrong algorithm \Rightarrow discrepancy $\sim 20 \%$

Furman VS kT algorithm in NJA

Angular ratios $C_{m} / C_{n}=\langle\cos (m \phi)\rangle /\langle\cos (n \phi)\rangle$ for $R=0.5$

NJA within 2% of exact result
Wrong algorithm \Rightarrow discrepancy $\sim 5 \%$

Choice of algorithm is important

Conclusions and outlook

- Mueller-Navelet jets appear to be a good observable for demonstrating presence of BFKL dynamics at high energy
- Fixed order MC and NLL BFKL quite different, in some cases close to data, but overall agreement is not good
- NLL predictions suffer scale uncertainties $\sim 15 \%$

Satisfactory phenomenology with a scale-fixing at very large scale $\mu_{R} \sim 20 E_{T J}$

Conclusions and outlook

- Mueller-Navelet jets appear to be a good observable for demonstrating presence of BFKL dynamics at high energy
- Fixed order MC and NLL BFKL quite different, in some cases close to data, but overall agreement is not good
- NLL predictions suffer scale uncertainties $\sim 15 \%$

Satisfactory phenomenology with a scale-fixing at very large scale $\mu_{R} \sim 20 E_{T J}$

- We propose to match fixed order and resummed calculations in order to obtain more accurate and stable predictions
- Preliminary results are encouraging, in particular with asymmetric jets or E_{T}-sum cut
$\longrightarrow \quad$ new experimental analysis is required
- We provide the NJA for k_{\perp} algorithm
- Full analysis with estimate of errors is in the way

