CEP at LHCb

 $\mathsf{Dan} \; \underset{_{\mathsf{CERN}}}{\mathsf{Johnson}}$

on behalf of the LHCb collaboration

$$24^{\rm th}$$ April 2015 Madrid meeting of WG for Forward Physics at the LHC

D. Johnson (CERN)

Diffraction at LHCb

24-04-2015 1 / 22

- Forward physics at LHCb
- O The LHCb detector
- Sentral Exclusive Production at LHCb
 - Single charmonium (J Phys G41 055002)
 - Double charmonium (J Phys G41 115002)
 - Single bottomonium (preliminary)
- LHCb prospects for Run 2

Forward physics at LHCb: studying QCD

Hard QCD:

- Perturbative and predictable
- Abundant experimental tests

Soft QCD:

- Difficult to calculate
- Crucially important: describes bound hadrons and the vacuum!
- Many opportunities for experimental input

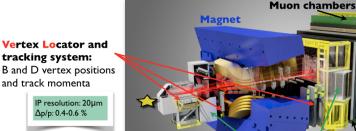
Many open questions:

- Study of colourless objects: pomeron, odderon
- Existence of glueballs?
- Gluon PDF rise violates unitarity: new QCD phenomenology at low energy (saturation?)

Forward physics at LHCb

Diffraction:

- processes mediated by colour singlet exchange between colliding hadrons, with large rapidity gaps in the final state
 - Exchange involving pomeron: probe g(x)
 - ... in the low-x region where poorly constrained
 - ... but region of great interest: e.g. describe underlying event
 - ... and where saturation effects could contribute
 - Cross sections modified by odderon etc
- Must either tag outgoing protons or detect proton remnants
- ... requires detector coverage at $\eta > 5!$
- LHCb instruments:
 - 2 < η < 5
 (-3.5 < η < -1.5)
- Can exploit pp and pA collisions



24-04-2015 4 / 22

The LHCb detector

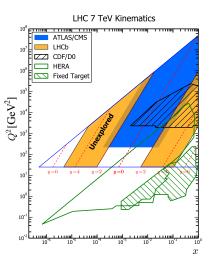
- Downstream: $2 < \eta < 5$
- Upstream: $(-3.5 < \eta < -1.5)$
- Maximum rapidity gap 3.5 units
- Can trigger on very low p_T tracks

- For diffractive physics need to detect outgoing proton or fragmentation or
- at least detect central system including presence of rapidity gap
 - All diffractive events will have a large rapidity gap
 - Most pp interactions distribute particles throughout 4π

RICH detectors:

 K/π separation

• LHCb trigger reduces 40MHz \rightarrow (hardware) 1MHz \rightarrow (software trigger) 3 kHz

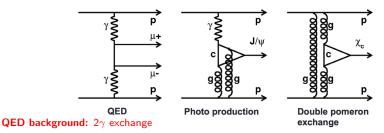

D. Johnson (CERN)

Calorimeters

SPD

The LHCb detector

- LHCb explores an unusual portion of x - Q² down to x = 10⁻⁶
- Complementary to LHC GPDs
- Effectively one colliding parton in a well-understood region, one unknown
- LHCb run 1 data set: 3 fb⁻¹ pp collisions: 1.2% precision(!) [JINST 9 12005]
 - LHCb average number of interactions per bunch crossing ~ 1.5 : ideal
 - Low multiplicity required (to establish rapidity gap) so single-interaction events only


.∃ >

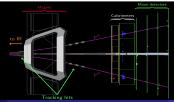
LHCb diffractive measurements

.⊒ . ►

Central Exclusive Production at LHC

Interactions of the form $pp \rightarrow pEp$

• QED process with small proton form-factor corrections

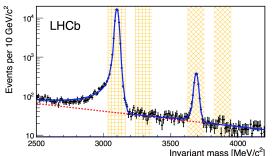

Pomeron exchange:

- Pomeron is, at leading order, a pair of gluons in ++ state
- Photoproduction: Photon-pomeron fusion
 - Probes gluon density at small values of proton's momentum fraction, x
 - Perturbative calculations accessible for higher mass of E
- Double pomeron exchange: Pomeron-pomeron fusion
 - *E* must be neutral PC = ++, no net flavour: $f_{0,2}, \chi_{c,b}, \gamma\gamma, JJ, H$

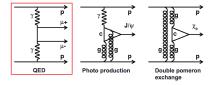
Differential production cross-section $\frac{d\sigma}{dv}$

Selection: J/ψ or $\psi(2S) \rightarrow \mu^+\mu^-$ in 930 pb⁻¹ 7TeV data

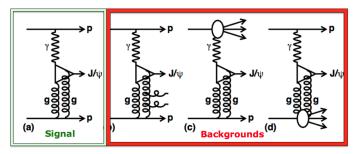
- Hardware trigger:
 - 1 muon with $p_T > 400$ MeV, or dimuon with each $p_T > 80$ MeV
 - Number of SPD hits < 10
- Software trigger:
 - $\bullet~$ Dimuon with mass > 2.9 GeV, or with mass < 1 GeV and $p_T<$ 900 MeV and distance of closest approach < 150 mm
- Offline:
 - Two identified muons in $2 < \eta(\mu) < 4.5$
 - No photons, no other forward tracks: $\Delta y = 3.5$
 - No backward tracks: $\Delta y = 1.7$
 - Dimuon mass in 65 MeV mass window of the J/ψ and $\psi(2S)$ masses.



Diffraction at LHCb


(J Phys G41 055002)

'Empty-detector' signal

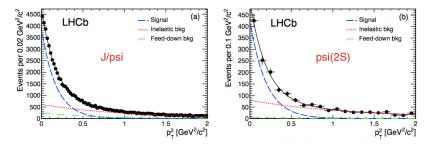

• Fit invariant mass: isolate QED background

- Signal: Crystal ball function: 56,000 J/ψ, 1,600 ψ(2S)
- **QED background:** Exponential (1% J/ψ and 17% $\psi(2S)$ contamination)

A number of peaking backgrounds remain:

- 'Feed-down' decays: contamination can be estimated
 - $\psi(2S) \rightarrow J\psi\pi\pi$: 2.5 \pm 0.2%
 - $\chi_c \rightarrow J\psi\gamma \ 7.6 \pm 0.9\%$
 - $X(3872) \rightarrow \psi(2S)\gamma \ 2.0 \pm 2.0\%$
- Inelastic CEP background

• These backgrounds tend to produce a J/ψ or $\psi(2S)$ spectrum with harder p_T distribution than the exclusive signal

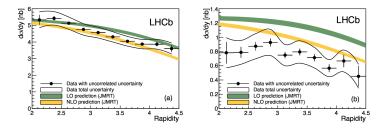

D. Johnson (CERN)

24-04-2015 11 / 22

(J Phys G41 055002)

Determining exclusive contribution

• Fit the p_T^2 distribution of the $J/\psi/\psi(2S)$ candidates

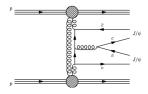


- Feed-down background: Yield and shape determined using data
- Inelastic background: Yield and shape vary
 - J/ψ slope .97 \pm .04 and $\psi(2S)$ slope .8 \pm .2 consistent with HERA
- Exclusive signal: Yield and shape vary
 - $\bullet\,$ Signal slope 5.7 \pm .1 and 5.1 \pm .7 consistent with Regge theory extrapolation of HERA data
 - Signal purity: $59\pm1\%~(J/\psi)$ and $52\pm7\%~(\psi(2S))$
- Largest systematic uncertainties arise through the description of the p_T^2 fit

D. Johnson (CERN)

Interpretation

- LO and NLO¹ extrapolations from HERA data have been performed
- J/ψ (left) and $\psi(2S)$ (right) data are superimposed: good agreement with NLO

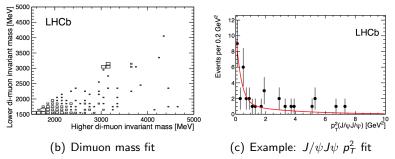

D. Johnson (CERN)

2) Double charmonium production

Production cross-section: $pp \rightarrow p(X)p$, $X = \{J/\psi J/\psi, J/\psi \psi(2S), \psi(2S)\psi(2S), \chi_{ci}\chi_{ci}\}$

Motivation

- Exchange of two pomerons
- Cross-section and mass spectrum sensitive to exotics: e.g. glueballs or tetraquarks
- Relate cross section to calculated $\sigma(gg \rightarrow J/\psi J/\psi)$ using Durham model²


Selection: in 3 fb⁻¹ *pp* collisions

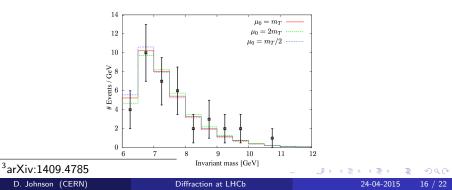
- Very similar to exclusive $J/\psi \ / \ \psi(2S)$ analysis
- No additional tracks reconstructed in the VELO
- No additional photon activity
- Reconstruct $\chi_c \rightarrow J/\psi\gamma$

²Int.J.Mod.Phys. A29 (2014) 1430031

2) Double charmonium production

'Empty-detector' signal

- Cross section calculated for a range of double-charmonium states
- Largest systematic uncertainty relates to the final state geometrical acceptance (estimated for a range of values of dimeson mass, p_T and rapidity)

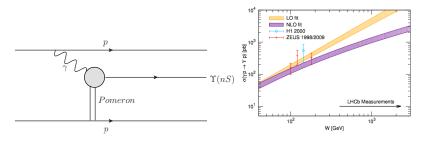

$$\begin{array}{ll} \sigma^{J/\psi\,J/\psi} &= 65 \pm 11 \ ({\rm stat})^{+6}_{-13}({\rm syst}) \ {\rm pb} \\ \sigma^{J/\psi\,\psi(2S)} &= 72^{+30}_{-20}({\rm stat})^{-10}_{-16}({\rm syst}) \ {\rm pb}, \\ \sigma^{\psi(2S)\psi(2S)} &< 255 \ {\rm pb} \ {\rm at} \ 90\% \ {\rm c.l.}, \\ \sigma^{\chi_{c1}\chi_{c1}} &< 49 \ {\rm pb} \ {\rm at} \ 90\% \ {\rm c.l.}, \\ \sigma^{\chi_{c2}\chi_{c2}} &< 150 \ {\rm pb} \ {\rm at} \ 90\% \ {\rm c.l.}. \end{array}$$

D. Johnson (CERN)

2) Double charmonium production

Interpretation

- First observation of CEP for pairs of charmonium mesons
- $\bullet~$ Estimate of exclusive component in 'empty-detector' signal is 42 \pm 13%
- Measurement of $\sigma(J/\psi J/\psi) = 24 \pm 9pb$ and $\frac{\sigma(J/\psi \psi(25))}{\sigma(J/\psi J/\psi)} = 1.1^{+0.5}_{-0.4}$ in reasonably good agreement with subsequent theoretical calculation³
- Observed $J/\psi J/\psi$ mass spectrum in good agreement with shape (independent of renormalisation/factorisation scales) from MSTW08LO



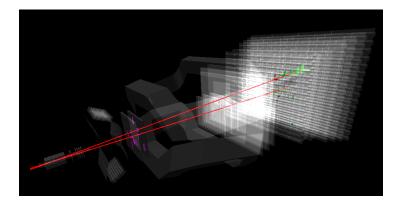
3) Exclusive $\Upsilon(nS)$ (n = 1, 2, 3) production

Production cross-section: $pp \rightarrow p(X)p$, $X = \{\Upsilon(1S), \Upsilon(2S), \Upsilon(3S)\}; (d\sigma(\Upsilon(1S)/dy))$

Motivation

- Occurs by photoproduction
- Perturbatively calculable; sensitive to $g(x)^2$ down to $x = 1.5 \times 10^{-5}$
- Compare to predictions at LO and NLO (diverge greatly in this kinematic regime)
- Compare to different models for Υ wavefunction and *t*-channel exchange (PLB 742 172)
- LHCb probes a new kinematic region ($W_{\pm} = \sqrt{M_{\Upsilon}\sqrt{s}e^{\pm y}}$: photon-proton c.m. energy)

Data set: 2.9 fb⁻¹ pp collisions, at 7 and 8 TeV

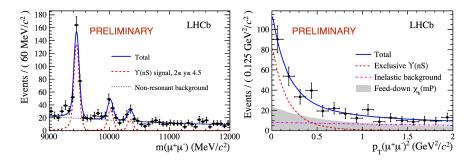

D. Johnson (CERN)

24-04-2015 17 / 22

3) Exclusive $\Upsilon(nS)$ (n = 1, 2, 3) production (LHCb-PAPER-2015-011),

Selection very similar to that for J/ψ analysis

- Two well-reconstructed muons, with invariant mass between 9 and 20 GeV
- No other forward or backward tracks


Candidate: 06:57, July 29th 2011. Mass 9457 MeV/ c^2 and $p_T^2 = 0.2 \text{ GeV}^2/c^2$

D. Johnson (CERN)

3) Exclusive $\Upsilon(nS)$ (n = 1, 2, 3) production (LHCb-PAPER-2015-011)

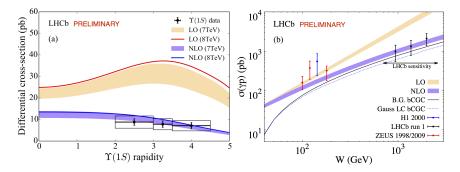
Two-stage fitting procedure

- Invariant mass distribution: isolate continuum dimuon production
- Determine background contamination from $\chi_b \to \Upsilon \gamma$ feed-down in data
- p_T^2 distribution: inelastic background has a harder spectrum
 - Exclusive signal and χ_b background shapes modelled using SuperChiC

Efficiencies

- Correct using simulated samples: trigger and reconstruction $\sim 80\%$ efficient
- Event-level requirements imply single-interaction events only: 20% of Run-I data

D. Johnson (CERN)


Diffraction at LHCb

24-04-2015 19 / 22

3) Exclusive $\Upsilon(nS)$ (n = 1, 2, 3) production (LHCb-PAPER-2015-011)

Systematic uncertainties

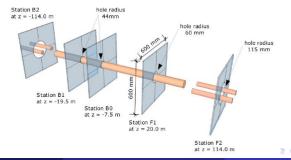
- Largest uncertainties due to description of χ_b background p_T^2 behaviour
- Subdominant contribution from description of exclusive signal
- Installation of forward shower counters for Run-II will have a great impact!

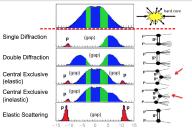
Results

- Compare rapidity distribution with predictions at LO and NLO (JHEP 1311 085)
- Extract underlying photon-proton cross-section and compare to different models
- NLO predictions agree well; slight preference for B.G. model of Υ w.f. (PLB 742 172)

D. Johnson (CERN)

Diffraction at LHCb


24-04-2015 20 / 22


Extending LHCb rapidity coverage

- Biggest challenge currently is to establish the rapidity gap
- High proportion (50% for JψJψ CEP) of 'empty-detector' signal where proton dissociation escapes down the beampipe
- Expecting large run 2 data set at low pile-up

Install scintillators either side of LHCb

• Detect showers from high rapidity particles interacting with the beam-pipe elements

-

Summary

Exciting opportunities for CEP studies at LHCb

- Forward acceptance provides unique window on CEP and other diffractive physics
- Spectroscopy in a very clean environment
- QCD studies
 - very low-x gluon PDF
 - increased \sqrt{s} allows probing of even lower x (CEP $J/\psi \rightarrow x = 2 \times 10^{-6}$)
 - behaviour of QCD in transition from non-perturbative to perturbative regime
 - search for glueballs, odderons, tetraquarks
- Run 1:
 - completed analyses: $J\psi/\psi(2S)$, double-charmonium CEP, $\Upsilon(nS)$
 - many more analyses would be interesting in future: X(3872), light resonances, double open-charm, χ_c, χ_b...
 - exploit *pA* data
- Introduction of FSCs will greatly enhance LHCb's CEP programme

(日) (同) (日) (日)