Follow-up of the impedance of the crab cavities

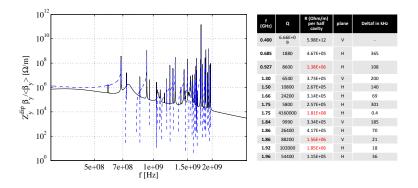
N.Biancacci, E.Métral, B.Salvant

> WP 2.4 Meeting 4 March 2015

Outline

- 2 Kick factor from Crab Cavities
- 3 Single bunch Vs Coupled Bunch

Motivation: We want to evaluate the effect of crab cavities focusing on their single bunch and coupled bunch kick factor in comparison with already existing equipment.



Reminder:

- Crab cavities exhibit HOMs from \approx 500 MHz up to 2 GHz in a location where the transverse β is \approx 3000.
- Some HOM reach the level of $R_s = 10 \text{ G}\Omega/\text{m} \rightarrow \text{it might drive transverse CB instabilities!}$

Kick factor from Crab Cavities

• We define the transverse kick factor as:

$$k_{t} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} Z_{t}(\omega)h(\omega)\mathrm{d}\omega, \qquad (1)$$

where $h(\omega) = \lambda(\omega)^2$ is the power spectrum of the current distribution, Z_t the transverse impedance (dipolar + quadrupolar). Given in units $[k_t]=V/(\text{mm pC})$.

• For a Gaussian bunch we have:

$$h(\omega) = e^{-\omega^2 \sigma_l^2}.$$
 (2)

The kick factor is related to the transverse kick Δy' a particle would get due to an impedance:

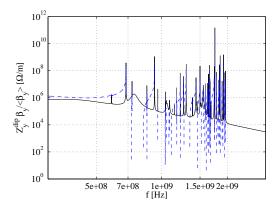
$$\Delta y' = -\frac{N_b q^2 y_0}{\beta^2 E} k_t. \tag{3}$$

with N_b bunch intensity, q, v and m_p , proton particle charge, velocity and rest mass, y_0 the closed orbit position at the impedance location.

• From the loss factor we can recover the usual tune shift formula (same as Sacherer for single bunch, azimuthal mode *m* = 0):

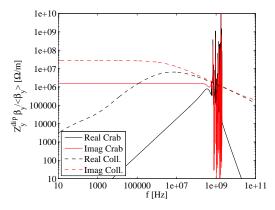
$$\Delta Q_y^{m=0} = \frac{1}{4\pi} \beta_k \Delta y' = -\frac{I_b q T_0}{4\pi \beta^2 E} \bar{\beta}_y k_t', \text{ with } k_t' = \frac{\beta_k}{\bar{\beta}_y} k_t.$$
(4)

• Considering all the Crab Cavities (8 x plane x beam) we have



• $k'_t = 1.4 \text{ V/mm pC}$.

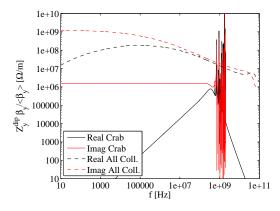
• Considering all the Crab Cavities (8 x plane x beam) we have



• $k'_t = 1.4 \text{ V/mm pC}$.

• The TCP.D6L7.B1 with half gap at $\approx 1 \text{ mm}$ would $k'_t = 3.14 \text{ V/mm pC}$.

• Considering all the Crab Cavities (8 x plane x beam) we have



• $k'_t = 1.4 \text{ V/mm pC}$.

- The TCP.D6L7.B1 with half gap at $\approx 1 \text{ mm}$ would $k'_t = 3.14 \text{ V/mm pC}$.
- All the collimators would give $k'_t = 45.3 \text{ V/mm pC}$.

Single bunch:

- For a single bunch displaced by $y_0 = 1mm$ at the Crab cavities location, with $N_b = 2.2 \cdot 10^{11}$ ppb, the induced voltage is $V = N_b q k'_t y_0 = 50 kV$. This is the voltage seen by the bunch passing through the impedance. The change in transverse energy $\Delta E_t = qV$ will determine the bunch oscillations and tune shift.
- The effect looks negligible comparing with usual equipments like collimators.

Coupled bunch:

- An HOM with shut impedance R_s , merit factor Q and resonant frequency f_r can drive unstable modes \rightarrow the M bunches start oscillating coherently.
- We suppose rigid bunch oscillations (azimuthal m = 0) and derive the unstable frequency as $f_p = (n_x + k_p M + Q_{y_0}) f_0$ with $n_x \in (0..M 1)$ coupled bunch number, k_p line number.
- We choose the most unstable mode $(f_p \simeq f_r)$.
- The kick factor can be defined extending the single bunch case as:

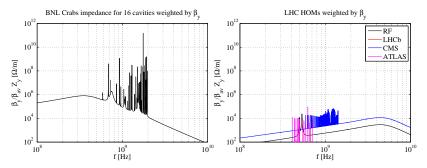
$$k_t = \omega_0 \sum_{p=-\infty}^{+\infty} Z_t(\omega_p) h(\omega_p), \qquad (5)$$

where $\omega_p = \left(n_x + k_p M + Q_{y_0} \right) \omega_0$.

• A transverse HOM can be characterized by shut impedance R_s , merit factor Q and resonant frequency f_r :

$$Z(f) = \frac{f_r}{f} \frac{R_s}{1 - j Q\left(\frac{f_r}{f} - \frac{f}{f_r}\right)}$$

• When falling on a CB line we have $k_t = \omega_0 R_s h(\omega_r)$.



- Comparison of HLLHC (round β* = 15cm) BNL-HOMs Vs main HOMs from nominal LHC (β* = 60cm).
- Several orders of magnitude difference \rightarrow not negligible effect (DELPHI).

Conclusions

- We gave an overview of the effect of crab cavities in single bunch and coupled bunch.
- The single bunch effect of crab cavities can be compared with the one of a single LHC collimator.
- The single bunch effect of crab cavities is negligible comparing to the total LHC collimators contribution.
- The coupled bunch effect of crab cavities is driven by the equipment HOM → orders of magnitude above other machine equipment.

Outlook

- Continuing improving the crab cavities design in order to damp the HOM.
- Studying possible configurations for safe and stable machine operation with this equipment (collide and squeeze).

• · · ·

Thanks for your attention!

Backup

- Each CB line can be driven unstable in presence of an impedance.
- The rise-time and frequency shift can be approximately calculated by means of the Sacherer formula:

$$\Delta \omega_m^{x,y} = \frac{1}{|m|+1} \frac{jq\beta I_b}{2 m_0 \gamma Q_{x_0,y_0} \Omega_0 L_b} \left(Z_{x,y}^{eff} \right)_n$$

where $\Delta \omega_{x,y}^{x,y}$ the CB line complex frequency shift, q is the proton charge, m_0 the proton rest mass, $I_b = e N_b/T_0$ the beam current, T_0 the revolution frequency, ω_0 revolution radial frequency, Q_{x_0,y_0} the machine unperturbed tune, β and γ relativistic factors, $L_b = 4\sigma_z$ with σ_z the rms bunch length, $Z_{x,y}^{eff}$ the impedance weighted by the sinusoidal modes with

$$h(\omega) = \frac{8\tau_b^2}{\pi^4} \left(|m| + 1\right)^2 \frac{1 + (-1)^{|m|} \cos(\omega 4\tau_b)}{\left[(\omega 4\tau_b/\pi)^2 - (|m| + 1)^2\right]^2}$$

and

$$Z_{x,y}^{eff} = \frac{\sum_{p=-\infty}^{+\infty} Z(\omega_p)_{x,y} h(\omega_p)}{\sum_{p=-\infty}^{+\infty} h(\omega_p)}$$

• The chromatic frequency $\omega_{\xi} = \frac{\omega_{\xi}}{\eta}$ shifts the sinusoidal modes (replace $\omega \to \omega - \omega_{\xi}$).

NB: No damper is considered here.

Backup

• A transverse HOM can be characterized by shut impedance R_s , merit factor Q and resonant frequency f_r :

$$Z(f) = \frac{f_r}{f} \frac{R_s}{1 - j \mathcal{Q}\left(\frac{f_r}{f} - \frac{f}{f_r}\right)};$$

• If the bandwidth $\Delta f = \frac{f_r}{Q} \ge f_0$, the mode covers one or more CB lines that are driven unstable.

• If the bandwidth $\Delta f = \frac{f_r}{Q} \ll f_0$, the mode can fall between the CB lines \rightarrow complicated situation due to the many azimuthal modes spaced by f_s .

• If falling on the CB line we can simplify the Sacherer formula

$$\Delta \omega_m^{x,y} = \frac{1}{|m|+1} \frac{jq\beta I_b}{2 m_0 \gamma Q_{x_0,y_0} \Omega_0 L_b} R_s \frac{h(\omega_r)}{\sum_{p=-\infty}^{+\infty} h(\omega_p)}$$

• If not falling on the CB line we are in principle stable.