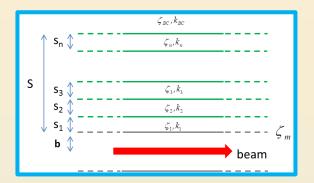
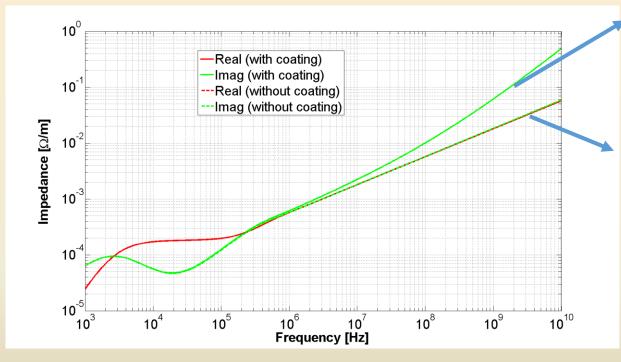


Impedance considerations on the aC coating of the LHC beamscreen


C. Zannini, B. Salvant

Acknowledgments: N. Biancacci, S. Calatroni, E. Métral, G. Rumolo

Impedance model for analytical calculation


- Case with aC coating
 - 5 layer structure
 - 1st layer (aC)
 - 2st layer (Ti)
 - 3st layer (Cu)
 - 4st layer (StSt)
 - 5st layer (Vacuum)

- Case without aC coating
 - 3 layer structure
 - 1st layer (Cu)
 - 2st layer (StSt)
 - 3st layer (Vacuum)

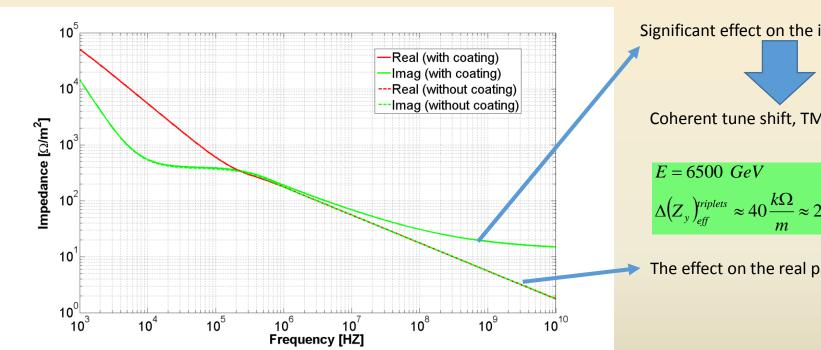
Material	σ _{el} [S/m]	ε _r	Thickness [µm]
aC coating	400	5.4	0.5
Titanium coating	10 ⁶	1	0.1
Copper	109	1	50
Stainless steel	1.35 10 ⁶	1	1000
Vacuum	0	1	Infinity

Longitudinal impedance: effect of aC coating

Significant effect on the imaginary part

$$\Delta \left(\frac{Z}{n}\right)_{eff}^{triplets} \approx 5 \times 10^{-5} \,\Omega \approx 5 \times 10^{-4} \left(\frac{Z}{n}\right)_{eff}^{LHO}$$

The effect on the real part is negligible


No effect on beam induced heating (single beam)

Two beams heating

$$\Delta W(s) = \left(\frac{\omega_0}{\pi}\right)^2 \sum_{p=0}^{\infty} |\Lambda(p\omega_0)|^2 \left\{ \operatorname{Re}\left[Z_{||}^0(p\omega_0)\right] + \left[\Delta y_1(s) + \Delta y_2(s)\right] \operatorname{Re}\left[Z_{||}^1(p\omega_0)\right] \right\} (1 - \cos p\omega_0 \tau_s)$$

First order longitudinal impedance due to the weld No impact of aC coating (3D CST simulations)

Transverse impedance: effect of aC coating

Significant effect on the imaginary part

Coherent tune shift, TMCI thresholds

$$E = 6500 \text{ GeV}$$

$$\Delta \left(Z_{y}\right)_{eff}^{triplets} \approx 40 \frac{k\Omega}{m} \approx 2 \times 10^{-3} \left(Z_{y}\right)_{eff}^{LHC}$$

The effect on the real part is negligible

Why the imaginary part depends on the aC coating?

- Case without aC coating
 - 1 layer structure
 - 1st layer (Cu)

- Case with aC coating
 - 2 layer structure
 - 1st layer (aC)
 - 2st layer (Cu)

From transmission line theory one can derive the surface impedance seen by the beam

$$\zeta_m = \zeta_{Cu}$$

Coating thickness
$$\zeta_{\mathit{Cu}} < \zeta_{\mathit{aC}} \\ \delta_{\mathit{aC}} >> s_{\mathit{ac}} \\ \omega \varepsilon_{\mathit{0}} \varepsilon_{\mathit{r}}^{'} << \sigma_{\mathit{el(aC)}}$$

The aC coating introduces an additional contribution to the imaginary impedance

Summary

- The aC coating, where applied, is expected to increase significantly the imaginary part of the resistive wall beam coupling effective impedance per unit length (about a factor 2)
 - The effect on the full LHC longitudinal impedance is expected to be below 0.1 % (about 0.05%)
 - The effect on the full LHC transverse impedance is expected to be well below 1% (about 0.2% in the worst case scenario)
- No impact is expected on the beam induced heating

Thank you very much for your attention