

## 80 bunch scheme in the LHC

R. Tomás and $X$. Buffat

Thanks to F. Antoniou, G. Arduini, H. Bartosik,
O. Brüning, H. Damerau, S. Gilardoni,
M. Giovannozzi, B. Goddard, V. Kain,
R. de Maria, Y. Papaphilippou, G. Papotti, T. Pieloni, G. Rumolo, E. Shaposhnikova and J. Uythoven

March 12, 2015

## Turn-around time

Since Chamonix 2014 HL-LHC beams need a 7.2s longer SPS ramp (E. Shaposhnikova):

| Phase | Time <br> [minutes] | G. Arduini et al |
| :--- | :---: | :---: |
| Ramp down/precycle | 60 |  |
| Pre-injection checks and preparation | 15 |  |
| Checks with set-up beam | 15 |  |
| Nominal injection sequence | 2ौ |  |
| Ramp preparation | 5 |  |
| Ramp | 25 |  |
| Squeeze | 30 |  |
| Adjust/collisions | 10 |  |
| Total inj. |  |  |
|  | $180-183^{\prime}$ |  |

Maybe 80 bunch scheme helps with turn-around-time

## 80 bunch scheme and 4 PS batch trains



## Comparing to nominal (colliding bunches)

\# IP1\&5 IP2 IP8 Abort Non- \#SPS

|  |  |  |  | gap | Coll. | inj |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| 72 | 2736 | 2452 | 2524 | 120 | 12 | 12 |
| $72^{+}$ | 2808 | 2276 | 2232 | 120 | 12 | 11 |
| 80 | 2800 | 2727 | 2694 | 110 | 8 | 12 |
| $80^{+}$ | 2880 | 2380 | 2366 | 110 | 8 | 10 |

If 3 non-colliding bunches OK, abort gap $=120$ OK.
Else train gap can be shorter by 2 slots ( $950 \rightarrow 900$ ns) Saving 2 SPS injections shortens turn-around-time $\left(183^{\prime} \rightarrow 178^{\prime}\right)$ and decreases IBS emittance growth by $\approx 1 \%$ in first trains.

## Comparing to nominal (luminosity)



## How to find the optimum?

3 PS batch types: 72, 80, 81
SPS trains made of $1,2,3$ or 4 PS batches
(120 different SPS trains)
with $\approx 10$ possible train gaps ( $900-1150 \mathrm{~ns}$ ) and between 10 and 15 SPS injections

This gives about $10^{40}$ possible LHC filling schemes (symmetries are used to find good combinations)

## Long ranges in Nominal



## Long ranges in $80^{+}$



No differences other than fewer non-colliding bunches is better

## 80 bunches $/ 4$ trains merits and issues

Merits:
$\star 5.2 \%$ more luminosity in IP1\&5 (same pile-up)
$\star$ with room for compromises with other IPs
$\star$ Possibly faster turn-around
$\star$ Potential to be a scrubbing beam Issues:
$\star$ SPS to LHC transfer with $4 \times 80=320$ bunches instead of $4 \times 72=288$
$\star$ Injection protection devices (TDI, TCDI, etc) need to "survive" the extra charge
$\star \approx 10 \%$ larger heat load due to e-cloud

## Pushed $8 b+4 e$

Merits:
$\star 7$ PSB bunches can provide $56 \times \mathbf{4} \times \mathbf{9}=2016$ bunches in the LHC
$\star$ Considerably lower e-cloud than 25 ns baseline
$\star$ Larger lumi than 50 ns or plain $8 \mathrm{~b}+4 \mathrm{e}$
$\star$ Smaller $\beta^{*}$ and smaller crossing angle thanks to fewer long ranges.
Issues:
$\star$ Lower luminosity than baseline
$\star$ with $10 \%$ more peak pile-up

## Pushed $8 b+4 e$

T. Pieloni
C. Tambasco


Lower number of long range encounters allows for smaller crossing angle and smaller $\beta^{*}\left(\beta^{*}=10 \mathrm{~cm}\right.$, $\theta=530 \mu m(9 \sigma)$ with crab cavities in the following)

## Pushed 8b+4e: Performance I (preliminary)



## Pushed 8b+4e: Performance II (preliminary)







## Conclusions

$\star 80$ bunch scheme is promissing for performance and flexibility: up to $5.2 \%$ in lumi, turn-around-time, scrubbing beam, 80bunch/3batches, etc
$\star$ Experimentally not yet demonstrated
$\star$ and full LHC potential not yet explored
$\star$ Need to know: minimum number of non-colliding bunches, figure of merit for luminosities in the IPs and abort gap margin.
$\star$ Risk of protection devices to be assessed.

