

80 bunch scheme in the LHC

R. Tomás and X. Buffat Thanks to F. Antoniou, G. Arduini, H. Bartosik, O. Brüning, H. Damerau, S. Gilardoni, M. Giovannozzi, B. Goddard, V. Kain, R. de Maria, Y. Papaphilippou, G. Papotti, T. Pieloni, G. Rumolo, E. Shaposhnikova and J. Uythoven

March 12, 2015

Turn-around time

Since Chamonix 2014 HL-LHC beams need a 7.2s longer SPS ramp (E. Shaposhnikova):

Phase	Time G. Arduini et al [minutes]
Ramp down/precycle	60
Pre-injection checks and preparation	15
Checks with set-up beam	15
Nominal injection sequence	$\frac{29}{5}$ 23' $28'$ @ inj.
Ramp preparation	5 $\int 20$ emj.
Ramp	25
Squeeze	30
Adjust/collisions	10
Total	180- 183'

Maybe 80 bunch scheme helps with turn-around-time

80 bunch scheme and 4 PS batch trains

Comparing to nominal (colliding bunches)

#	IP1&5	IP2	IP8	Abort	Non-	#SPS
				gap	Coll.	inj
72	2736	2452	2524	120	12	12
72^{+}	2808	2276	2232	120	12	11
80	2800	2727	2694	110	8	12
80^+	2880	2380	2366	110	8	10

If 3 non-colliding bunches OK, abort gap=120 OK. Else train gap can be shorter by 2 slots (950 \rightarrow 900ns) Saving 2 SPS injections shortens turn-around-time (183' \rightarrow 178') and decreases IBS emittance growth by \approx 1% in first trains.

Comparing to nominal (luminosity)

#	IP1&5	IP2	IP8	Abort	Non-	#SPS	eq
	2736			gap	Coll.	inj	lude
72	2736	2452	2524	120	12	12	u
72^{+}	+2.6%	-7.2%	-11%	120	12	11	not
80	+2.3%	+11%	+6.7%	110	8	12	AT
80+	+2.3% +5.2%	-3%	-6.2%	110	8	10-	Ц
80^{+}	+5.2%	-3%	-6.2%	110	8	10-	٦

With 80 everybody wins Does IP2 want it? 80⁺ is optimized for IP1&5 Is 80⁺ OK for LHCB? \rightarrow Need input extra $\approx 0.5\%$ fror

How to find the optimum?

3 PS batch types: 72, 80, 81 SPS trains made of 1,2,3 or 4 PS batches (120 different SPS trains) with \approx 10 possible train gaps (900-1150ns) and between 10 and 15 SPS injections

This gives about 10⁴⁰ possible LHC filling schemes (symmetries are used to find good combinations)

Long ranges in Nominal

Long ranges in 80⁺

No differences other than fewer non-colliding bunches is better

80 bunches/4 trains merits and issues

Merits:

- ★ 5.2% more luminosity in IP1&5 (same pile-up)
- ★ with room for compromises with other IPs
- ★ Possibly faster turn-around
- ★ Potential to be a scrubbing beam

Issues:

- ★ SPS to LHC transfer with 4×80=320 bunches instead of 4×72=288
- ★ Injection protection devices (TDI, TCDI, etc) need to "survive" the extra charge
- ★ $\approx 10\%$ larger heat load due to e-cloud

Pushed 8b+4e

Merits:

- ★ 7 PSB bunches can provide 56×4×9=2016 bunches in the LHC
- ★ Considerably lower e-cloud than 25 ns baseline
- ★ Larger lumi than 50 ns or plain 8b+4e
- ★ Smaller β^* and smaller crossing angle thanks to fewer long ranges.

Issues:

- ★ Lower luminosity than baseline
- ★ with 10% more peak pile-up

Pushed 8b+4e

Lower number of long range encounters allows for smaller crossing angle and smaller β^* ($\beta^* = 10$ cm, $\theta = 530 \mu m$ (9 σ) with crab cavities in the following)

Pushed 8b+4e: Performance | (preliminary)

Conclusions

- ★ 80 bunch scheme is promissing for performance and flexibility: up to 5.2% in lumi, turn-around-time, scrubbing beam, 80bunch/3batches, etc
- ★ Experimentally not yet demonstrated
- ★ and full LHC potential not yet explored
- ★ Need to know: minimum number of non-colliding bunches, figure of merit for luminosities in the IPs and abort gap margin.
- \star Risk of protection devices to be assessed.