Review HL-LHC triplet layout

G. Arduini, R. De Maria, M. Giovannozzi Acknowledgment P. Fessia, T. Lefevre, E. Todesco

Conclusion on triplet lengths

- We took into account the new constraints Ezio set for triplet lengths and gradients:
- L<=4.2 m for Q1/Q3
- triplet gradient allowed to exceed 130T/m by $\approx 1-2 \%$
- We found layout and optics solutions that are compatible with:
- triplet gradients <132.6 T/m and L* of 23 m or 24 m
- updated interconnection lengths
- with degraded (5-10\%) β^{*} reach and $\approx 1-2 \%$ integrated luminosity loss and with he magnetic lengths of:
- L=4.2 m for Q1a/Q1b and Q3a/Q3b
- L=7.15 m for Q2a/Q2b
- Need definition of L* in order to finalize the layout and define new position of the BPM (coordinated by integration, instrumentation and coll./exp. interface).
- The final optics and triplet strengths will be optimized and finalized once the layout is frozen.
- For more information see the following contribution: indico.cern.ch/event/371767/contribution/3/material/slides/1.pptx

Layouts sketches

Forbidden areas $\pm 60 \mathrm{~cm}$, assuming best
conceivable electronics.

HL 1.1

Ls 24

Ls 23

- Both layouts, in particular the one for $L^{*}=24 \mathrm{~m}$, degrade BPM distance from LR encounters.
- BPMs need more than $\pm 60 \mathrm{~cm}$ (up to $\pm 1.5 \mathrm{~m}$ with LHC electronics) to cope with bunch trains thus impacting the effectiveness of any IP orbit feedback relying on BPMs.

Backup

Integrate Luminosity vs β^{*}

β^{*} acts on virtual luminosity and HL-LHC scenarios are most sensitive to levelled luminosity and beam currents (burn-off and levelling times dominates).

E $[\mathrm{TeV}]$	N $\left[10^{11}\right]$	$\mathrm{L}_{\text {lev }}$ $\left[10^{34}\right.$ $\left.\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	$\mathrm{L}_{\text {virt } \beta^{*}=15 \mathrm{~cm}}$ $\left[10^{34}\right.$ $\left.\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	$\mathrm{L}_{\text {int }} /$ day $\beta^{*}=15 \mathrm{~cm}$ $\left[f \mathrm{fb}^{-1}\right]$	$\mathrm{L}_{\text {virt }} \beta^{*}=18 \mathrm{~cm}$ (-13.3%) $\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	$\mathrm{L}_{\text {int/ }} / \mathrm{day}$ $\beta^{*}=18 \mathrm{~cm}$
7	2.2	5	20.1	3.17	17.4	-1.73%
7	2.2	7.5	20.1	4.07	17.4	-2.88%
7	1.9	5	15.0	2.93	13.0	-2.55%
7	1.9	7.5	15.0	3.63	13.0	-4.3%

β^{*} not very sensitive for $L_{\text {int }}$ with nominal parameters, at the same time:

- relatively risk free and
- relative impact of β^{*} on $L_{\text {int }}$ increases for lower beam current.

Layout variants and β^{*} reach

Case	$\begin{aligned} & \mathrm{L}^{*} \\ & \text { [m] } \end{aligned}$	$\mathrm{G}_{\mathrm{Q} 1}$ [T/m]	$\begin{aligned} & \mathrm{G}_{\mathrm{Q} 2} \\ & {[\mathrm{~T} / \mathrm{m}]} \end{aligned}$	$\begin{aligned} & \mathrm{G}_{\mathrm{Q} 3} \\ & {[\mathrm{~T} / \mathrm{m}]} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{Q} 1 / 3} \\ & {[\mathrm{~m}]} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{Q2a} / \mathrm{b}} \\ & {[\mathrm{~m}]} \end{aligned}$	$\begin{aligned} & \beta_{\text {pre }}^{*} \\ & {[\mathrm{~cm}]} \end{aligned}$	$\begin{aligned} & \beta^{*}{ }_{\text {max }} \text { at } \\ & \beta^{*}{ }_{15 \mathrm{~cm}} \\ & \hline \end{aligned}$
HL1.1	23	139.8	139.8	139.3	4.0	6.8	44	+0\%
L* 24	24	128.9	130.2	130.4	4.2	7.15	48	+8.2\%
L* 23	23	132.1	130.5	130.6	4.2	7.15	48	+4.3\%
Ls 24 split ${ }^{1}$	24	132.2	129.4	129.6	4.2	7.15/2	49	+12\%
Ls 23 split ${ }^{1}$	23	132.3	129.3	129.6	4.2	7.15/2	48	+7.8\%

${ }^{1}$ Backup plan for Q2a and Q2b for which 65 cm inter-distance is assumed. Not considered to be likely.

The gradient values will be still fine tuned in the range of $\pm 0.3 \mathrm{~T} / \mathrm{m}$ for the final layout to optimize crab cavities voltage and D2-Q4 aperture.

If needed $\mathrm{I}_{\mathrm{Q} 2}$ can be chosen to 7.2 m to approach the old target of $130 \mathrm{~T} / \mathrm{m}$ at cost $<1 \%$ in $\beta^{*}{ }_{\max }$.

Tunability in Q4: L*=24m option

Tunability in Q4: L*=23m option

BPM specifications for orbit and optics

Aperture diameter [mm]	$>98(\mathbf{Q 1}) />1.18$ (others)
Precision in orbit mode	$<1.5 \mu \mathrm{~m}$
Accuracy for finding collisions with 1\% Luminosity	$<30 \mu \mathrm{~m}$
Longitudinal alignment accuracy	1 mm
Maximum linearity error after calibration in turn-by-turn mode	$<0.5 \%$
Maximum non-reproducibility of the triplet and correctors transfer functions	$<10^{-4}$
Bunch population range [p/bunch]	$10^{9}-2.2 \times 10^{11}$

Optimum position w.r.t. parasitic encounters	Sensitivity to missing BPM	Suggested locations for optics measurements	Beta function $\left(\beta_{x, y} \beta_{y, x}\right)[\mathrm{km}]$ (for impendence effects)
D1downstream (best position)	TAS-Q1a (highest sensitivity)	Q2a-Q2b (most critical)	TAS-Q1a (3.1, 3.1) (smallest beta, smallest effect)
Q1b-Q2a	Q1b-Q2a	Q3b-CP	Q1b-Q2a (4.6, 10)
CP-D1	Q2a-Q2b	TAS-Q1a	Q2b-Q3a (13.5,13.5)
Q2a-Q2b	Q2b-Q3a	Q1b-Q2a	D1 downstream (16.6, 7.1)
TAS-Q1a	Q3b-CP	Q2b-Q3a	CP-D1 (18.8, 7.5)
Q3b-CP	CP-D1	CP-D1	Q2a-Q2b (20.4, 5.3)
Q2b-Q3a (worst position)	D1 downstream (lower sensitivity)	D1 downstream (least critical)	Q3b-CP (20.6, 7.9) (larger beta, largest effect)

See WP2 TL meetings on 23/5/2014 at https://indico.cern.ch/event/315532/material/minutes/1.docx

