

Energy reconstruction of high energy muon and neutrino events in KM3NeT

for the KM3NeT collaboration

Drakopoulou Evangelia

N.C.S.R. Demokritos

E. Drakopoulou VLVnT 2015

KM3NeT

- KM3NeT Neutrino telescope with volume of several km³ which will be placed in the Mediterranean Sea.
- The telescope will search for **neutrinos** from <u>galactic</u> and <u>extragalactic</u> astrophysical sources (like Gamma Ray Bursts, Supernovae, Colliding Stars).

- Sky coverage in galactic coordinates for a detector located in the Mediterranean Sea.
 - Dark (light) areas are visible at least 75% (25%) of the time.

KM3NeT - Backgrounds

Co-financed by Greece and the European Union

- **Atmospheric Muons :** contained in the extensive air showers produced by cosmic rays in the atmosphere.
- Atmospheric Neutrinos: produced by charged kaons or pions in cosmic ray interactions in the atmosphere.
- K^{40} : decays of radioactive potassium isotope
- Bioluminescence: life forms that inhabit the deep sea emit light.

Detector Configuration

Muon Energy Reconstruction MultiVariate Analysis

- Muon and Neutrino Energy Estimation: a Multi-Layer Percepton (MLP) Neural Network has been trained using information referring to:
- Number of photomultipliers (PMTs) with signal
 - (weighted considering the PMT distance from the reconstructed muon track)
- Total Time over Threshold (ToT) in PMTs (as a measure of charge in PMTs)
- Number of OMs with signal
 - (weighted taken into account that muons with lower energies travel shorter distances inside the detector than muons with higher energies)
- Number of PMTs without signal
 - (weighted considering that the number of PMTs that have no signal is larger for muons with lower energies)
- A minimum muon track length inside the detector volume is required in order to reliably estimate the muon energy (containment selection).

Muon Energy Reconstruction MultiVariate Analysis

We consider the PMTs with signal used by the fitting procedure \longrightarrow reduction of K^{40} contribution

- For events that satisfy the containment selection the muon energy is estimated.
- For events that do not satisfy the containment selection a <u>lower limit of the energy</u> is calculated.

Muon Energy Reconstruction

Muon Energy Reconstruction

Reconstructed events that satisfy the containment selection

- An energy resolution of ~ 0.27 has been achieved for events that satisfy the containment selection.
- The energy resolution is ~ 0.28 for all reconstructed events.

Muon and Neutrino Energy Reconstruction

Reconstructed events that satisfy the containment selection

- The neutrino energy can be reliably estimated if the interaction vertex is close to or inside the instrumented volume.
- Very goog linear correlation of the reconstructed and the simulated E_{ν} .

E. Drakopoulou

VLVnT 2015

Events with the reconstructed vertex inside the instrumented volume

Efficiency of the Muon Energy Reconstruction

Efficiency of this energy estimator for all reconstructed events.

Efficiency of this energy estimator for reconstructed events that <u>cross the</u> <u>detector volume</u>.

Energy Reconstruction:

- → A very high efficiency of ~ 90% for $E_{\mu} \ge 10 \, TeV$ is achieved.
- The efficiency is \sim 99.5% for $E_{\mu} \ge 10 \, TeV$ for events that <u>cross the instrumented volume</u>.

Evaluating the systematics

• The systematics were evaluated for the reconstructed tracks that satisfy the containment selection.

 $v_{\mu}CC$ 10 TeV $\leq E_{\mu} \leq$ 100PeV KM3NeT / ARCA Preliminary

Energy Resolution

Λ>-5.8	Gaussian fit: Mean (%)	Gaussian fit: σ (%)
Simulation Values:	-1.0%	27%
Absorption Length: -10%	-9.5%	26%
Absorption Length: +10%	5.3%	27%
Scattering Length: -10%	-2.4%	27%
Scattering Length: +10%	-0.8%	27%
PMT Effective Area: -10%	-6.0%	27%
PTM Effective Area: +10%	2.0%	27%

E. Drakopoulou VLVnT 2015 11

Muon Energy Reconstruction Alternative detector configuration

Co-financed by Greece and the European Union

The performance of this energy reconstruction has also been tested for a detector configuration with a larger average horizontal distance between strings, i.e. 120 m instead of 90 m corresponding to an instrumented volume of ~ 0.8 km³ per block.

Muon Energy Reconstruction Alternative detector configuration

Reconstructed events that satisfy

All reconstructed events

- An energy resolution of ~ 0.25 has been achieved for events that satisfy the containment selection.
- The energy resolution is ~ 0.26 for all reconstructed events.

Conclusions

- A new method for the muon and neutrino energy reconstruction employing a Multi-Layer Percepton Neural Network with appropriate input variables was developed.
- The performance of this energy estimator is very good for muons in the high energy region ($E_{\mu} \ge 10 \, TeV$) which is the energy regime we are mostly inetrested in.
- The energy resolution is ~ 0.27 for events that satisfy the containment selection and ~ 0.28 for all reconstructed events.
- For an alternative detector configuration with larger distance between strings leading to a larger instrumented volume, the energy resolution is ~ 0.25 for events that satisfy the containment selection and ~ 0.26 for all reconstructed events.

E. Drakopoulou VLVnT 2015 14

Thank you!