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Take Home Message

• A surface array on top of an Antarctic neutrino detector 
can be used to identify neutrinos of astrophysical origin.


• Such an array could double the number of “track” events.

• Plans for a next generation detector, IceCube-Gen2, 

include a surface array.

• We are working on determining the optimum 

characteristics for the array.
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The IceCube Collaboration

Approximately 300 physicists from 45 institutions in 12 countries



The IceCube Detector

Deployed in 6 seasons, completed configuration: 2011-12



High-Energy Starting Events
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High-energy events are absorbed in the earth.

Veto

Science 342 (2013) 1242856 
PRL 113.101101 (2014) 

HESE 4-year update, ICRC 2015just to guide the eye



Surface Veto Concept
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A. Cascades 
~ 15° angular res.

A. Tracks 
< 1° angular res.



IceCube-IceTop
IceCube-Gen2 6.9 km2 (+surface)

Gen2 + Surface veto 150 km2

Gen2 + Surface veto  25  km2

Gen2 + Surface veto   50 km2

IceCube-Gen2 6.9 km2

Increasing the Track Rate

• HESE analysis sacrifices a fraction of the volume for veto (~40%).

• Relative to starting events (naively counting), 

the volume for astrophysical νµ ⟶ tracks increases by:

• ~×2.5 in the vertical direction (> ×3.5 when one includes gain in fiducial volume).

• ~×4 in the direction of the galactic center at zenith angle 61°(or ~×7).

• ~×2 integrated over the entire sky. 7

The volume determines the rate!
!

V(θ)

Gen2 6.9 km2
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Tracks from astrophysical neutrinos in one year:



IceTop as Veto

• Training sample 
102 days of data between 2012 and 2014


• Qtoth>1000 PE, L > 800 m, S > 75 m

• MuEx energy proxy is NOT energy, 

it is proportional.

• 0.1 event per year expected
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D. Tosi, K. Jero et al. (IceCube coll.) ICRC 2015Fill factor ~ 2×10-4



Most Probably a Neutrino



IceCube-Gen2
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IceCube-Gen2 veto Array

DeepCore/PINGU

IceCube-86/IceTop

(schematic view)

IceCube-Gen2 HEA Array

• Technology to use is still not decided. Some being considered.

– Tanks (a la IceTop)

– ice bags (ICRC2013 ID 0373)

!
– Scintillator slabs

– Air Cherenkov



EAS Detection Efficiency
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Muons Electrons

• Toy MC using average lateral distributions



EAS Detection Efficiency
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Muons Electrons

• Toy MC using average lateral distributions

• Two regions:


• θ ≲ 60°: EM component dominates.

• θ ≳ 60°: muon component dominates.


• EM partly absorbed in snow

• Efficiency shown up to 99% only.



EAS Detection Efficiency II

14

9.5×10-­‐4 2.4×10-­‐4 5.9×10-­‐5

0° 55°

• CORSIKA simulations without snow (Sibyll 2.1). 

• Triangular arrays of 1 cm polystyrene scintillation detectors.

• Efficiency roughly scales with fill factor

• Fill factor ~10-3 reaches 10-3 passing fraction at ~100 TeV

• threshold is larger by about a factor of 4 at 55˚.

ppass = 1 - Eff



Rare Air Showers
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Depth Survival 
Probability

70 0.37

140 0.14

210 0.05

280 0.02

350 0.007

420 0.0025

490 0.001

Assuming λhad ~ 70 g/cm2

C.R.

i
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Surface Detector

Antarctic Ice

X

Veto

Shower maximum

South Pole atmospheric depth: 680 g/cm2



Depth Dependence
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Summary

• A surface array on top of an Antarctic neutrino detector can be used 
to identify neutrinos of astrophysical origin.


• Such an array could double the number of track events, 
which have the best angular resolution.


• Plans for a next generation detector, IceCube-Gen2, include a 
surface array.


• We are working on determining the optimum characteristics for the 
array.


• Passing fraction on the order of 10-3 at primary energies ~100 TeV 
seem attainable with fill fraction ~10-3 (400 TeV at 55°)


• Need further studies around ppass~10-4 to ppass~10-6


• More realistic layouts will be considered... 
we’ll keep you posted
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Extra
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Fill Factor 3.2×10-4 Fill Factor 1×10-3Fill Factor 2×10-5



Simple CORSIKA Simulation

• Performing simple CORSIKA simulations:

– proton primaries

– Signals for electron and muon given by 

Bethe formula

– Signals normalized to that of a vertical 

3 GeV muon (VEM)

– γ rays are ignored

– require signal > 0.3 VEM


• Material: 1 cm thick polystyrene

• Considering three different surface areas: 

0.4 m2, 0.8 m2, 1.6 m2

• Considering three different layouts. 

Regular triangular grids:  
31.25, 62.5, 125, 250 m
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µ responsee response



Cumula&ve)response)for)atmospheric)νμ)
Assuming)H3A)primary)spectrum/composi&on)and)
parameters)for)νμ)yield)from)TG,)Jero,)Karle,)van)Santen)

From)the)plot)you)can)read:)
•  62%)of)νμ)are)from)protons,)
•  28%)from)He)
•  ~10%)from)heavier)nuclei)
•  20%)of)νμ)are)from)Ep<)5)Eν)
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How does the veto work?
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Cumulative response for atmospheric 100 TeV νµ 
assuming H3a spectrum, 
parameters for νµ yield 

from Gaisser, Jero, Karle and van Santen

62% from proton

28% from Helium

10% from heavy nuclei

5 Eν

20% are produced by primaries with E < 5 EνImagine now we want a veto efficiency of 99.99%

(Example from 
the atmospheric 
neutrino veto)


