A Surface Array to Study Astrophysical Neutrinos with IceCube-Gen2

Javier G Gonzalez for the IceCube-Gen2 Collaboration

- A surface array on top of an Antarctic neutrino detector can be used to identify neutrinos of astrophysical origin.
- Such an array could double the number of "track" events.
- Plans for a next generation detector, IceCube-Gen2, include a surface array.
- We are working on determining the optimum characteristics for the array.

The IceCube Collaboration

Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)

Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG)

Deutsches Elektronen-Synchrotron (DESY) Japan Society for the Promotion of Science (JSPS) Knut and Alice Wallenberg Foundation **Swedish Polar Research Secretariat** The Swedish Research Council (VR)

University of Wisconsin Alumni Research Foundation (WARF) **US National Science Foundation (NSF)**

Approximately 300 physicists from 45 institutions in 12 countries

The IceCube Detector

Bedrock

∠Veto

High-Energy Starting Events

Deposited EM-Equivalent Energy in Detector (TeV)

A. Cascades

~ 15° angular res.

A. Tracks < 1° angular res.

The volume determines the rate

- HESE analysis sacrifices a fraction of the volume for veto (~40%).
- Relative to starting events (naively counting), the volume for astrophysical $\nu_{\mu} \rightarrow$ tracks increases by:
 - \sim ×2.5 in the vertical direction (> ×3.5 when one includes gain in fiducial volume).
 - ~×4 in the direction of the galactic center at zenith angle 61°(or ~×7).
 - ~×2 integrated over the entire sky.

Tracks from astrophysical neutrinos in one year:

	up-going			down-going		
	1 TeV	10 TeV	100 TeV	1 TeV	10 TeV	100 TeV
E^{-2}	110	44	11	80	44	18
$E^{-2.3}$	220	60	9	160	57	13
$E^{-2.7}$	740	110	7	590	100	10
$v_{ m Atmos}$	15000	500	5	10500	350	5

- Training sample
 102 days of data between 2012 and 2014
- $Q_{toth}>1000 PE, L > 800 m, S > 75 m$
- MuEx energy proxy is NOT energy, it is proportional.
- 0.1 event per year expected

Most Probably a Neutrino

IceCube-86/IceTop

IceCube-Gen2 veto Array

DeepCore/PINGU

(schematic view)

- Technology to use is still not decided. Some being considered.
 - Tanks (a la IceTop)
 - ice bags (ICRC2013 ID 0373)

- Scintillator slabs
- Air Cherenkov

11

EAS Detection Efficiency

Toy MC using average lateral distributions

EAS Detection Efficiency

- Toy MC using average lateral distributions
- Two regions:
 - θ ≤ 60°: EM component dominates.
 - θ ≥ 60°: muon component dominates.
- EM partly absorbed in snow
- Efficiency shown up to 99% only.

EAS Detection Efficiency II

- CORSIKA simulations without snow (Sibyll 2.1).
- Triangular arrays of 1 cm polystyrene scintillation detectors.
- Efficiency roughly scales with fill factor
- Fill factor ~10⁻³ reaches 10⁻³ passing fraction at ~100 TeV
- threshold is larger by about a factor of 4 at 55°.

South Pole atmospheric depth: 680 g/cm²

Assuming $\lambda_{had} \sim 70 \text{ g/cm}2$

Depth	Survival Probability
70	0.37
140	0.14
210	0.05
280	0.02
350	0.007
420	0.0025
490	0.001

- A surface array on top of an Antarctic neutrino detector can be used to identify neutrinos of astrophysical origin.
- Such an array could double the number of track events, which have the best angular resolution.
- Plans for a next generation detector, IceCube-Gen2, include a surface array.
- We are working on determining the optimum characteristics for the array.
- Passing fraction on the order of 10⁻³ at primary energies ~100 TeV seem attainable with fill fraction ~10⁻³ (400 TeV at 55°)
- Need further studies around p_{pass}~10⁻⁴ to p_{pass}~10⁻⁶
- More realistic layouts will be considered...
 we'll keep you posted

Extra

Simple CORSIKA Simulation

- Performing simple CORSIKA simulations:
 - proton primaries
 - Signals for electron and muon given by Bethe formula
 - Signals normalized to that of a vertical
 3 GeV muon (VEM)
 - γ rays are ignored
 - require signal > 0.3 VEM
- Material: 1 cm thick polystyrene
- Considering three different surface areas:
 0.4 m2, 0.8 m2, 1.6 m2
- Considering three different layouts.
 Regular triangular grids:
 31.25, 62.5, 125, 250 m

Cumulative response for atmospheric 100 TeV ν_{μ}

