

From DeepCore to PINGU Measuring atmospheric neutrino oscillations at the South Pole

Juan Pablo Yáñez‡
for the IceCube-Gen2 Collaboration
DESY

VLVNT 2015 Rome

- » Neutrinos change flavor as they travel $P(v_{\alpha} \rightarrow v_{\beta}) = \sin^2(2\theta) \sin^2(1.27\Delta m^2 L/E)$
- » Earth's matter profile modifies expectation from vacuum oscillations
 - >>> Between $E_v = 2-15$ GeV → resonances, transitions $v_e \leftrightarrow v_u$ take place
 - » For E_v > 15 GeV → saturation (θ_{13} → π/2), dominated by v_{μ} ↔ v_{τ} transitions

- » Saturation region
 - » Simple disappearance depends on θ_{23} and $|\Delta m_{32}^2| \simeq |\Delta m_{31}^2|$
 - » Largely insensitive to θ_{13}
 - » Accessible with IceCube DeepCore

- » Resonance region
 - » Complicated disappearance pattern, different for neutrinos/antineutrinos
 - » Oscillations depend on θ_{13} , θ_{23} and Δm_{32}^2 , Δm_{31}^2 including their sign
 - » At/Below the threshold of IceCube DeepCore → PINGU

- » Resonance region
 - » Complicated disappearance pattern, different for neutrinos/antineutrinos
 - » Oscillations depend on θ_{13} , θ_{23} and Δm_{32}^2 , Δm_{31}^2 including their sign
 - » At/Below the threshold of IceCube DeepCore → PINGU

Measuring atmospheric neutrino oscillations

where the signal is buried under **enormous** background

Image: http://globe-views.com/dreams/earth.html

Measuring atmospheric neutrino oscillations

where the signal is buried under **enormous** background

Image: http://globe-views.com/dreams/earth.html

The detectors in IceCube

- \gg IceCube $E_{v} > 100 \text{ GeV}$
 - » 78 strings w/60 DOMs
 - » 17m DOM spacing, 125m string spacing
- \gg DeepCore $E_v > 10 \text{ GeV}$
 - » +8 strings w/60 HQE DOMs
 - >>> 7m DOM spacing, 40-70m string spacing
- \gg PINGU (proposal) $E_{v} > 4$ GeV
 - >> +40 strings w/96 HQE DOMs
 - >> 3m DOM spacing, 20m string spacing
 - >> ~20x photocathode density

The detectors in IceCube

Increasing precision

How to move down in energy to make more precise measurements of neutrino oscillations?

- Background
- Reconstruction
- Analysis

- \gg IceCube $E_{v} > 100 \text{ GeV}$
 - » 78 strings w/60 DOMs
 - » 17m DOM spacing, 125m string spacing
- >> DeepCore E_v > 10 GeV
 - » +8 strings w/60 HQE DOMs
 - » 7m DOM spacing, 40-70m string spacing
- \gg PINGU (proposal) $E_{v} > 4$ GeV
 - >> +40 strings w/96 HQE DOMs
 - >> 3m DOM spacing, 20m string spacing
 - » ~20x photocathode density

Increasing precision

How to move down in energy to make more precise measurements of neutrino oscillations?

- Background
- Reconstruction
- Analysis

- >> Muons from air showers
 - »Starting events → IceCube as veto for DeepCore & PINGU
 - »Tag muons directly from data
 - »Use "event quality" to remove misreconstructions

- >> Muons from air showers
 - \gg Starting events \rightarrow IceCube as veto for DeepCore & PINGU
 - »Tag muons directly from data
 - » Use "event quality" to remove misreconstructions

Phys. Rev. D 91, 072004 (2015)

- >> Muons from air showers
 - »Starting events → IceCube as veto for DeepCore & PINGU
 - »Tag muons directly from data
 - » Use "event quality" to remove misreconstructions

- » IceCube veto useful for DC & PINGU
- » Background muon rate α Ereco
 - » Less relevant for PINGU than DC
- » DC results used only up-going events
 - » Down-going region under study in DC
 - » PINGU plans to (eventually) use all-sky

- » Individual DOM noise rates studied
 - >> 400-700 Hz individual noise rates
 - » Simulation parameters varied
 - >> Models updated with calibration campaigns
 - » DeepCore
 - » Negligible impact on reconstructed observables and results
 - » PINGU
 - » Negligible impact on reconstructions, small impact on eff. area

- » Typical LE neutrino in DeepCore
- » 7 DOMs with signal hits
- >> Enu = 12 GeV
 - » 8 GeV muon (42 m)
 - » 4 GeV hadronic shower

» Neutrino identification by daughters

- » CC ν_{μ} \rightarrow Muons (long-range particles, taggable)
- » CC $V_T \& V_e \rightarrow Short lived leptons$
- \Rightarrow Every interaction \rightarrow Hadrons
- » Main ID power: muons → muon neutrinos

>> Neutrino reconstruction

- » Based on # of photons & arrival times
- » Mostly noise-free signals at DOMs
- » Delayed by scattering, reduced by absorption
- >> DeepCore: few photons in interesting events

- » Typical LE neutrino in PINGU*
- » ~70 DOMs with signal hits
- >> Enu = 12 GeV
 - » 8 GeV muon (42 m)
 - » 4 GeV hadronic shower

>> Neutrino identification by daughters

- » CC $\nu_{\mu} \rightarrow$ Muons (long-range particles, taggable)
- » CC $V_{\tau} \& V_{e} \rightarrow \text{Short lived leptons}$
- \Rightarrow Every interaction \rightarrow Hadrons
- » Main ID power: muons → muon neutrinos

>> Neutrino reconstruction

- » Based on # of photons & arrival times
- » Mostly noise-free signals at DOMs
- » Delayed by scattering, reduced by absorption
- >> PINGU: ~10x more photons per event

Latest published DeepCore results

- » Zenith: Require a core of direct (unscattered) photons
 - » Minimize impact of ice properties
 - » 30% efficiency
 - » Fit zenith angle with direct photons (assume no scattering)
- » Energy: track+cascade hypothesis
 - » Fit track length and vertex position/E
 - » Keep direction fixed
 - » Assume track and cascade are collinear

Latest published DeepCore results

- » Zenith: Require a core of direct (unscattered) photons
 - » Minimize impact of ice properties
 - » 30% efficiency
 - » Fit zenith angle with direct photons (assume no scattering)
- » Energy: track+cascade hypothesis
 - » Fit track length and vertex position/E
 - » Keep direction fixed
 - » Assume track and cascade are collinear

Resolutions for DeepCore (published result)

More sophisticated reconstruction

- » Use arrival time of individual photons
- » Fit energy + direction simultaneously
- » No need for direct photons, use all events
- » Include ice properties (from ice models)

- » Similar resolutions in DeepCore
- » Higher efficiency
- » Working in **DeepCore**, testing vs data
- » Used in **PINGU** analyses

More sophisticated reconstruction

- » Use arrival time of individual photons
- » No need for direct photons, use all events » Working in DeepCore, testing vs data
- » Similar resolutions in DeepCore

II. Neutrino identification

- \Rightarrow In **DeepCore** \Rightarrow ratio of 2 fits
 - » Assume track+cascade vs only cascade
 - » Current results: x² ratio in directional fit →
 - » Studying ΔLLH in "sophisticated" reco

Particle identification in DeepCore

Stabilizes for E > 30 GeV 60% of muon tracks classified correctly 30% of cascades misclassified as tracks

Difference in probabilities of 30% Reduced to 20% at 10 GeV

- » In PINGU → multivariate method
 - » Exploit topological variables
 - » Combine discrimination power
 - » Can be optimized for sensitivity
 - » Better performance than DeepCore

III. Analysis – syst. uncertainties

Implemented in **DeepCore** latest result

Source of error		Nominal value from	Uncertainty
Neutrino interactions	Total cross-section scaling		Free
	Linear energy dependence	GENIE model	E^(+/-0.03)
	Axial mass of non-DIS events		~ +/-20%*
Atmospheric neutrino flux	Overall normalization		Free
	Spectral index	Honda 2015	E^(+/-0.04)
	NuE relative normalization	·	+/- 20%
Detection	Hadronic energy scaling	Geant4 (model)	+/- 5%
	DOM overall efficiency	Muons, flashers	+/- 10%
	DOM angular acceptance (scattering in hole-ice)	Fit to flasher data	As large as 50%‡
	Bulk-ice model	·	Two models

+neutrino oscillation parameters

^{*} Exact value depends on the individual process

[‡] Largest deviation for photons perpendicular to PMT direction

III. Analysis – syst. uncertainties

Being studied in **DeepCore data analyses**

Source of error		Nominal value from	Uncertainty
Neutrino interactions	Total cross-section scaling		Free
	Linear energy dependence	· GENIE model	E^(+/-0.03)
	<u>DIS cross section</u>	GENIE Modet	<u>From models</u>
	Axial mass of non-DIS events	·	~ +/-20%*
	Overall normalization	- Honda 2015 -	Free
Atmospheric neutrino flux	Spectral index		E^(+/-0.04)
	<u>Neutrino/Antineutrino ratio</u>		<u>E dependent</u>
	NuE relative normalization	·	<u>+/- 3%</u>
Detection	Hadronic energy scaling	Cooch (model)	+/- 5%
	<u> Hadronization/propagation</u>	Geant4 (model)	<u>From models</u>
	DOM overall efficiency	Muons, flashers	+/- 10%
	DOM angular acceptance* (scattering in hole-ice)	Fit to flasher data	As large as 50%‡
	Bulk-ice model	·	Two models
<u> </u>			•11 . •

^{*} Exact value depends on the individual process

[‡] Largest deviation for photons perpendicular to PMT direction

III. Analysis – syst. uncertainties

Being studied in PINGU simulation/analyses

- >>> Uncertainties on oscillation parameters included (atmospheric parameters dominant)
 - » Using priors from nu-fit.org on solar parameters and θ_{13} (delta-cp fixed at 0)
- » Detailed studies of cross sections (6 parameters) and flux uncertainties (18 parameters)
- >> The most relevant (non-oscillation) uncertainties are listed

Source of error		Nominal value	Uncertainty
Neutrino interactions and effective area (7+ parameters)	Total cross-section scaling		Free
	DIS cross section (4 parameters)	GENIE model	From models
	Axial mass of non-DIS events (2 parameters)		~ +/-20%*
Atmospheric neutrino flux (18+ parametes)	Overall normalization (Aeff scaling)	_	Free
	Spectral index		E^(+/-0.05)
	п & к production and decays	Honda 2015	From models
	Neutrino/Antineutrino ratio	_	10%
	NuE relative normalization	·	+/- 3%
Detection Energy scale		Muons, flashers	+/- 10%

III. Analysis – methods

» DeepCore

Likelihood ratio with high stats. MC

- » Data and full MC sets selected, reconstructed
- » Detector systematics simulated in full → parameterized

» PINGU

- >>> Detector response from MC (created, selected, reconstructed and parameterized)
- a) Likelihood ratio
- » Draw and fit pseudo-experiments

- b) $\Delta \chi^2$ based analysis
- » Gradients in parameter space to get covariance matrix
- » Angle θ_{23} covariance matrix calculated directly (no gradients)
- » Fast, well suited for optimization

DeepCore results

- » Using muon tracks only
- » Best fit to the data from a 2D analysis (E, θ)
- » Up-going events
- » Using E < 56 GeV
- >> 5174 events in 3 years
- » In 2D fit histogram
 - $x^2 = 54.9 / 56 \text{ d.o.f.}$

DeepCore results

Data of this analysis available at http://icecube.wisc.edu/science/data/nu_osc

DeepCore – projected sensitivity

Projected MC sensitivity from re-analysis of 3 years of DeepCore data*

- » Classify interactions:
 - » Between track- and cascade-like
- » Inclusive selection:
 - \Rightarrow Direct hits required (5 \rightarrow 3)
- » Sophisticated reconstruction
 - » Global fit of all parameters
- » Including events from all directions
 - » Also down-going (atm. Muons)
- » Renewed calibration efforts

» Noise modeling, angular acceptance, individual DOM behavior

^{*}Projections produced assuming current knowledge. Can change if newer information is available.

PINGU – mass ordering signature

- » Bin-wise significance for one year of data
- >>> Tracks are mostly muon neutrinos
- » Cascades are mostly electron neutrinos

PINGU – sensitivity vs time

- \gg 3 σ identification with 3-4 years of data
 - » Oscillation parameters are most important source of error
 - » Slightly better sensitivity to normal hierarchy

Significance including only one set of uncertainties

Туре	3yr б (NMH)	Зуr б (IMH)
stat. only	4.84	4.82
flux only	4.55	34.56
det. only	4.06	3.99
θ ₂₃ only	3.52	3.26
osc. only	2.96	2.53
All	2.90	2.51

*delta-cp kept fixed at 0 (injected)

PINGU – sensitivity vs θ_{23}

- » Mass ordering sensitivity dependence on θ_{23}
 - » Lines from $\Delta \chi^2$ based analysis
 - >> Points from likelihood ratio studies

PINGU – sensitivity vs δ_{CP}

- »Impact of the imaginary phase on sensitivity
 - >>> Projections shown for the <u>3-year benchmark</u>
 - » Sensitivity changes by $1/2\sigma$ depending on true δ_{CP} value

	Full LLR allalysis			
	$\delta_{cp}(deg)$	σηн	σιн	
O	0	2.80	2.53	
X	90	2.49	2.32	
V	180	2.32	2.01	
Δ	270	2.40	2.21	

Full LLD analysis

PINGU – atm. params. sensitivity

- » Competitive sensitivity to oscillation parameters expected
- » Appearance of tau neutrinos at 5σ within a month of operation

Summary and outlook

- »IceCube DeepCore has demonstrated it can measure atmospheric neutrino oscillations
 - >>> Current results in the same scale as dedicated experiments
 - » Still far from its full potential, significant improvement expected
- »PINGU can greatly enhance these measurements
 - >>> Large statistics, reconstruction errors halved
 - » Capable of identifying the mass ordering with 3σ in 3-4 years
 - >> Improve precision of oscillation parameters

The IceCube-PINGU Collaboration

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS)
Fonds Wetenschappelijk Onderzoek-Vlaanderen
(FWO-Vlaanderen)
Foderel Ministry of Education & Research (PMRE)

Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY)
Inoue Foundation for Science, Japan
Knut and Alice Wallenberg Foundation
NSF-Office of Polar Programs
NSF-Physics Division

Swedish Polar Research Secretariat
The Swedish Research Council (VR)
University of Wisconsin Alumni Research
Foundation (WARF)
US National Science Foundation (NSF)

PINGU - Dark matter searches

PINGU - Atmospheric mixing

