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Atmospheric neutrino oscillations
»Neutrinos change flavor as they travel

» Earth's matter profile modifies expectation from vacuum oscillations

»  Between Eν = 2-15 GeV  resonances, transitions → νe  ν↔ μ take place

»  For Eν >15 GeV  saturation (→ θ13→π/2), dominated by νμ  ν↔ τ transitions
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Atmospheric neutrino oscillations
» Saturation region

» Simple disappearance depends on θ23 and 

» Largely insensitive to θ13 

» Accessible with IceCube DeepCore
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Atmospheric neutrino oscillations
»Resonance region

» Complicated disappearance pattern, different for neutrinos/antineutrinos

»Oscillations depend on θ13, θ23 and                               including their sign

» At/Below the threshold of IceCube DeepCore  PINGU→

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Δ m32
2 ,Δ m31

2

Resonance region Resonance region



  5

Atmospheric neutrino oscillations
»Resonance region

» Complicated disappearance pattern, different for neutrinos/antineutrinos

»Oscillations depend on θ13, θ23 and                               including their sign

» At/Below the threshold of IceCube DeepCore  PINGU→
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*Not to scale
Image: http://globe-views.com/dreams/earth.html
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Measuring atmospheric 
neutrino oscillations



  7

*Not to scale
Image: http://globe-views.com/dreams/earth.html
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Outer detector veto

» Use an active veto

» Reconstruct neutrino L & E

» Compare the flux with predictions 
with different oscillation 
parameters

where the signal is buried 
under enormous background

Measuring atmospheric 
neutrino oscillations
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The detectors in IceCube

» IceCube – Eν > 100 GeV

» 78 strings w/60 DOMs

» 17m DOM spacing, 125m string spacing

»DeepCore – Eν > 10 GeV

» +8 strings w/60 HQE DOMs

» 7m DOM spacing, 40-70m string spacing

»PINGU (proposal) – Eν > 4 GeV

» +40 strings w/96 HQE DOMs

» 3m DOM spacing, 20m string spacing

» ~20x photocathode density
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Increasing precision

» IceCube – Eν > 100 GeV

» 78 strings w/60 DOMs

» 17m DOM spacing, 125m string spacing

»DeepCore – Eν > 10 GeV

» +8 strings w/60 HQE DOMs

» 7m DOM spacing, 40-70m string spacing

»PINGU (proposal) – Eν > 4 GeV

» +40 strings w/96 HQE DOMs

» 3m DOM spacing, 20m string spacing

» ~20x photocathode density

How to move down in 
energy to make more 
precise measurements of 
neutrino oscillations?
- Background
- Reconstruction
- Analysis
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Increasing precision

How to move down in 
energy to make more 
precise measurements of 
neutrino oscillations?
- Background
- Reconstruction
- Analysis

.

.

.

Phys. Rev. D 91, 072004 (2015)
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I. Background
» Muons from air showers

»Starting events  IceCube as veto for DeepCore & PINGU→

»Tag muons directly from data

»Use “event quality” to remove misreconstructions
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I. Background
» Muons from air showers

»Starting events  IceCube as veto for DeepCore & PINGU→

»Tag muons directly from data

»Use “event quality” to remove misreconstructions
Analysis of DeepCore data

Final level

Phys. Rev. D 91, 072004 (2015)
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I. Background
» Muons from air showers

»Starting events  IceCube as veto for → DeepCore & PINGU

»Tag muons directly from data

»Use “event quality” to remove misreconstructions

Analysis of DeepCore data 
misreconstructed muons » IceCube veto useful for DC & PINGU

» Background muon rate α Ereco

» Less relevant for PINGU than DC

»DC results used only up-going events

»Down-going region under study in DC

» PINGU plans to (eventually) use all-sky
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I. Background

» Individual DOM noise rates studied

» 400-700 Hz individual noise rates 

» Simulation parameters varied

» Models updated with calibration campaigns

» DeepCore 

»Negligible impact on reconstructed observables and results

» PINGU

»Negligible impact on reconstructions, small impact on eff. area
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II. Neutrino reconstruction
» Neutrino identification by daughters

» CC νμ→Muons (long-range particles, taggable)

» CC ντ & νe →Short lived leptons

» Every interaction  Hadrons→

»Main ID power: muons  muon neutrinos→

» Neutrino reconstruction
»Based on # of photons & arrival times

»Mostly noise-free signals at DOMs

»Delayed by scattering, reduced by absorption

»DeepCore: few photons in interesting events

» Typical LE neutrino in DeepCore

» 7 DOMs with signal hits

» Enu = 12 GeV

» 8 GeV muon (42 m)

» 4 GeV hadronic shower

MC interaction in DC analysis
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II. Neutrino reconstruction
» Neutrino identification by daughters

» CC νμ→Muons (long-range particles, taggable)

» CC ντ & νe →Short lived leptons

» Every interaction  Hadrons→

»Main ID power: muons  muon neutrinos→

» Neutrino reconstruction
»Based on # of photons & arrival times

»Mostly noise-free signals at DOMs

»Delayed by scattering, reduced by absorption

» PINGU: ~10x more photons per event

» Typical LE neutrino in PINGU*

» ~70 DOMs with signal hits

» Enu = 12 GeV

» 8 GeV muon (42 m)

» 4 GeV hadronic shower

*Illustrative sketch, not from MC
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II. Neutrino reconstruction

Latest published DeepCore results

»  Zenith: Require a core of direct  
(unscattered) photons

»Minimize impact of ice properties

» 30% efficiency

» Fit zenith angle with direct photons 
(assume no scattering)

» Energy: track+cascade hypothesis

» Fit track length and vertex position/E

»Keep direction fixed

» Assume track and cascade are collinear

Same event as before, DeepCore
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II. Neutrino reconstruction

Latest published DeepCore results

»  Zenith: Require a core of direct  
(unscattered) photons

»Minimize impact of ice properties

» 30% efficiency

» Fit zenith angle with direct photons 
(assume no scattering)

» Energy: track+cascade hypothesis

» Fit track length and vertex position/E

»Keep direction fixed

» Assume track and cascade are collinear

Resolutions for DeepCore (published result)
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II. Neutrino reconstruction
More sophisticated reconstruction

» Use arrival time of individual photons

» Fit energy + direction simultaneously

» No need for direct photons, use all events

» Include ice properties (from ice models)

» Assume track and cascade are collinear

» Similar resolutions in DeepCore

» Higher efficiency

»Working in DeepCore, testing vs data

» Used in PINGU analyses
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II. Neutrino identification
»  In DeepCore  ratio of 2 fits→

»  Assume track+cascade vs only cascade

»  Current results: χ2 ratio in directional fit

»  Studying ΔLLH in “sophisticated” reco

»  In PINGU  multivariate method→

»  Exploit topological variables 

»  Combine discrimination power

»  Can be optimized for sensitivity

»Better performance than DeepCore

Particle identification in DeepCore

Particle identification in PINGU

PINGU Preliminary

Stabilizes for E > 30 GeV
60% of muon tracks classified correctly
30% of cascades misclassified as tracks

Difference in probabilities of 30%
Reduced to 20% at 10 GeV
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III. Analysis – syst. uncertainties

Source of error Nominal value from Uncertainty

Neutrino interactions

Total cross-section scaling

GENIE model

Free

Linear energy dependence E^(+/-0.03)

Axial mass of non-DIS events ~ +/-20%*

Atmospheric neutrino 
flux

Overall normalization

Honda 2015

Free

Spectral index E^(+/-0.04)

NuE relative normalization +/- 20%

Detection

Hadronic energy scaling Geant4 (model) +/- 5%

DOM overall efficiency Muons, flashers +/- 10%

DOM angular acceptance 
(scattering in hole-ice) Fit to flasher data

As large as 50%‡

Bulk-ice model Two models

* Exact value depends on the individual process
‡ Largest deviation for photons perpendicular to PMT direction

Implemented in DeepCore latest result

+neutrino oscillation parameters
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III. Analysis – syst. uncertainties

Source of error Nominal value from Uncertainty

Neutrino interactions

Total cross-section scaling

GENIE model

Free

Linear energy dependence E^(+/-0.03)

DIS cross section From models

Axial mass of non-DIS events ~ +/-20%*

Atmospheric neutrino 
flux

Overall normalization

Honda 2015

Free

Spectral index E^(+/-0.04)

Neutrino/Antineutrino ratio E dependent

NuE relative normalization +/- 3%

Detection

Hadronic energy scaling
Geant4 (model)

+/- 5%

Hadronization/propagation From models

DOM overall efficiency Muons, flashers +/- 10%

DOM angular acceptance* 
(scattering in hole-ice) Fit to flasher data

As large as 50%‡

Bulk-ice model Two models

* Exact value depends on the individual process
‡ Largest deviation for photons perpendicular to PMT direction

Being studied in DeepCore data analyses

+neutrino oscillation parameters
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III. Analysis – syst. uncertainties

Source of error Nominal value Uncertainty

Neutrino interactions and 
effective area

(7+ parameters)

Total cross-section scaling

GENIE model

Free

DIS cross section (4 parameters) From models

Axial mass of non-DIS events (2 parameters) ~ +/-20%*

Atmospheric neutrino flux 
(18+ parametes)

Overall normalization (Aeff scaling)

Honda 2015

Free

Spectral index E^(+/-0.05)

π & κ production and decays From models

Neutrino/Antineutrino ratio 10%

NuE relative normalization +/- 3%

Detection Energy scale Muons, flashers +/- 10%

Atmospheric neutrino uncertainties from Phys.Rev.D74:094009,2006

Being studied in PINGU simulation/analyses

» Uncertainties on oscillation parameters included (atmospheric parameters dominant)

»  Using priors from nu-fit.org on solar parameters and θ13 (delta-cp fixed at 0)

» Detailed studies of cross sections (6 parameters) and flux uncertainties (18 parameters)

» The most relevant (non-oscillation) uncertainties are listed
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III. Analysis – methods
»  DeepCore

Likelihood ratio with high stats. MC

»  Data and full MC sets selected, reconstructed

»  Detector systematics simulated in full  parameterized→

»  PINGU

»  Detector response from MC (created, selected, reconstructed and parameterized)

a) Likelihood ratio

»  Draw and fit pseudo-experiments

b) Δχ2  based analysis

»  Gradients in parameter space to get covariance matrix

»  Angle θ23 covariance matrix calculated directly (no gradients)

»  Fast, well suited for optimization

Good agreement 
between methods
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DeepCore results

»Using muon tracks only

»Best fit to the data from a 
2D analysis (E, θ)

»Up-going events

»Using E < 56 GeV

»5174 events in 3 years

» In 2D fit histogram

»χ2 = 54.9 / 56 d.o.f.

Projection in L/E (not used in analysis)

Data of this analysis available at http://icecube.wisc.edu/science/data/nu_osc

Phys. Rev. D 91, 072004 (2015)
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DeepCore results

|Δm32
2
|=2.72−0.20

+0.19
× 10−3 eV2

sin2
(θ23)=0.53−0.12

+0.09

» First time a very large 
volume neutrino detector 
fits in this figure

» Measuring large L/E range

» Affected by different syst. 
than accelerator results

» Stat. only errors

σ (|Δm32
2
|)=−0.15

+0.14
× 10−3 eV2

σ (sin2
θ23)=−0.08

+0.06

Data of this analysis available at http://icecube.wisc.edu/science/data/nu_osc

Phys. Rev. D 91, 072004 (2015)
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DeepCore – projected sensitivity

» Classify interactions:

» Between track- and cascade-like

» Inclusive selection: 

» Direct hits required (5  3)→

» Sophisticated reconstruction

» Global fit of all parameters

» Including events from all directions

» Also down-going (atm. Muons)

» Renewed calibration efforts

» Noise modeling, angular acceptance, individual DOM behavior

Projected MC sensitivity from re-analysis of 3 years of DeepCore data*

*Projections produced assuming current knowledge. Can change if newer information is available.
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PINGU – mass ordering signature

»Bin-wise significance for one year of data

»Tracks are mostly muon neutrinos

»Cascades are mostly electron neutrinos
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PINGU – sensitivity vs time
» 3σ identification with 3-4 years of data

»Oscillation parameters are most important source of error

» Slightly better sensitivity to normal hierarchy
Significance including only 

one set of uncertainties

*delta-cp kept fixed at 0 (injected)
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PINGU – sensitivity vs θ
23

 

» Mass ordering sensitivity dependence on θ23

»  Lines from Δχ2  based analysis

»  Points from likelihood ratio studies
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PINGU – sensitivity vs δ
CP

»Impact of the imaginary phase on sensitivity

» Projections shown for the 3-year benchmark

» Sensitivity changes by ½σ depending on true δCP value

Full LLR analysis Asymmetry vs dcp (cascades only)
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PINGU – atm. params. sensitivity

» Competitive sensitivity to 
oscillation parameters expected

» Appearance of tau neutrinos at 5σ 
within a month of operation
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Summary and outlook

»IceCube DeepCore has demonstrated it can measure 
atmospheric neutrino oscillations

» Current results in the same scale as dedicated experiments

» Still far from its full potential, significant improvement expected

»PINGU can greatly enhance these measurements

» Large statistics, reconstruction errors halved

» Capable of identifying the mass ordering with 3σ in 3-4 years

» Improve precision of oscillation parameters
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Gen2
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PINGU – Dark matter searches
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PINGU - Atmospheric mixing
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