New MC methods for neutrino telescopes

C. Argüelles, J. Salvado, and C. Weaver Presented by **K. Jero**

Goals

Generate neutrino events in a manner which does not tie the user to the details of how the neutrino got to the detector

- **→** Neutrino Flux
- **→** Neutrino-Nucleon Cross Section
- **→** Earth Composition
- **→ New Neutrino Physics**

New Lepton Injection

Rather than injecting a neutrino on the other side of the Earth and propagating it, just posit a neutrino interacting near the detector.

- → Ranged mode: sample a vertex point (uniformly in column depth!) some distance away from the detector, up to the muon range.
- → Volume mode: sample a vertex point inside a cylinder (assume uniform density!).

New Lepton Injection, cont'd

- Sample the properties of the daughter particles from the differential cross section
- Does not have to exactly the right cross section, just close enough that reweighting will be efficient
- Need to treat each process separately:

e^- , (hadrons) e^+ , (hadrons) μ^- , (hadrons) τ^- , (hadrons) τ^- , (hadrons) τ^+ , (hadrons)

$\overline{\nu}_e, (\text{hadrons})$ $\overline{\nu}_e, (\text{hadrons})$ $\overline{\nu}_\mu, (\text{hadrons})$ $\overline{\nu}_\mu, (\text{hadrons})$ $\overline{\nu}_\tau, (\text{hadrons})$ $\overline{\nu}_\tau, (\text{hadrons})$

 $\begin{array}{c} \mathbf{GR} \\ e^-, \bar{\nu}_e \\ e^+, \nu_e \\ \mu^-, \bar{\nu}_\mu \\ \mu^+, \nu_\mu \\ \tau^-, \bar{\nu}_\tau \\ \tau^+, \nu_\tau \end{array} \text{ (hadrons), (hadrons)}$

New Neutrino Propagation

- We do not solve the neutrino evolution by propagating each neutrino (MC)
- We solve the
 master equation
 that evolves the flux
 from the
 atmosphere to the
 detector

THE MASTER EQUATION

$$\begin{split} \frac{d\boldsymbol{F}_{\nu}(E)}{dx} &= -i[\boldsymbol{H}, \boldsymbol{F}_{\nu}(E)] - \sum_{\alpha} \frac{1}{2\lambda^{\alpha}(E)} \left\{ \boldsymbol{\Pi}_{\alpha}, \boldsymbol{F}_{\nu}(E) \right\} \\ &+ \int_{E'} \frac{1}{\lambda_{\text{NC}}(E')} \sum_{\alpha} \left\{ \boldsymbol{\Pi}_{\alpha}, \boldsymbol{F}_{\nu}(E') \right\} NC(E', E) \\ &+ \int_{E'} \frac{1}{\lambda^{\tau}(E')} F_{\tau}(E') CC_{\tau}(E', E) \boldsymbol{\Pi}_{\tau} \\ &+ \text{Br}_{\mu} \int_{E'} \frac{1}{\lambda^{\tau}(E')} \bar{F}_{\tau}(E') CC_{\tau}(E', E) \boldsymbol{\Pi}_{\mu} \\ &+ \text{Br}_{e} \int_{E'} \frac{1}{\lambda^{\tau}(E')} \bar{F}_{\tau}(E') CC_{\bar{\tau}(E', E)} \boldsymbol{\Pi}_{e} \end{split}$$

$$\frac{dF_{\tau}(E)}{dx} = -\frac{1}{\lambda^{\tau}(E)}F_{\tau}(E) + \int_{E'} \frac{1}{\lambda_{\text{CC}}^{\tau}(E')} \text{Tr}[\Pi_{\tau}, F_{\nu}(E')]CC_{\tau}(E_{\nu}, E_{\tau})$$

Advantages of the *Master*Equation

- √ Fast and accurate.
- ✓ Neutrino oscillations incorporated.
- Easy to incorporate new neutrino physics
- **✓ No** MC statistic limitation.

THE MASTER EQUATION

$$\begin{split} \frac{dF_{\nu}(E)}{dx} &= -i[H, F_{\nu}(E)] - \sum_{\alpha} \frac{1}{2\lambda^{\alpha}(E)} \left\{ \Pi_{\alpha}, F_{\nu}(E) \right\} \\ &+ \int_{E'} \frac{1}{\lambda_{\text{NC}}(E')} \sum_{\alpha} \left\{ \Pi_{\alpha}, F_{\nu}(E') \right\} NC(E', E) \\ &+ \int_{E'} \frac{1}{\lambda^{\tau}(E')} F_{\tau}(E') CC_{\tau}(E', E) \Pi_{\tau} \\ &+ \text{Br}_{\mu} \int_{E'} \frac{1}{\lambda^{\tau}(E')} \bar{F}_{\tau}(E') CC_{\tau}(E', E) \Pi_{\mu} \\ &+ \text{Br}_{e} \int_{E'} \frac{1}{\lambda^{\tau}(E')} \bar{F}_{\tau}(E') CC_{\bar{\tau}(E', E)} \Pi_{e} \end{split}$$

$$\frac{dF_{\tau}(E)}{dx} = -\frac{1}{\lambda^{\tau}(E)}F_{\tau}(E) + \int_{E'} \frac{1}{\lambda_{\text{CC}}^{\tau}(E')} \text{Tr}[\Pi_{\tau}, \mathbf{F}_{\nu}(E')] CC_{\tau}(E_{\nu}, E_{\tau})$$

How do we solve the *Master* Equation efficiently?

We can **expand** the F as a function of the **SU(3)** generators + Identity (λ_i) :

$$F_{\nu}(E,x) = \sum_{i} f_{i}(E,x)\lambda_{i}$$

Advantages

- QM operations (commutation, anticommutation, time evolution) are trivial and exact.
- Number of equations reduced by two.

$$\frac{dF_{\nu}(E)}{dx} = -i[H, F_{\nu}(E)] - \sum_{\alpha} \frac{1}{2\lambda^{\alpha}(E)} \{\Pi_{\alpha}, F_{\nu}(E)\}
+ \int_{E'} \frac{1}{\lambda_{NC}(E')} \sum_{\alpha} \{\Pi_{\alpha}, F_{\nu}(E')\} NC(E', E)
+ \int_{E'} \frac{1}{\lambda^{\tau}(E')} F_{\tau}(E') CC_{\tau}(E', E) \Pi_{\tau}
+ Br_{\mu} \int_{E'} \frac{1}{\lambda^{\tau}(E')} \bar{F}_{\tau}(E') CC_{\tau}(E', E) \Pi_{\mu},
+ Br_{e} \int_{E'} \frac{1}{\lambda^{\tau}(E')} \bar{F}_{\tau}(E') CC_{\bar{\tau}}(E', E) \Pi_{e}
= -\frac{1}{\lambda^{\tau}(E)} F_{\tau}(E)
+ \int_{E'} \frac{1}{\lambda_{CC}^{\tau}(E')} Tr[\Pi_{\tau} F_{\nu}(E')] CC_{\tau}(E_{\nu}, E_{\tau}).$$

RED: 3×3 Complex matrices \rightarrow **18** ODE

We implemented this method in a <u>software</u> called SQuIDS

We can **expand** the F as a function of the **SU(4)** generators + Identity (λ_i) :

$$F_{\nu}(E,x) = \sum_{i} f_{i}(E,x)\lambda_{i}$$

Advantages

- QM operations (commutation, anticommutation, time evolution) are trivial and exact.
- Number of equations reduced by two.

$$\frac{dF_{\nu}(E)}{dx} = -i[H, F_{\nu}(E)] - \sum_{\alpha} \frac{1}{2\lambda^{\alpha}(E)} \{\Pi_{\alpha}, F_{\nu}(E)\}
+ \int_{E'} \frac{1}{\lambda_{NC}(E')} \sum_{\alpha} \{\Pi_{\alpha}, F_{\nu}(E')\} NC(E', E)
+ \int_{E'} \frac{1}{\lambda^{\tau}(E')} F_{\tau}(E') CC_{\tau}(E', E) \Pi_{\tau}
+ Br_{\mu} \int_{E'} \frac{1}{\lambda^{\tau}(E')} \bar{F}_{\tau}(E') CC_{\tau}(E', E) \Pi_{\mu},
+ Br_{e} \int_{E'} \frac{1}{\lambda^{\tau}(E')} \bar{F}_{\tau}(E') CC_{\bar{\tau}}(E', E) \Pi_{e}
= -\frac{1}{\lambda^{\tau}(E)} F_{\tau}(E)
+ \int_{E'} \frac{1}{\lambda_{CC}^{\tau}(E')} Tr[\Pi_{\tau} F_{\nu}(E')] CC_{\tau}(E_{\nu}, E_{\tau}).$$

RED: 3×3 Complex matrices \rightarrow **18** ODE

SQuIDS/nu-SQuIDS

Argüelles. et al. [arXiv:1412.3832, CPC 2015.06.022.]

Argüelles. et al. [In preparation]

What is it?

Is a software framework written in C++ that **evolves quantum mechanical ensembles**. nu-SQuIDS **calculates neutrino propagation** (oscillation+interactions).

What can it do?

- ☐ Calculate neutrino oscillation probabilities in 3 generations (can configure mixing angles, CP phases, and mass splittings).
- ☐ Ready to use in: short baseline, long baseline, atmospheric, and solar neutrino oscillation experiments.
- ☐ Incorporates neutrinos' non-coherent interactions (includes tau regeneration).
- ☐ Can handle collective neutrino interactions (e.g. super nova), as well as neutrino-antineutrino interactions.
- ☐ Easily extendable to BSM physics scenarios. **Sterile neutrinos,** NSI, and LV already implemented!

Get it here:

https://github.com/jsalvado/SQuIDS

https://github.com/arguelles/nuSQuIDS

Take home message

- Starting the MC in the detector vicinity gives greater flexibility. (change neutrino cross section, new neutrino physics, Earth models, etc.)
- Neutrino propagation in the Earth can be done through the *Master* equation. (Fast+accurate +oscillations included+easy to add new physics)
- Master equation readily solved with SQuIDS/nu-SQuIDS.

