

Time and amplitude calibration of the Baikal-GVD neutrino telescope

Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration September, 2015

Calibration vs DAQ

- Cluster DAQ center (30 m below surface)
- Electro-optical cable to shore (~6 km)

Measuring channel: Channel consists of PMT, amplifier, cable from OM to the Section center (90 m), ADC. Calibration of the channel (time and amplitude).

Section: Section provides the Request: coincidence of neighboring pairs of OMs with 0.5 p.e. and 3 p.e. thresholds. Request is transmitted to the DAQ center. Cluster DAQ Center provides a global trigger, that transmitted to all sections (ADCs stop and waveform data are sent to the shore). Calibration of the section time offset.

Cluster DAQ center connected to shore with optical line. **Time calibration and clock synchronization of the Cluster.**

Calibration facility

Block diagram of the OM calibration facility

Test pulse (PMT delay measurement)

Reference (test) pulse generated directly to the measuring channel and gives a time mark of the start time of the LED flash.

Amplitude	376.5 ± 1.6 mV
FWHM	92.63 ± 0.016 ns
Rising edge	47.31 ± 0.079 ns
Rear edge	56.3 ± 0.11 ns

LED flasher:

2 blue LEDs L7113, 201/2=16°, FWHM ~6 ns

- LED intensities regulation: 1...~10⁸ photons
- Flashes delay regulation LED_1 : LED_2 : 0 ... 1000 ns
- Light propagation distance for maximum LED intensity
- ~100 m along the string in Baikal water.

Spectral characteristic of the LED Kingbright L7113

Time calibration of the channels (technique)

4

Time calibration of the channels (results)

The time offset of the channels in dependence of the PMT voltage

Time calibration of the channels with LED (accuracy estimation)

6

4

2

0

-10

-5

Calibration accuracy ~2 ns

0

5

 $dT_{LED} - dT_{TST}$, ns

two adjacent channels.

The distribution of the channels on $dT_{LED} - dT_{TST}$

6

10

Time calibration of the section (technique)

Time difference between different pairs of channels of two strings: expected and measured values.

Relative time offsets of the strings measured with different pairs of channels.

- Section calibration accuracy ~2 ns (including channel calibration uncertainties).
- Systematic uncertainties (OM rotation around string, the bend of the string, light scattering in water) is under investigation.

Amplitude calibration of the channels (linearity range)

The objective of the calibration is the converting ADC channels to photoelectrons.

There are two methods of amplitude calibration:

- The measuring of PMT noise spectrum;
- SPE spectrum measuring with LED

SPE spectrum measuring with LEDs: The SPE pulse (the first LED) is triggered by delayed pulse with large amplitude (the second LED) for PMT noise suppression

Distribution of the channels on A_{SPE}.

Amplitude calibration of the channels (nonlinearity range)

The fit of individual channel \rightarrow estimating S(N_{pe}) with 10% precision up to ~ 10³ p.e.

Summary

- The methods and systems used to perform the time and amplitude calibration for the Baikal-GVD neutrino detector have been reviewed. They have been successfully tested in situ.
- Cross-checks between two independent time calibration methods give an agreement of ~2 ns.

THANK YOU

Backup slides

LED flashes detection

- Trigger logic: 2-level adjustable digital comparator forms low threshold L and high threshold *H* channel requests
- Data channel (triggered) consists of double-buffered memory and data transmitter.
- Monitor channel (non-triggered) includes peak detector and amplitude analyzer.

- Trigger logic(L&H coincidence of neighboring channels
- Data readout from ADC buffer

Clock Generation & **Distribution Circuit**

- Control of OM mode of operation
- Connection via local Ethernet to the cluster **DAQ** center

DDR MEMORY From Upper Level

GVD cluster architecture

STRING

Basic principles of GVD design:

- Simplicity of all elements;
- Deployment convenience from the ice cover;
- Detector extendability and configuration flexibility

Basic GVD elements

- Optical module (OM);
- Section: 12 OM (spaced by 15m) & Section electronic module (12 FADCs)
- String: 2 Sections & String electronic module
- Cluster: 8 strings & DAQ center.

Section electronic

Triggering and Data Transmission

