Low-energy point source searches with IceCube

Sebastian Euler Uppsala University VLVvT 2015, Rome

UPPSALA UNIVERSITET

Point source searches in IceCube

- standard search sensitive mainly in Northern Hemisphere
- some down-going sensitivity at higher energies (>100 TeV)
- many interesting sources in the Southern Hemisphere:

UPPSALA UNIVERSITET

- most Galactic sources
- \circ Galactic center

Point source searches in IceCube

- standard search sensitive mainly in Northern Hemisphere
- some down-going sensitivity at higher energies (>100 TeV)
- many interesting sources in the Southern Hemisphere:
 - most Galactic sources
 - Galactic center
- specialized analyses for lower-energy down-going events
 - **MESE: 10 TeV 1 PeV**

Point source searches in IceCube

- standard search sensitive mainly in Northern Hemisphere
- some down-going sensitivity at higher energies (>100 TeV)
- many interesting sources in the Southern Hemisphere:
 - most Galactic sources
 - Galactic center
- specialized analyses for lower-energy down-going events
 - **MESE: 10 TeV 1 PeV**
 - ∘ **STeVE**: 1 TeV 30 TeV

Point source searches in IceCube

- standard search sensitive mainly in Northern Hemisphere
- some down-going sensitivity at higher energies (>100 TeV)
- many interesting sources in the Southern Hemisphere:

UPPSALA UNIVERSITE

- \circ most Galactic sources
- Galactic center
- specialized analyses for lower-energy down-going events
 - **MESE: 10 TeV 1 PeV**
 - 。 **STeVE**: 1 TeV 30 TeV
 - \circ LESE: 100 GeV 10 TeV

Point source searches in IceCube

I will be talking mostly

about this one

- standard search sensitive mainly in Northern Hemisphere
- some down-going sensitivity at higher energies (>100 TeV)
- many interesting sources in the Southern Hemisphere:

UPPSALA UNIVERSITE

- most Galactic sources
- Galactic center
- specialized analyses for lower-energy down-going events
 - \circ MESE: 10 TeV 1 PeV
 - 。 **STeVE**: 1 TeV 30 TeV
 - LESE: 100 GeV 10 TeV

Contents

• The IceCube Neutrino Observatory

• Event selection (LESE)

• Analysis method & sensitivity (LESE & STeVE)

Para Orca Mode Va

• Results (LESE & STeVE)

atm. μ

-0.50

exp.

0.00

RDT Score

0.50

1.0

signal hypotheses

simulation

12

.<u>E</u> 10

1.2 1.0 0.8

S -1.00

The IceCube Neutrino Observatory

UPPSALA UNIVERSITE:

> 5160 Digital Optical Modules (DOMs) on 60 Strings • • in depths of 1450 m – 2450 m 1km³ instrumented volume • Digital neutrinos interact in the ice **O**ptical Module detect Cherenkov light from secondary particles (here: μ) *****

Event Selection – Idea

- atmospheric muons entering detector from outside
- events starting inside the detector: **neutrinos!**

πp

 ν_{μ}

Event Selection – Idea

- atmospheric muons entering detector from outside
- events starting inside the detector: **neutrinos**!
- background from atmospheric muons overwhelmingly large at low energies

use veto methods to find starting events!

Event Selection – Online Filter

- not all IceCube data is immediately transferred to the North
- filters select "interesting events", which are then transmitted via satellite
- dedicated filter for low-energy starting events:
 - $_{\circ}~$ reject events with HLC hits on the top 5 DOMs
 - $_{\circ}~$ reject events with the first HLC hit on an outer string
 - $_{\circ}~$ cuts on first guess of reconstructed interaction vertex

Event Selection – Causality Veto

- look for hits consistent with particle travelling with speed of light through the detector
- plot distance vs. time of all hits relative to reference hit (first HLC hit inside fiducial volume)
- separately for top and side veto

UPPSALA UNIVERSITET

Event Selection – Causality Veto

- plot distance vs. time of all hits relative to reference hit (first HLC hit inside fiducial volume)
- here: top veto

UPPSALA UNIVERSITE

- use distributions as PDF
- calculate LLH value

Event Selection – Causality Veto

- plot distance vs. time of all hits relative to reference hit (first HLC hit inside fiducial volume)
- here: side veto

UPPSALA UNIVERSITE:

- use distributions as PDF
- calculate LLH value

Event Selection – More Cuts

- cuts on more advanced reconstructions of the interaction vertex
- cuts on reconstruction quality
- cut on BDT score

- final sample: 6191 events in 329 days
- median angular resolution: 2°

• similar numbers for **STeVE** analysis

Analysis Method

true for both LESE and STeVE (and other analyses, too)

 median sensitivity as function of declination for different spectra (LESE)

 median sensitivity as function of energy for different analyses

→ combination covers an unprecedented energy range from 100 GeV to EeV!

Results: Source List

UPPSALA UNIVERSITET

> $+75^{\circ}$ $+45^{\circ}$ Galactic Plane DARK Starburst test 96 pre-defined sources: Massive Star Cluster SNR/Shel Globular FSRQ Superbubbles LBL/HBL * • all 84 TeVCat sources in the Southern Hemisphere PWN/PSR Fanaroff-Rilev XB/HMXB +15Seyfert Binary UNID 12 sources traditionally tested by IceCube 24h 1**0h** * * most significant source (LESE): o QSO 2022-077 Equatorial -75° • best-fit: $\hat{n}_s = 17.3$, $\hat{\gamma} = 3.5$ post-trial p-value: 14.8% most significant source (STeVE): • SNR G000.9+00.1 • best-fit: $\hat{n}_s = 8.14$, $\hat{\gamma} = 4.0$ nothing significant found! post-trial p-value: 35.4%

Summary

- standard point source search is sensitive to the Southern sky only at very high energies (>100 TeV)
- dedicated low-energy searches are able to cover the energy range above 100 GeV
- event selection relies heavily on veto techniques
- no evidence of neutrino emission from point sources was found in one year of data from IC86
 - $_{\circ}$ $\,$ neither in sky scans nor source list tests
 - o neither in LESE (100 GeV − 10 TeV) nor in STeVE analysis (1 − 30 TeV)
- future plans:
 - $_{\circ}~$ 3 more years of data are ready to be incorporated
 - $_{\circ}$ $\,$ extended source searches $\,$
 - $_{\circ}~$ Galactic plane searches

