TRANSIENT SEARCHES WITH ANTARES

D. Dornic (CPPM) on behalf the ANTARES Coll.

Introduction

ANTARES: experiment dominated by the backgrounds: atm muon: 10/s, atm neutrino: 4-5/day, cosmic neutrino: 1-2/year (?)

- => Atm muons: quite easy to remove (zenith +quality cuts)
- => Atm neutrinos: irreducible isotropic background, low energy

2 types of point-source analysis:

All sky search: signif. cluster => 8-10 v per source @ 5σ discov Candidate list: 50 promising sources => <math>5-6 v per source @ 5σ

- => 2-3 v per source @ 5σ discov
- => Increase sensitivity by a factor 2-3

For a very short transient (GRB), only 1 v per source is sufficient !!!

Analysis method

Unbinned method: minimization of a likelihood ratio Applied to a subsample data in 2008–2012 (~1044 days live time) Event selection optimized for the best 3σ model discovery potential

Likelihood:
$$\log \left[L_{sg+bk} \right] = \sum_{i=1}^{N_{ev}} \log \left[n_{sg} \times P_{sg} (\alpha, \delta, E, t) + P_{bk} (\alpha, \delta, E, t) \right] - N_{ev}$$

Test statistic:
$$Q = \log L^{\max}_{sg+bk} - \log [L_{bk}]$$

Signal:
$$P_{sg}(\alpha, \delta, E, t) = P_{dir}(\alpha, \delta) \times P_{energy}(dE/dX) \times P_{time}(t + lag)$$

Noise:
$$P_{bk}(\alpha, \delta, E, t) = (\Omega(\alpha, \delta))^{-1} \times P_{energy}(dE/dX) \times P_{time}(t)$$

Extracted from data

Transient searches

Galactic sources:

- Micro-quasars & X-ray binaries
- Crab
- Sagittarius A*

Extragalactic sources:

- Active Galactic Nuclei (Blazars)
- Gamma-Ray Bursts

Main hypothesis: gamma-rays and neutrinos are emitted in coincidence (or short delay)

X-ray binary: binary systems formed by a compact object (neutron star or black hole) + companion star.

Traditionally, 2 categories: HMXB and LMXB Very few cases with confirmed presence of jets (detected with radio)

As usual only few indications of hadronic component in XRB, only 2-3 cases: SS433, Cyg X-1 and 4U1630-472

SS433: Iron Emission Lines from Extended X-ray Jets in SS 433: Reheating of Atomic Nuclei S. Migliari, R. Fender, M. Mendez, Science, 297, 1673 (2002)

4U1630-472: Baryons in the relativistic jets of the stellar-mass black hole candidate 4U 1630-47 M. D. Trigo, J. C.A. Miller-Jones, S. Migliari, J. W. Broderick, T. Tzioumis, Nature, published online on 13/11/13

The non-thermal emission of the system is surely dominated by leptonic processes but a hadronic component could also be present. (not necessary to have jets)

Search for time/space correlations between neutrino and X-ray (or gamma) flares:

- Outbursts on 33 binary systems
- Transition state periods (TS) on 8 binaries (a-tels)

Analysis of the X-ray or gamma-ray light curves: look for significant outbursts and look for time/space correlation with ANTARES neutrinos

Results:

2 sources with events in coincidence with flares:

GX 1p4 and IGR

J17091-3624 (pre-trial

4.1% and 6.5%)

=> Compatible with
background fluctuations

GX 1p4

[DEC:-24.7|RA:263]

Flaring 557 days

p-value: 4.13% (post-trial: 72%)

n_{sig}: 0.69 (TS: 0.457) lag: -5 days Spectrum: "cutoff100TeV_costhetasup-0.15"

Lambda cut: -5.2

4U 1630-472

Cygnus X-1

Comparison computed U.L. with model predictions

Transient searches

Galactic sources:

- Micro-quasars & X-ray binaries
- Crab
- Sagittarius A*

Extragalactic sources:

- Active Galactic Nuclei (Blazars)
- Gamma-Ray Bursts

Analysis of Fermi data:

- Counting map + ligthcurve (2deg)
- Denoising LC (Maximum Likelihood Block method)
- Selection of significant flares

First analysis: selection of 10 Fermi flaring blazars in 2008:

=> Astropart. Phys. 36 (2012) 204

<u>Updated analysis</u>: selection of 41 Fermi and 7 TeV sources in 2008-2012:

=> ICRC 2013 - JCAP in preparation

Search for time/space correlations neutrino / gamma-flares from Blazars:

ANTARES 2008-2012 data

Blazars seen by FERMI: 41 candidate sources (average 135 flaring days)

Blazars seen by IACT: 7 candidate sources (average 12 flaring days)

 From the 41 sources studied only 2 sources with fitted signal events (p-value≤10%) in coincidence with gamma-ray flares:

3C 279, PKS 0235-618 and PKS 1124-186

Source	Flaring	Λ_{cut}	n _{sig}	nsig	LAG	75		Sens ivity@90%	p-value	post-trial	trial-factor	Spectrum
	(days)		$3\sigma @50\%$	Fitted	Fitted	Fittea	Median	$(\text{GeV cm}^{-2} \text{s}^{-1})$				
3C 279	279	-5.3	2.5	0.8	-4	0./ 3	у.5e-05	2.99e-07	3.3%	67%	21	E-2
PKS 0235-618	25	-5.7	1.5	0.6	+5	0.5	1.1e-04	1.16e-05	4.5%	91%	20	$E^{-2}e^{-E/10 TeV}$
PKS 0235-618	25	-5.7	1.8	0.7	+5	2.50	1.3e-04	8.85e-05	5.1%	91%	18	$E^{-2}e^{-E/1TeV}$
PKS 1124-186	73	-5.4	3.1	S	+ .	0.41	1.8e-04	2.03e-05	5.9%	94%	16	$E^{-2}e^{-E/1TeV}$
3C 279	279	-5.4	2.9	0.5	-4	0.14	1.6e-04	1.60e-06	8.5%	96%	11	$E^{-2}e^{-E/10TeV}$
PKS 1124-186	73	-5.4	2.5	2	+4	0.019	1.0e-04	2.29e-06	9.1%	99%	11	$E^{-2}e^{-E/10TeV}$

• From the 7 sources studied only 1 source with fitted signal events (₁-value≤10%) in coincidence with gamma-ray flares:

PKS 0447-439

	Sour		Flaring (days)							Sensitivity@90% (GeV cm ⁻² s ⁻¹)	•	post-trial	trial-factor	Spectrum
-			(uays)		30 @30 /6	ricced	ritteu	ritteu	Median	(Gev ciii s)				
	PKS 044	47-439	10	-5.4	1.75	0.10	5	0.0056	8.5e-05	1.10e-04	10%	54.8%	5.4	$E^{-2}e^{-E/1TeV}$

3C279 (Nb=41 thP=-5)

3C 279 (279 flaring days)

BEST: 3.3% (67%) E^{-2}

3C279

-10

188

dec (°)

PKS 1124-186 (73 flaring days)

BEST: 5.9% (94%) $E^{-2}e^{-E/1TeV}$

Conclusion

ANTARES: Most sensitive neutrino telescope in the TeV-PeV range seeing the southern sky

No cosmic signal yet (but taking data until end 2016)

Transient searches offer the most sensitive method to look for a neutrino source since the backgrounds are significantly suppressed by the time correlation cuts.

Galactic X-ray binaries: search for 34 sources => no statistically significant excess

Extragal. Blazars: search for 41 Fermi sources and 7 TeV sources => no statistically significant excess