Extragalactic Neutrino Sources and their Multi-Messenger Constraints

Markus Ahlers

UW-Madison & WIPAC

 $VLV\nu T 2015$

Rome, September 14, 2015

Multi-Messenger Astronomy

- Cosmic Messengers:
 - Cosmic Rays
 - Gamma-Rays
 - Neutrinos
 - ? Gravitational Waves
- → Neutrino astronomy:
 - closely related to cosmic rays (CRs) and γ-rays
 - weak interaction during propagation
 - exclusive messenger for 10 TeV-10 EeV telescopes
 - Challenges:
 - Iow statistics
 - Iarge backgrounds

IceCube HESE Sample (3yrs)

High-Energy Starting Event (HESE) sample:

[IceCube Science 342 (2013)]

- bright events ($E_{th} \gtrsim 30 \text{TeV}$) starting inside IceCube
- · efficient removal of atmospheric backgrounds by veto layer
- 37 events in about three years:

[IceCube PRL 113 (2014)]

- 28 cascades events
- 8 track events
- 1 composite event (removed)
- expected background events:
 - 6.6^{+5.9}_{-1.6} atmospheric neutrinos
 - 8.4^{+4.2}_{-4.2} atmospheric muons
- significance of 5.7σ above backgrounds
- talk by Tyce DeYoung

IceCube 3 year Results

- 28 "cascade events" (circles) and 7 "tracks events" (diamonds); size of symbols proportional to deposited energy (30 TeV to 2 PeV) [IceCube PRL 113 (2014)]
- × no significant spatial or temporal correlation of events

Neutrino Flavors

 $\begin{array}{lll} \text{ initial composition:} & \nu_e:\nu_\mu:\nu_\tau\\ \textit{pion \& muon decay:} & 1:2:0\\ \textit{neutron decay:} & 1:0:0\\ \textit{muon-damped pion decay:} & 0:1:0 \end{array}$

$$p + p \rightarrow \pi^{+} + X$$

$$\downarrow \mu^{+} + \nu_{\mu}$$

$$\downarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

oscillation-averaged probability:

$$P_{
u_{lpha}
ightarrow
u_{eta}} \simeq \sum_{i} \left| U_{lpha i}
ight|^{2} \! \left| U_{eta i}
ight|^{2}$$

- "NuFit 1.3": $\sin^2 \theta_{12} = 0.304 / \sin^2 \theta_{23} = 0.577 / \sin^2 \theta_{13} = 0.0219 / \delta = 251^\circ$
- ✓ observed events consistent with equal contributions of all neutrino flavors
- → talk by Francesco Vissani

Neutrino Flavors

 $\begin{array}{lll} \text{ initial composition:} & \nu_e:\nu_\mu:\nu_\tau\\ \textit{pion \& muon decay:} & 1:2:0\\ \textit{neutron decay:} & 1:0:0\\ \textit{muon-damped pion decay:} & 0:1:0 \end{array}$

$$p + p \to \pi^+ + X$$

$$\downarrow \mu^+ + \nu_{\mu}$$

$$\downarrow e^+ + \nu_e + \bar{\nu}_{\mu}$$

oscillation-averaged probability:

$$P_{
u_{lpha}
ightarrow
u_{eta}} \simeq \sum_{i} \left| U_{lpha i}
ight|^{2} \! \left| U_{eta i}
ight|^{2}$$

- "NuFit 1.3": $\sin^2 \theta_{12} = 0.304 / \sin^2 \theta_{23} = 0.577 / \sin^2 \theta_{13} = 0.0219 / \delta = 251^\circ$
- observed events consistent with equal contributions of all neutrino flavors
 - → talk by Francesco Vissani

Multi-messenger Paradigm

- Neutrino production is closely related to the production of cosmic rays (CRs) and γ-rays.
- pion production in CR interactions with gas ("pp") or radiation ("pγ"); neutrinos with about 5% of CR nucleon energy
- 1 PeV neutrinos correspond to 20 PeV CR nucleons and 2 PeV γ-rays
- → very interesting energy range:
 - Glashow resonance?
 - galactic or extragalactic?
 - isotropic or point-sources?

The Cosmic "Beam"

Proposed Source Candidates I

- Galactic: (full or partial contribution)
 - diffuse Galactic γ -ray emission [MA & Murase'13; Joshi J C, Winter W and Gupta'13]

[Kachelriess and Ostapchenko'14: Neronov, Semikoz & Tchernin'13]

[Neronov & Semikoz'14; Guo, Hu & Tian'14; Gaggero, Grasso, Marinelli, Urbano & Valli'15]

• unidentified Galactic γ -ray emission

[Fox, Kashiyama & Meszaros'13]

[Gonzalez-Garcia, Halzen & Niro'14]

supernova remnants

[Mandelartz & Tjus'14] [Padovani & Resconi'14]

pulsars

[Anchordogui, Goldberg, Paul, da Silva & Vlcek'14]

microquasarsSagitarius A*

[Bai, Barger, Barger, Lu, Peterson & Salvado'14; Fujita, Kimura & Murase'15]

Fermi Bubbles

[MA & Murase'13; Razzaque'13]

[Lunardini, Razzaque, Theodoseau & Yang'13; Lunardini, Razzaque & Yang'15]

Galactic Halo

[Taylor, Gabici & Aharonian'14]

heavy dark matter decay

[Feldstein, Kusenko, Matsumoto & Yanagida'13]

[Esmaili & Serpico '13; Bai, Lu & Salvado'13; Cherry, Friedland & Shoemaker'14]

Galactic Emission Models: Two Examples

Hard Galactic Diffuse Emission

[Neronov & Semikoz'14]

PeV Dark Matter Decay (e.g. DM $\rightarrow \nu \bar{\nu}/q\bar{q}$)

[e.a. Murase, Laha, Ando & MA'15]

- limits on Galactic contribution from PeV γ -ray observation
- anisotropy limits on Galactic diffuse emission at the level of 50%
- Galactic diffuse ν constrained by new ANTARES limits!

[MA & Murase'14]

[MA & Bai, Barger & Yang'15]

→ talk by Luigi Antonio Fusco

PeV γ -ray Associations?

IceCube-equivalent diffuse γ-ray flux:

$$E_{\gamma}J_{\gamma}(E_{\gamma})\simeq e^{-rac{d}{\lambda\gamma\gamma}}rac{2}{K}rac{1}{3}\sum_{
u_{\sigma}}E_{
u}J_{
u_{lpha}}^{
m IC}(E_{
u})$$

- absorption length $\lambda_{\gamma\gamma}$ via $\gamma\gamma \to e^+e^-$
- effect strongest for CMB in PeV range: $\lambda_{\gamma\gamma} \simeq 10 \ \mathrm{kpc}$
- plot shows distance d from 8.5 kpc (GC) to 30 kpc
- \Rightarrow strong constraints of isotropic diffuse Galactic emission from γ -ray observatories [Gupta 1305.4123]

PeV γ -ray Associations?

- 16 events lie in TeV-PeV "blind spot"
 - [MA & Murase'13]
- one PeV event ("Ernie") within 10° of PeV γ -ray "warm spot"

[IceCube'12]

Proposed Source Candidates II

Extragalactic:

• association with sources of UHE CRs [Kistler, Stanev & Yuksel'13]

[Katz, Waxman, Thompson & Loeb'13; Fang, Fujii, Linden & Olinto'14]

• association with diffuse γ -ray background [Murase, MA & Lacki'13]

[Chang & Wang'14; Ando, Tamborra & Zandanel'15]

active galactic nuclei (AGN)
 [Stecker'13;Kalashev, Kusenko & Essey'13]

[Murase, Inoue & Dermer'14; Kimura, Murase & Toma'14; Kalashev, Semikoz & Tkachev'14]

[Padovani & Resconi'14; Petropoulou, Dimitrakoudis, Padovani, Mastichiadis & Resconi'15]

gamma-ray bursts (GRB)
 [Murase & loka'13; Dado & Dar'14; Tamborra & Ando'15]

· galaxies with intense star-formation

[He, Wang, Fan, Liu & Wei'13; Yoast-Hull, Gallagher, Zweibel & Everett'13]

[Murase, MA & Lacki'13; Anchordoqui, Paul, da Silva, Torres& Vlcek'14]

[Tamborra, Ando & Murase'14; Chang & Wang'14; Liu, Wang, Inoue, Crocker& Aharonian'14]

[Senno, Meszaros, Murase, Baerwald & Rees'15; Chakraborty & Izaguirre'15]

galaxy clusters/groups
 [Murase, MA & Lacki'13; Zandanel, Tamborra, Gabici & Ando'14]

• . . .

Extragalactic Emission Models: Two Examples

Starburst Galaxies ("pp" scenario)

[Loeb & Waxman'06]

Active Galactic Nuclei (" $p\gamma$ " scenario)

- [Mannheim'96; Halzen & Zas'97] [e.g. Murase, Inoue & Dermer'14]
- CR-gas (pp) interactions: mostly broken power-law neutrino spectra.
- CR-photon $(p\gamma)$ interactions: **strong spectral features** inherited from photon spectrum

Identification of Extragalactic Point-Sources?

total number of sources

$$n_s \simeq 10^6 - 10^7$$

total number of "shells"

$$n_{\rm shell} \simeq (n_s)^{\frac{1}{3}}$$

· total number of events

$$\bar{N} \simeq m \times n_{\rm shell} = m \times (n_s)^{\frac{1}{3}}$$

required number of events to see a doublet (m = 2)

$$\bar{N} \simeq 200 - 500$$

- random clusters are very likely with bad angular resolution!
- multi-messenger correlations!

Neutrino Point-Source Limits

- Diffuse neutrino flux normalizes the contribution of individual sources
- dependence on local source density \mathcal{H} (rate $\dot{\mathcal{H}}$) and redshift evolution ξ_z
- → PS observation requires rare sources
 - non-observation of individual neutrino sources exclude source classes, e.g.
 - **X** flat-spectrum radio quasars $(\mathcal{H} \simeq 10^{-9} \mathrm{Mpc}^{-3} / \xi_z \simeq 7)$
 - * "normal" GRBs $(\dot{\mathcal{H}} \simeq 10^{-9} \mathrm{Mpc}^{-3} \mathrm{yr}^{-1} / \xi_z \simeq 2.4)$

[MA&Halzen'14]

IceCube Stacking Searches

GRB Stacking

- ν_μ emission following the GRB "fireball" model
- 492 GRBs (2008–2012) in IceCube's FoV reported with GCN and Fermi GBM

Blazar Stacking

[Th.Gluesenkamp RICAP'14; arXiv:1502.03104]

- Fermi blazar stacking
- plot shows limit on 310 FSRQ
- all 2LAC blazar limits of similar strength

Extragalactic Gamma-Rays

hadronic γ-rays:
 pion production in CR interactions

$$\pi^0 \to \gamma + \gamma$$

$$\pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu$$

- cross-correlation of γ-ray and neutrino sources
- ★ electromagnetic cascades of super-TeV γ-rays in CMB
- Isotropic Diffuse Gamma-Ray Background (IGRB) constraints the energy density of hadronic γ-rays & neutrinos

Electromagnetic Cascades

- CMB interactions (solid lines) dominate in casade:
 - inverse Compton scattering (ICS) $e^{\pm} + \gamma_{\text{CMB}} \rightarrow e^{\pm} + \gamma$
 - pair production (PP) $\gamma + \gamma_{\text{CMB}} \rightarrow e^+ + e^-$
- extragalactic background light (red dashed line) determines the "edge" of the spectrum.

[EBL: Franceschini et al. '08]

 rapid cascade interactions produce universal GeV-TeV emission

[Berezinsky&Smirnov'75]

[MA'11]

Isotropic Diffuse Gamma-Ray Background (IGRB)

- neutrino and γ -ray fluxes in pp scenarios follow initial CR spectrum $\propto E^{-\Gamma}$
- low energy tail of GeV-TeV neutrino/γ-ray spectra
- ★ constrained by Fermi IGRB [Murase, MA & Lacki'13; Chang & Wang'14] → talk by Paolo Giommi
- extra-galactic emission (cascaded in EBL): $\Gamma \lesssim 2.15-2.2$
- Combined IceCube analysis:

 $\Gamma \simeq 2.4 - 2.6$ [IceCube'15]

[Murase, MA & Lacki'14; Tamborra, Ando & Murase'14] [Ando, Tamborra & Zandanel'15]

Isotropic Diffuse Gamma-Ray Background (IGRB)

- neutrino and γ -ray fluxes in pp scenarios follow initial CR spectrum $\propto E^{-\Gamma}$
- low energy tail of GeV-TeV neutrino/γ-ray spectra
- ★ constrained by Fermi IGRB [Murase, MA & Lacki'13; Chang & Wang'14] → talk by Paolo Giommi
- extra-galactic emission (cascaded in EBL): $\Gamma \lesssim 2.15-2.2$
- Combined IceCube analysis:

 $\Gamma \simeq 2.4 - 2.6$ [IceCube'15]

[Murase, MA & Lacki'14; Tamborra, Ando & Murase'14] [Ando, Tamborra & Zandanel'15]

Isotropic Diffuse Gamma-Ray Background (IGRB)

- neutrino and γ -ray fluxes in pp scenarios follow initial CR spectrum $\propto E^{-\Gamma}$
- low energy tail of GeV-TeV neutrino/γ-ray spectra
- ★ constrained by Fermi IGRB [Murase, MA & Lacki'13; Chang & Wang'14] → talk by Paolo Giommi
- extra-galactic emission (cascaded in EBL): $\Gamma \lesssim 2.15-2.2$
- Combined IceCube analysis:

 $\Gamma \simeq 2.4 - 2.6$ [IceCube'15]

[Murase, MA & Lacki'14; Tamborra, Ando & Murase'14] [Ando, Tamborra & Zandanel'15]

Non-Blazar Limits on Gamma-Ray Background

- [Becntol, MA, Ajello, Di Mauro & vandenbroucke; in preparation]
- Total γ -ray background above 50 TeV dominated by blazars ($\sim 85\%$)
- x strong tension with IceCube observation

Comments & Consequences

- Strong limits apply to **CR calorimeters**, like starburst galaxies or galaxy clusters.
- Direct γ -ray emission can be reduced in $p\gamma$ scenarios, but cascade emission can still contribute at the level of 10% above 100 GeV to the IGRB.
- Is blazar emission above 50 GeV dominated by hadronic interactions?
- Is secondary γ -ray emission "hidden" by source radiation backgrounds?

[Murase, Guetta & MA'15]

- Are there **Galactic** "contaminations" at $E_{\nu} \simeq 1-10$ TeV that effectively lead to a softening of the observed neutrino spectrum? [IceCube'15; MA, Bai, Bargner & Lu'15]
- The diffuse flux also saturates limits from UHE CR sources. Is this population
 also responsible for UHE CRs?
 [Katz, Waxman, Thompson & Loeb'13]

Fermi IGRB and $p\gamma$ Scenarios?

- also strong constraints from cascade emission of $p\gamma$ scenarios
- However, **high pion production efficiency** implies strong $\gamma\gamma$ absorption in sources!
- \rightarrow Are strong neutrino sources "hidden" in γ -rays?

UHE CR association?

UHE CR proton emission rate density:

[MA&Halzen'12]

$$E_p^2 Q_p(E_p) \simeq (1-2) \times 10^{44} \,\mathrm{erg}\,\mathrm{Mpc}^{-3}\,\mathrm{yr}^{-1}$$

• corresponding per flavor neutrino flux ($\xi_z \simeq 0.5 - 2.4$ and $K_\pi \simeq 1 - 2$):

$$E_{\nu}^2 J \phi_{\nu}(E_{\nu}) \simeq f_{\pi} \frac{\xi_{z} K_{\pi}}{1 + K_{\pi}} (2 - 4) \times 10^{-8} \,\text{GeV cm}^{-2} \,\text{s}^{-1} \,\text{sr}$$

• WB bound: $f_{\pi} \leq 1$

[Waxman&Bahcall'98]

- $f_{\pi} \simeq 1$ requires efficient pion production
- \star how to reach $E_{\rm max} \simeq 10^{20}$ eV in environments of high energy loss?
- → two-zone models: acceleration + CR "calorimeter"?
 - starburst galaxies

[Loeb&Waxman'06]

galaxy clusters

[Berezinsky,Blasi&Ptuskin'96;Beacom&Murase'13]

→ "holistic" CR models: universal time-dependent CR sources?

[Parizot'05;Aublin&Parizot'06;Katz,Waxman,Thompson&Loeb'13]

Anisotropies of UHE CRs

- $\theta_{\rm rms} \simeq 1^{\circ} (D/\lambda_{\rm coh})^{1/2} (E/55 {\rm EeV})^{-1} (\lambda_{\rm coh}/1 {\rm Mpc}) (B/1 {\rm nG})$
- [Waxman & Miralda-Escude'96]
- "hot spots" (dashed), but no significant auto-correlation in Auger and Telescope Array data
- cross correlation?

→ talk by Mohamed Rameez

Ultra-High Energy Cosmic Rays

 particle confinement during acceleration requires:

[Hillas'84]

$$E \lesssim 10^{18} \, \mathrm{EeV} \left(B/1 \mu \mathrm{G} \right) \, \left(R/1 \mathrm{kpc} \right)$$

- Iow statistics: large uncertainties in chemical composition and spectrum!
- ★ "GZK" horizon (≤ 200 Mpc): resonant interactions of CR nuclei with CMB photons

[Greisen'66;Zatsepin &Kuzmin'66]

 \checkmark "guaranteed flux" of secondary γ -ray and neutrino emission

[Berezinsky&Zatsepin'70;Berezinsky&Smirnov'75]

Cosmogenic ("GZK") Neutrinos

 Observation of UHE CRs and extragalactic radiation backgrounds "guarantee" a flux of high-energy neutrinos, in particular via resonant production in CMB.

[Berezinsky & Zatsepin'69]

- "Guaranteed", but with many model uncertainties and constraints:
 - (Iow cross-over) proton models + CMB (+ EBL)
 [Berezinsky & Zatsepin'69; Yoshida & Teshima'93; Protheroe & Johnson'96; Engel, Seckel & Stanev'01; Fodor, Katz, Ringwald &Tu'03; Barger, Huber & Marfatia'06; Yuksel & Kistler'07; Takami, Murase. Nagataki & Sato'09, MA, Anchordoqui & Sarkar'09]
 - + mixed compositions

[Hooper, Taylor & Sarkar'05; Ave, Busca, Olinto, Watson & Yamamoto'05; Allard, Ave, Busca, Malkan, Olinto, Parizot, Stecker & Yamamoto'06; Anchordoqui, Goldberg, Hooper, Sarkar & Taylor'07; Kotera, Allard & Olinto'10; Decerprit & Allard'11; MA & Halzen'12]

+ extragalactic γ-ray background limits

[Berezinsky & Smirnov'75; Mannheim, Protheroe & Rachen'01; Keshet, Waxman, & Loeb'03; Berezinsky, Gazizov, Kachelriess & Ostapchenko'10; MA, Anchordoqui, Gonzalez-Garcia, Halzen & Sarkar'10; MA & Salvado'11; Gelmini, Kalashev & Semikoz'12]

Guaranteed Cosmogenic Neutrinos

- minimal GZK flux from proton dominated models can be estimated from observed spectrum
- dependence on cosmic evolution of sources:
 - no evolution (dotted)
 - star-formation rate (solid)
- ultimate test of UHE CR proton models feasible with ARA or ARIANNA

Summary & Outlook

- Neutrinos are unique cosmic (pointing) probes in the 10TeV-10EeV energy range (six orders of magnitude!).
- Identification of PeV neutrino sources is challenging.
- Galactic neutrino emission unlikely the main source of the PeV diffuse flux.
- Local PeV γ-ray astronomy?
- Multi-messenger correlations are the most promising scenario for point-source detection, in particular for transient sources.
 - Similar diffuse energy densities of UHE CRs, γ-rays and neutrinos might indicate a common extragalactic origin.
- Input from γ-ray astronomy will be essential to identify extragalactic source populations.
 - How well can we determine the spectrum and flavor composition?

Appendix

Neutrino Point-Source Limits

- upper flux limits and sensitivities of Galactic neutrino sources with "classical" muon neutrino search ($\theta_{\rm res} \simeq 0.3^{\circ}\text{-}0.6^{\circ}$)
- sensitivity for extended sources weaker by $\sqrt{\Omega_{\rm ES}/\Omega_{\rm PSF}} \simeq \theta_{\rm ES}/\theta_{\rm res}$
- strongest limits for sources in the Northern Hemisphere (IceCube FoV for upgoing ν 's)
- time-dependent sensitivity: [IceCube ApJ 744 (2012)]

$$E^2 \Phi_{\nu_{\mu}} \simeq (0.1 - 1) \text{GeV cm}^{-2}$$

[IceCube 1406.6757]

Neutrino Point-Source Limits

• relative strength of neutrino limits assuming hadronic TeV γ -ray emission (only shown for selected strong sources):

$$F_{\gamma}(E_{\gamma} > E_{\rm th})/F_{\nu}^{90CL}(E_{\nu} > E_{\rm th}/2)$$

caveats: soft spectra, low energy cutoffs and extended emission

AGN jets

• neutrino from $p\gamma$ interactions in AGN jets

- [Mannheim'96; Halzen & Zas'97]
- complex spectra due to various photon backgrounds
- typically, deficit of sub-PeV and excess of EeV neutrinos

[Murase, Inoue & Dermer 1403.4089]

Extra-galactic background light (EBL)

optical-UV background gives PeV neutrino peak

DM decay

- heavy (>PeV) DM decay?
 - [Feldstein et al. 1303.7320; Esmaili & Serpico 1308.1105; Bai, Lu & Salvado 1311.5864]
- initially motivated by PeV "line-feature", but continuum spectrum with/without line spectrum equally possible
- observable PeV γ-rays from the Milky Way halo?

[Bai, Lu & Salvado'13]

Composition Dependence of UHE CRs

- large uncertainties on UHE CR mass composition
- UHE CR examples in plot: only proton or only iron on emission
- diffuse spectra of cosmogenic γ -rays (dashed lines) and neutrinos (dotted lines) vastly different [MA&Salvado'11]
- neutrino limits start to constrain most optimistic scenarios of proton-dominated UHE CR sources. [IceCube'13;ANITA'12]

Guaranteed Cosmogenic Neutrinos

neutrino emission depend on nucleon spectrum:

$$J_N(E_N) = \sum_i A_i^2 J_i(A_i E_N)$$

- minimial contribution can be estimated from observed mass composition
 - dependence on cosmic evolution of sources:
 - no evolution (dotted)
 - star-formation rate (solid)
- ultimate test of UHE CR proton models with ARA-37

TeV Associations?

LBL, IBL, LBL, FRI, FSRQ Globular Cluster, Star Forming Region, Massive Star Cluster
Binary PWN Shell, SNR/Molec.Cloud, Composite SNR Starburst Others [TeVCat'14]