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Multi-kiloton neutrino facilities & proton decay
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Multi-kiloton neutrino facilities & proton decay

Proton decay from the SM perspective

Grand unification of the SM interactions

Proton decay estimates in GUTs and their main theoretical uncertainties
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The SM lagrangian conserves B and L
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The SM lagrangian conserves B and L

5

always a              structure - B perturbatively conserved  �µ 
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B & L violation in the SM

Only by anomalies (at the renormalizable level)

3He! e+µ+⌫⌧

• Instantons (at zero T) cause                     with immeasurably small rates 9q + 3l $ ;

• Sphalerons (at high T) make the tunneling more efficient         leptogenesis

Fukugita, Yanagida, PLB174, 1986Kuzmin, V. Rubakov, M. Shaposhnikov, PLB155, 1985

A ⇠ e�2⇡/↵ ⇠ 10�O(100)
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B & L violation in the SM

Only by anomalies (at the renormalizable level)

3He! e+µ+⌫⌧

• Instantons (at zero T) cause                     with immeasurably small rates 9q + 3l $ ;

• Sphalerons (at high T) make the tunneling more efficient         leptogenesis

Fukugita, Yanagida, PLB174, 1986Kuzmin, V. Rubakov, M. Shaposhnikov, PLB155, 1985

Renormalizability is nowadays considered a quantitative feature 

A ⇠ e�2⇡/↵ ⇠ 10�O(100)
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BTW: good to have the “complete Higgs doublet” :-)

Weinberg’s d=5 operator L 3 LLHH

⇤
 S. Weinberg, PRL43, 1566 (1979)

There is only one d=5 effective operator in the SM!

⇤ ⇠ (1012 � 1014) GeV

SM as an effective theory at d=5 level 
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Baryon number violation from the SM perspective

B. Grzadkowski et al., JHEP 10 (2010) 085, arXiv: 1008.4884
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B. Grzadkowski et al., JHEP 10 (2010) 085, arXiv: 1008.4884

Baryon number violation from the SM perspective
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Renormalizable dynamics behind the SM d=6 BNV?

Let’s do the same trick that Schwinger & co. played with the Fermi theory:

Elementary vertex:
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Renormalizable dynamics behind the SM d=6 BNV?

Let’s do the same trick that Schwinger & co. played with the Fermi theory:

Elementary vertex:

QED-like seed of 
a renormalizable theory

Elementary vertices:



Michal Malinsky, IPNP Prague CERN,  April 28 2015Proton decay theory and predictions /many11

(dT
R C uR)(QT

L C LL) = [(uR)c�µQ][(dR)c�µL]Example:

Renormalizable dynamics behind the SM d=6 BNV?
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Renormalizable dynamics behind the SM d=6 BNV?

Scalar exchange

(3, 1,� 1
3 )� (3, 1,+ 1

3 )
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(dT
R C uR)(QT

L C LL) = [(uR)c�µQ][(dR)c�µL]

Fierz

Example:

Proton instability:

p+

⇡0

new gauge interaction

�
p+

⇡0

new Yukawa interactions

Renormalizable dynamics behind the SM d=6 BNV?

Scalar exchange

(3, 1,� 1
3 )� (3, 1,+ 1

3 )

�

Vector exchange

(3, 2,� 5
6 )� (3, 2,+ 5

6 )
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(dT
R C uR)(QT

L C LL) = [(uR)c�µQ][(dR)c�µL]

Fierz

Example:

Such a new physics should be above 1015 GeV !??�p ⇠
m5

p

M4
< (1034y)�1

Proton instability:

p+

⇡0

new gauge interaction

�
p+

⇡0

new Yukawa interactions

Renormalizable dynamics behind the SM d=6 BNV?

Scalar exchange

(3, 1,� 1
3 )� (3, 1,+ 1

3 )

�

Vector exchange

(3, 2,� 5
6 )� (3, 2,+ 5

6 )

Xµ



SM running gauge couplings
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Can SM tell us anything about such a huge-scale dynamics?

13

Running gauge couplings in the SM:

µ
d
dµ

g = �(g, ...)

� =
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calculable in perturbation theory
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d
dt

↵�1
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first order linear differential 
equation with constant coefficients 

(at the leading order) 
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Running gauge couplings in the SM
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Running gauge couplings in the SM                d=6 BNV mediators
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Running gauge couplings in the SM                d=6 BNV mediators
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Grand unification of the EW & strong interactions
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Uniqueness of SU(5) @ rank=4

The minimal SU(5) GUT

18
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H.Georgi, S.Glashow, Phys.Rev.Lett. 30 (1974)

The minimal SU(5) GUT
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SU(5)SU(3)c ⌦ SU(2)L ⌦ U(1)Y

20

H.Georgi, S.Glashow, Phys.Rev.Lett. 30 (1974)

The minimal SU(5) GUT
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SU(5)SU(3)c ⌦ SU(2)L ⌦ U(1)Y

20

H.Georgi, S.Glashow, Phys.Rev.Lett. 30 (1974)

The minimal SU(5) GUT
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p+
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6 )

H

5 = (1, 2,+ 1
2 )� (3, 1,� 1

3 )

Scalar sector: SU(3)c ⌦ SU(2)L ⌦ U(1)Y ! SU(3)c ⌦ U(1)Q

SM Higgs:

�

Aµ

Bµ
Gµ W±, Z, �

)
24 = (8, 1, 0)� (1, 3, 0)� (1, 1, 0)�(3, 2,� 5

6 )� (3, 2,+ 5
6 )

Gµ Aµ Bµ

Gauge sector:

Xµ
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Hyper-K p-decay sensitivity projection

C Nucleon decays 73
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FIG. 48. Proton lifetime predictions of several GUT models, the current experimental limits (90% CL) by

Super-K, and the sensitivities of Hyper-Kamiokande with a 5.6 Megaton·year exposure. Hyper-Kamiokande

can cover most of the predicted range of the leading GUT models.
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FIG. 49. The proton decay search sensitivity as a function of year. The left plot is for the p ⇥ e+⇥0 mode

and the right is for the p ⇥ �K+ mode. Hyper-Kamiokande is assumed to start from 2019; its results will

overtake the Super-Kamiokande limits within one year.

Abe et al., arXiv:1109.3262 [hep-ex], see also the talk of  Yokoyama-san

Expected near(?) future sentsitivity improvements
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FIG. 49. The proton decay search sensitivity as a function of year. The left plot is for the p ⇥ e+⇥0 mode

and the right is for the p ⇥ �K+ mode. Hyper-Kamiokande is assumed to start from 2019; its results will

overtake the Super-Kamiokande limits within one year.

Abe et al., arXiv:1109.3262 [hep-ex], see also the talk of  Yokoyama-san

Expected near(?) future sentsitivity improvements

Accuracy of a factor of few in Γp estimates needed to make a case !
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FIG. 49. The proton decay search sensitivity as a function of year. The left plot is for the p ⇥ e+⇥0 mode

and the right is for the p ⇥ �K+ mode. Hyper-Kamiokande is assumed to start from 2019; its results will

overtake the Super-Kamiokande limits within one year.

Abe et al., arXiv:1109.3262 [hep-ex], see also the talk of  Yokoyama-san

Expected near(?) future sentsitivity improvements

Accuracy of a factor of few in Γp estimates needed to make a case !

(At least) NLO PRECISION REQUIRED
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Now I’ll focus solely on the BNV theory accuracy...

... and leave dealing with the accuracy of the low-energy inputs aside

Proton lifetime estimates in GUTs
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[1] Georgi, Quinn, Weinberg, PRL 33, 451 (1974)
[2] Dorsner, Fileviez Perez, NPB 723, 53 (2005) 
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[7] Murayama, Pierce, PRD 65. 055009 (2002)
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... and many more.

Proton lifetime estimates in GUTs
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Proton lifetime estimates in GUTs
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Main theoretical uncertainties in p-decay estimates

GUT scale determination

NB. SUSY is “schizophrenic” in this respect...

- at least two-loop running necessary!  

- requires a very good understanding of the whole spectrum

Credit: H. Kolesova

p+

⇡0
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Main theoretical uncertainties in p-decay estimates

p+

⇡0

Flavour structure of the BLV currents

Example: g2

M2
1/6

Cijk uc�µdi dc
j�µ⌫k Cijk = (V †

dcVd)ji(V †
ucV⌫)1k

- RH rotations enter here

- simple Yukawa sector desirable!      
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p+

⇡0

27

Main theoretical uncertainties in p-decay estimates

Y. Aoki, E. Shintani, A. Soni, Phys.Rev. D89 (2014) 014505 (lattice)

Hadronic matrix elements
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Planck scale effects

L 3 

⇤
Fµ⌫h�iFµ⌫

Larsen, Wilczek, NPB 458, 249 (1996)
G. Veneziano, JHEP 06 (2002) 051
Calmet, Hsu, Reeb, PRD 77, 125015 (2008)
G. Dvali, Fortsch. Phys. 58 (2010) 528-536

Main theoretical uncertainties in p-decay estimates

p+

⇡0

- finite shifts in the gauge matching, can be as large as                           �↵�1
i ⇠ 1
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Planck scale effects

L 3 

⇤
Fµ⌫h�iFµ⌫

Larsen, Wilczek, NPB 458, 249 (1996)
G. Veneziano, JHEP 06 (2002) 051
Calmet, Hsu, Reeb, PRD 77, 125015 (2008)
G. Dvali, Fortsch. Phys. 58 (2010) 528-536

Main theoretical uncertainties in p-decay estimates

NO POINT IN WORKING @ NLO WITHOUT TAMING THESE!

orders of magnitude uncertainty in MG!

p+

⇡0

- finite shifts in the gauge matching, can be as large as                           �↵�1
i ⇠ 1
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L 3 

⇤
Fµ⌫h�iFµ⌫

What to do about the Planck-scale effects (in matching)?

- absent @ d=5 if, e.g.,       is not in � (Adj.⌦Adj.)sym
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L 3 
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Fµ⌫h�iFµ⌫

What to do about the Planck-scale effects (in matching)?

- absent @ d=5 if, e.g.,       is not in � (Adj.⌦Adj.)sym

SU(5) GUTs:
(24⌦ 24)sym = 24� 75� 200

not many options - the rank should not get reduced...
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L 3 

⇤
Fµ⌫h�iFµ⌫

What to do about the Planck-scale effects (in matching)?

- absent @ d=5 if, e.g.,       is not in � (Adj.⌦Adj.)sym

SU(5) GUTs:
(24⌦ 24)sym = 24� 75� 200

not many options - the rank should not get reduced...

SO(10) GUTs:

(45⌦ 45)sym = 54� 210� 770
these, however, are the “usual” choices (though not minimal)...



Minimal SO(10) GUT
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The minimal SO(10) unification

31

- smaller - few SM singlets - easier to break to the SM

Chang, Mohapatra, Gipson, Marshak, Parida 1985 SU(5) branches omitted

{16} (1,2,4)
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The minimal SO(10) unification
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The minimal SO(10) unification

31

- smaller - few SM singlets - easier to break to the SM
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Taming the Planck-scale effects in the minimal SO(10)

L 3 

⇤
Fµ⌫h45iFµ⌫ = 0

The leading Planck-scale effects absent in SO(10) GUTs broken by 45! 
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The minimal SO(10) unification

33

Scalar potential:

SO(10) broken by 45,  rank reduced by 126
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The minimal SO(10) unification

33

Scalar potential:

SO(10) broken by 45,  rank reduced by 126

nightmare



Michal Malinsky, IPNP Prague CERN,  April 28 2015Proton decay theory and predictions /many34

“Ruled out” in 1980’s

m2
(8,1,0) = 2a2(�R � �Y )(�R + 2�Y )

m2
(1,3,0) = 2a2(�Y � �R)(�Y + 2�R)

Yasuè 1981, Anastaze, Derendinger, Buccella 1983, Babu, Ma 1985

The minimal SO(10) unification nightmare
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SU(5)-like vacua only, not far from the sick “SM running”!

The minimal SO(10) unification nightmare
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“Ruled out” in 1980’s

Aaarrrggh...  tachyonic spectrum unless 1
2 < |!Y /!R| < 2???

m2
(8,1,0) = 2a2(�R � �Y )(�R + 2�Y )

m2
(1,3,0) = 2a2(�Y � �R)(�Y + 2�R)
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SU(5)-like vacua only, not far from the sick “SM running”!

The minimal SO(10) unification nightmare
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Quantum salvation in 2010

Bertolini, Di Luzio, MM, PRD 81, 035015 (2010)

One-loop effective potential:

�m2
(1,3,0) =

1

4⇡2

⇥
⌧2

+ �2
(2!2

R � !R!Y + 2!2
Y ) + g4

�
16!2

R + !Y !R + 19!2
Y

�⇤
+ logs ,

�m2
(8,1,0) =

1

4⇡2

⇥
⌧2

+ �2
(!2

R � !R!Y + 3!2
Y ) + g4

�
13!2

R + !Y !R + 22!2
Y

�⇤
+ logs ,

The minimal SO(10) unification nightmare
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Conclusions / outlook

It’s almost impossible to calculate the proton lifetime 
accurately enough to make a clear case...

The long-ago cursed (but recently resurrected)
SO(10) GUT broken by the adjoint scalar is the best hope.



Thanks for your kind attention!
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“Consistency is the last refuge 
of  people without imagination”

Oscar Wilde

The minimal consistent SO(10) unification
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multiple Yukawa finetuning?

         too heavy LH neutrinos!? 

Chang, Mohapatra, Gipson, Marshak, Parida (1985)

Deshpande, Keith, Pal (1993)

Bertolini, Di Luzio, MM (2009)

Simple estimates: Mseesaw ⇠ 1010 GeV
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“Consistency is the last refuge 
of  people without imagination”

Oscar Wilde

The minimal consistent SO(10) unification

39

Enough to make the fine-tunning (if you like) elsewhere.

multiple Yukawa finetuning?

         too heavy LH neutrinos!? 

Chang, Mohapatra, Gipson, Marshak, Parida (1985)

Deshpande, Keith, Pal (1993)

Bertolini, Di Luzio, MM (2009)

Simple estimates: Mseesaw ⇠ 1010 GeV

Bertolini, Di Luzio, MM, PRD85 095014 2012

Two other potentially realistic minimally fine-tuned 
& consistent scenarios with “light” scalars:

(8, 2,+ 1
2 ) (6, 3,+ 1

3 )
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Bertolini, Di Luzio, MM, PRD 85, 095014 (2012)Case I: light                (8, 2,+ 1
2 ) @ one loop

Towards a consistent & potentially realistic SO(10) scenario
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14

FIG. 6. M(8, 2,+ 1
2 ) � |�R| correlation in the case of a light (8, 2,+ 1

2 ) multiplet in the desert. The color code is the same as
before, cf. Section IIIA 2. M(8, 2,+ 1

2 ) can vary over many orders of magnitude in the lower part of the desert, and it is pushed
down for increasing proton lifetime.

FIG. 7. |�BL| � |�R| correlation in the case of a light (8, 2,+ 1
2 ) multiplet in the desert. Various levels of gray correspond to

domains accessible for di�erent GUT-scale limits, cf. Section IIIA 2. In the whole allowed region |�BL| ⇥ �R so this setting
always exhibits an intermediate 4C2L1R stage.

enough B�L breaking scale for a natural implementation of a renormalizable seesaw. Hence, this simple Higgs model
is ready to be upgraded it to a full-featured, potentially realistic and predictive SO(10) GUT.

In doing so, the central question to be addressed before approaching any of the ultimate goals of such a programme
(e.g., a detailed prediction of the proton lifetime and the relevant branching ratios) is the structure of the Yukawa
sector.

A. Yukawa sector of the minimal SO(10) GUTs

It is easy to see that the Higgs model containing just 45H and 126H can not, at renormalizable level, support a
viable Yukawa sector as there is only one contraction available in such a case, namely, 16F f12616F 126�H . Hence, the
flavour structure is entirely governed by a single (symmetric) matrix of Yukawa couplings f126 and no mixing nor
featured fermionic spectra can be generated.

The minimal potentially realistic extension of the 45H ⇥ 126H setting amounts to adding an extra 10- or 120-
dimensional representation which can smear the degeneracy of the e�ective Yukawa matrices across di�erent fermionic
species; for a more detailed discussion see, e.g., [15] or, more recently, [16]. In this respect, it is interesting to quote
namely the results of the new numerical analysis [38] attempting to fit the SM flavour structure onto the e�ective
mass matrices emerging in both the 126H ⇥ 10H as well as the 126H ⇥ 120H cases: Interestingly, the former option is
strongly preferred and, moreover, successful fits require a dominance of the type-I seesaw contribution13. However, as
interesting as these results are, they are still not entirely decisive as there are various sources of uncertainties14 that

13 This feature is closely related to the need to avoid the b-� Yukawa unification in the non-SUSY settings which, however, is generically
favoured by type-II seesaw.

14 In particular: i) the weights of the SM-doublet VEVs entering the relevant sum-rules, cf. Eqs. (24), were taken uncorrelated, ii) the

Hyper-K 2040

40

Bertolini, Di Luzio, MM, PRD 85, 095014 (2012)Case I: light                (8, 2,+ 1
2 ) @ one loop

Towards a consistent & potentially realistic SO(10) scenario
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FIG. 7. |�BL| � |�R| correlation in the case of a light (8, 2,+ 1
2 ) multiplet in the desert. Various levels of gray correspond to

domains accessible for di�erent GUT-scale limits, cf. Section IIIA 2. In the whole allowed region |�BL| ⇥ �R so this setting
always exhibits an intermediate 4C2L1R stage.

enough B�L breaking scale for a natural implementation of a renormalizable seesaw. Hence, this simple Higgs model
is ready to be upgraded it to a full-featured, potentially realistic and predictive SO(10) GUT.

In doing so, the central question to be addressed before approaching any of the ultimate goals of such a programme
(e.g., a detailed prediction of the proton lifetime and the relevant branching ratios) is the structure of the Yukawa
sector.

A. Yukawa sector of the minimal SO(10) GUTs

It is easy to see that the Higgs model containing just 45H and 126H can not, at renormalizable level, support a
viable Yukawa sector as there is only one contraction available in such a case, namely, 16F f12616F 126�H . Hence, the
flavour structure is entirely governed by a single (symmetric) matrix of Yukawa couplings f126 and no mixing nor
featured fermionic spectra can be generated.

The minimal potentially realistic extension of the 45H ⇥ 126H setting amounts to adding an extra 10- or 120-
dimensional representation which can smear the degeneracy of the e�ective Yukawa matrices across di�erent fermionic
species; for a more detailed discussion see, e.g., [15] or, more recently, [16]. In this respect, it is interesting to quote
namely the results of the new numerical analysis [38] attempting to fit the SM flavour structure onto the e�ective
mass matrices emerging in both the 126H ⇥ 10H as well as the 126H ⇥ 120H cases: Interestingly, the former option is
strongly preferred and, moreover, successful fits require a dominance of the type-I seesaw contribution13. However, as
interesting as these results are, they are still not entirely decisive as there are various sources of uncertainties14 that

13 This feature is closely related to the need to avoid the b-� Yukawa unification in the non-SUSY settings which, however, is generically
favoured by type-II seesaw.

14 In particular: i) the weights of the SM-doublet VEVs entering the relevant sum-rules, cf. Eqs. (24), were taken uncorrelated, ii) the
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Towards a consistent & potentially realistic SO(10) scenario

H. Kolešová, MM, PRD 90, 115001 (2014)

����������	
��
�

���
��
�

��������������

��������������

����������������

� �!"##���#$ %&

@ NLO

1-l
oop



Michal Malinsky, IPNP Prague CERN,  April 28 2015Proton decay theory and predictions /many43

Case II: light                 (6, 3,+ 1
3 )

Towards a consistent & potentially realistic SO(10) scenario

H. Kolešová, MM, PRD 90, 115001 (2014)

����������	
��
�

���
��
�

��������������

��������������

����������������

� �!"##���#$ %&

@ NLO

1-l
oop

seesaw scale > 1012 GeV

seesaw scale > 1013 GeV


