

Contribution ID: 114

Type: Poster

## **Radiation at Charge-exchange of lons**

Tuesday 8 September 2015 18:00 (1h 30m)

In the charge-exchange accelerators, negatively charged accelerated ions lose their electrons in a chargeexchange target and become positively charged ions. In the present report, radiation arising at chargeexchange of ions a thin transparent charge-exchange target is considered. It is shown that the spectral and angular distribution of the number of quanta emitted by the hydrogen ion that change its charge from -1 to +1 is described by the formula

$$\mathrm{dN}_{\overline{d\Omega d\omega = \frac{e^2}{\hbar c} \frac{\sin^2 \theta}{\pi^2 \omega \left(\frac{c}{v} - \cos \theta\right)^2}}} \tag{1}$$

where dN is the number of quanta with frequency  $\omega$  emitted in the spectral range  $d\omega$  into the solid angle  $d\Omega$ ,  $e^2/\hbar c = 1/137$ ,  $\theta$  is the observation angle, v is the incident ion velocity. It is interesting that properties of the distribution (1) are independent of the properties of the charge-exchange target if it is thin enough. The applications of such charge-exchange radiation for diagnostics of the charge-exchange process in charge-exchange accelerators are proposed and discussed. Observation of the charge-exchange radiation from the beam of non-relativistic incident ions can be performed by a photon detector installed at observation angle  $\theta$  close to  $\pi/2$ , where the distribution (1) has the maximum. The observed frequency range should be out of the spectral peaks of characteristic X-ray radiation of the charge-exchange target atoms.

**Primary author:** SHCHAGIN, Alexander (Belgorod State University, Belgorod, Russia Kharkov Institute of Physics and Technology, Kharkov, Ukraine)

**Presenter:** SHCHAGIN, Alexander (Belgorod State University, Belgorod, Russia Kharkov Institute of Physics and Technology, Kharkov, Ukraine)

Session Classification: Poster Section

**Track Classification:** 1. General Aspects of Physical Phenomena and Processes Associated with Electromagnetic Radiation