Radiation from Relativistic Electrons in Periodic Structures "RREPS-15"

Contribution ID: 2

Type: Oral

Nonlinear Combination (Raman) Scattering of Photons by the Channeled Positrons

Monday 7 September 2015 14:30 (15 minutes)

The channeled particles is characterized by the bound quantum states of its transversal motion. Photon interactions with the channeled particles in a single crystal may be accompanied by the energy transitions between the transverse motion levels of channeling particles. The photon combination (Raman) scattering by the quasi-bound channeled particles leads to the appearance of a frequency combination of the incident photon frequency ω_0 and the frequency Δ $\omega_{\rm if}$, i.e.

 $\omega_s = \omega_0 \pm \Delta \omega_{if}$,

where $\Delta \omega_{-}$ if $= 2 \Delta \epsilon_{-}$ if γ^{2} ; $\Delta \epsilon_{-}$ if is the transition energy between "i" and "f" transversal motion quantum states; $\gamma = E/(mc^{2})$ is the channeled positrons Lorentz-factor [1]. A "violet" satellite ("anti-Stokes" lines ω) analysis in the Raman combination scattering spectrum is suggested. Tree photons Raman type transition is examined, i.e. the process of the simultaneous absorption of two photons with the frequency $\omega_{-}0$ and the photon emission with the frequency $\omega_{-}s=2\omega_{-}0\pm 2 \Delta \epsilon_{-}$ if γ^{2} . Resonance conditions for the third harmonics observation ($\omega_{-}s = 3\omega_{-}0$) is discussed.

LITERATURE

Kalashnikov N.P., Krokhin O.N. Quantum Electronics. 2014. v. 44 (№12). p.1109 –1111. Raman scattering of a photon with frequency doubling by a channeled positron.

Primary author: Prof. KALASHNIKOV, Nikolay (National Research Nuclear University "MEPhI")

Presenter: Prof. KALASHNIKOV, Nikolay (National Research Nuclear University "MEPhI")

Session Classification: 7. Processes with Crystalline Targets

Track Classification: 7. Processes with Crystalline Targets