

What to constrain?

EFTs

e.g. D1, M3

etc. operators

Simplified Models

e.g. Z', Scalar singlet DM

Full Models

e.g. MSSM, UED

Effective Field Theories

10²

WIMP mass m_{γ} [GeV]

10

Spin-independent

WIMP mass m_y [GeV]

10

10³

10⁻²⁹

Fox, Harnik, Kopp, Tsai, arXiv:1109.4398

Fundamental Limit to Validity

In s-channel:

1)
$$Q_{\rm tr} > 2m_{\rm DM}$$

$$\rightarrow M > 2m_{\rm DM}$$

2)
$$\Lambda = \frac{M}{\sqrt{g_a g_b}} \geq \frac{M}{4\pi}$$

$$\Lambda \gtrsim \frac{m_{\rm DM}}{2\pi}$$

• If we want to measure the validity as a fn of Λ , the $Q_{\mathrm{tr}} < M$ condition means choosing a model-dependent relationship between M and Λ : e.g.

$$\frac{M^2}{g_a g_b} \equiv \Lambda^2$$

Best case scenario:

$$\sqrt{g_a g_b} \simeq 4\pi, \ Q_{\rm tr} \lesssim 4\pi\Lambda$$

Starting choice for coupling:

$$g_a g_b \simeq 1, Q_{\rm tr} \lesssim \Lambda$$

Calculate or measure the fraction of events that pass the condition $Q_{tr} < \Lambda$, for a given choice of Λ and m_{DM}

$$R_{\Lambda}^{\mathrm{tot}} = \frac{\sigma_{\mathrm{eff}}|_{\Lambda > Q_{\mathrm{tr}}}}{\sigma_{\mathrm{eff}}}$$

$$D5 = (\bar{\chi}\gamma^{\mu}\chi)(\bar{q}\gamma_{\mu}q)$$

$$q\bar{q} \to \chi\chi + \mathrm{jet}$$

G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto arXiv:1402.1275, JCAP 1406 (2014) 060

G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto, arXiv:1402.1275 JCAP 1406 (2014) 060

G. Busoni, A. De Simone, T. Jacques, E. Morgante, A. Riotto, arXiv:1405.3101 JCAP 1409 (2014) 022

Extension to other operators

- Calculated for a representative set of effective operators
- Qualitatively similar to first operator

$$R_{\Lambda} = 10\%$$
 $R_{\Lambda} = 25\%$ $R_{\Lambda} = 50\%$

ATLAS-CONF-2012-147

WIMP mass m_y [GeV]

Summary

- Effective Field Theories are a powerful tool allowing comparisons between different classes of experiment.
- At LHC energies, the approximation begins to break down, and remains fully valid only for very large couplings and values of Λ .
- More on the implementation of the truncation, and dependence on the UV completion & couplings from Steven next.