Robust collider limits on heavy-mediator Dark Matter

D. Racco, A. Wulzer, F. Zwirner arXiv: 1502.04701

Davide Racco

Université de Genève

Thursday, 12th March 2015

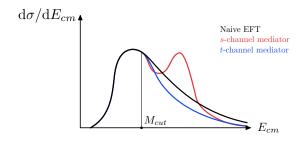
FACULTÉ DES SCIENCES Département de physique théorique

Universal bounds from the Effective Field Theory (EFT)

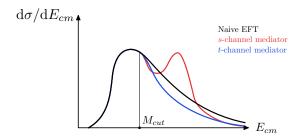
Goal

Use the EFT to get completely general bounds from DM searches at colliders.

- Three free parameters in EFT:
 - $\mathbf{0} m_{\mathsf{DM}};$
 - 2 M_* : effective operator coefficient $\left(1/M_*^{d-4}\right)$;
 - $oldsymbol{0}$ M_{cut} : $\mathit{cut-off\ scale}$ for the validity of the EFT.



Our strategy



We restrict the signal to the events for which

$$E_{\sf cm} < M_{\sf cut}$$
 ,

where E_{cm} is the total invariant mass of the hard final states of the reaction:

$$E_{\rm cm} = \sqrt{\hat{s}} = \sqrt{\left(p^\mu({\rm DM}_1) + p^\mu({\rm DM}_2) + p^\mu({\rm jet})\right)^2} \,. \label{eq:Ecm}$$

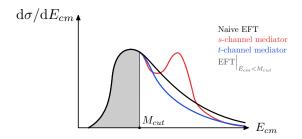
• Indeed, the following always holds:

$$\sigma_{
m true\ model}^{
m signal} \,>\, \sigma_{
m corresp.\ EFT}^{
m signal} \bigg|_{E_{
m cm} < M_{
m cut}} \,.$$

Thus we obtain conservative but reliable limits.

3 / 11

Our strategy



We restrict the signal to the events for which

$$E_{\sf cm} < M_{\sf cut}$$
 ,

where E_{cm} is the total invariant mass of the hard final states of the reaction:

$$E_{\rm cm} = \sqrt{\hat{s}} = \sqrt{\left(p^\mu({\rm DM}_1) + p^\mu({\rm DM}_2) + p^\mu({\rm jet})\right)^2} \,. \label{eq:Ecm}$$

• Indeed, the following always holds:

$$\sigma_{\rm true\ model}^{\rm signal} \ > \ \sigma_{\rm corresp.\ EFT}^{\rm signal} \bigg|_{E_{\rm cm} < M_{\rm cut}} \ . \label{eq:signal_em}$$

Thus we obtain conservative but reliable limits.

3 / 11

Some details about our analysis in 1502.04701

 We consider the case in which DM is a Majorana fermion X, and the effective operator for the interaction with quarks is D8,

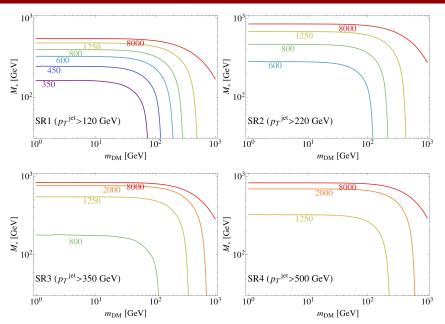
$$\mathcal{L}_{\mathsf{EFT}} = -\frac{1}{M_*^2} \left(\overline{X} \gamma^\mu \gamma^5 X \right) \left(\sum_{\mathsf{flavours}} \overline{q} \gamma_\mu \gamma^5 q \right) \,.$$

• We use Atlas monojet search ATLAS-CONF-2012-147 (10.5 fb $^{-1}$ at \sqrt{s} =8 TeV).

signal region	SR1	SR2	SR3	SR4
p_{T}^{jet} and E_{T}^{miss} [GeV]	>120	>220	>350	>500
$\sigma_{ m exc}[{\sf pb}]$, 95% CL	2.7	0.15	4.810^{-2}	1.510^{-2}

- ullet We perform a parton-level analysis, and we compute cross-section σ and acceptance A with MadGraph5.
- We estimate the efficiency ϵ by matching this output to the experimental limit. The available data allow to extract ϵ for SR3, for three values of m_X .

Results for fixed $M_{\rm cut}$



What are reasonable M_{cut} values?

EFT Lagrangian:

$$\mathcal{L}_{\mathrm{EFT}} = -\frac{1}{M_*^2} \left(\overline{X} \gamma^\mu \gamma^5 X \right) \left(\sum_{\mathrm{flavours}} \overline{q} \gamma_\mu \gamma^5 q \right) \,.$$

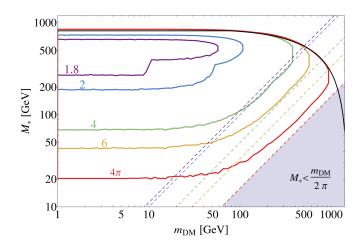
ullet We can link the two dimensionful parameters M_* and $M_{
m cut}$ through

$$M_{\mathsf{cut}} = g_* M_*$$
 .

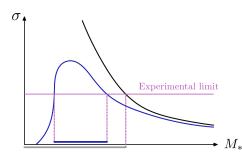
 g_* : effective coupling strength of the EFT. Justification:

$$\mathcal{M}(2 \to 2) \sim \frac{E^2}{M_{*}^2} \underset{\text{at cut-off}}{\to} \frac{M_{\rm cut}^2}{M_{*}^2} \equiv g_{*}^2 \; .$$

Results for fixed g_*



Why is there a lower limit in the excluded region?



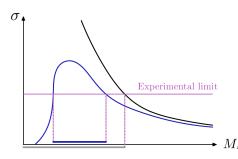
$$\sigma_{\mathrm{EFT}}^{\mathrm{signal}}\Big|_{E_{\mathrm{cm}} < g_* M_*} \propto \frac{1}{M_*^4} \cdot \mathrm{Acceptance} \rightarrow \begin{cases} \frac{1}{M_*^4} & \text{for } M_* \to \infty \,, \\ 0 & \text{for } M_* \to 0 \,. \end{cases}$$

Kinematical threshold:

$$E_{\rm cm}^{\rm min} = p_{\rm T}^{\rm jet} + \sqrt{\left(p_{\rm T}^{\rm jet}\right)^2 + 4 \, m_{\rm DM}^2} \,.$$

The lower is p_T^{jet} , the stronger is the lower limit in the exclusion interval.

Why is there a lower limit in the excluded region?



$$\sigma_{\mathrm{EFT}}^{\mathrm{signal}}\Big|_{E_{\mathrm{cm}} < g_* M_*} \propto \frac{1}{M_*^4} \cdot \mathrm{Acceptance} \rightarrow \begin{cases} \frac{1}{M_*^4} & \text{for } M_* \to \infty \,, \\ 0 & \text{for } M_* \to 0 \,. \end{cases}$$

Kinematical threshold:

$$E_{\rm cm}^{\rm min} = p_{\rm T}^{\rm jet} + \sqrt{\left(p_{\rm T}^{\rm jet}\right)^2 + 4\,m_{\rm DM}^2}\,. \label{eq:emin}$$

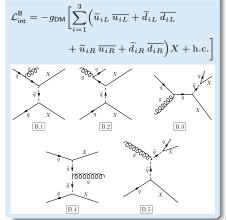
The lower is $p_{\rm T}^{\rm jet}$, the stronger is the lower limit in the exclusion interval.

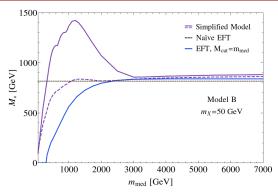
$$\mathcal{L}_{\mathsf{EFT}} = -\frac{1}{M_*^2} \left(\overline{X} \gamma^{\mu} \gamma^5 X \right) \left(\sum_q \overline{q} \gamma_{\mu} \gamma^5 q \right).$$

Model A: s-channel vector mediator

$$\mathcal{L}_{\mathrm{int}}^{\mathrm{A}} = Z_{\mu}' \Big(g_q \sum_q \overline{q} \gamma^{\mu} \gamma^5 q + g_X \overline{X} \gamma^{\mu} \gamma^5 X \Big)$$

Model B: t-channel scalar mediator





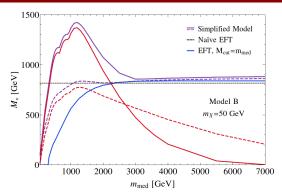
• Blue line: from model-independent limit, with the identification

$$M_* = rac{2\widetilde{m}}{q_{
m DM}}\,, \qquad M_{
m cut} = \widetilde{m}\,.$$

- Red lines: only from the resonant production of the mediator.
 The EFT limit is complemented by the limit from the resonant production.
- Grey lines: fixed mediator width.

The plane (m_{med}, M_*) is not suitable to draw a limit for fixed mediator width.

10 / 11

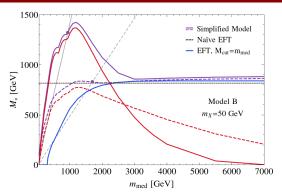


• Blue line: from model-independent limit, with the identification

$$M_* = rac{2\widetilde{m}}{q_{
m DM}}\,, \qquad M_{
m cut} = \widetilde{m}\,.$$

- Red lines: only from the resonant production of the mediator.
 The EFT limit is complemented by the limit from the resonant production.
- Grey lines: fixed mediator width.

The plane $(m_{
m med},\,M_*)$ is not suitable to draw a limit for fixed mediator width.



• Blue line: from model-independent limit, with the identification

$$M_* = rac{2\widetilde{m}}{q_{
m DM}}\,, \qquad M_{
m cut} = \widetilde{m}\,.$$

- Red lines: only from the resonant production of the mediator.
 The EFT limit is complemented by the limit from the resonant production.
- Grey lines: fixed mediator width.

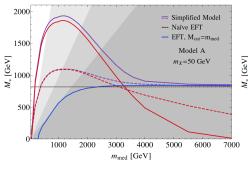
 The plane (m_{med}, M_*) is not suitable to draw a limit for fixed mediator width.

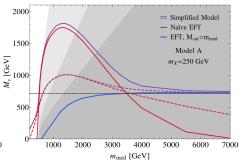
Conclusions

- The EFT allows to extract universal bounds from DM searches.
 (reinterpretable in any UV model)
- ${\bf 0}$ The prescription $E_{\rm cm} < M_{\rm cut}$ can be used for any effective operator.
- **ullet** An effective operator as D_8 may have several microscopic origins.
- Exclusion intervals in M_{*} have also a lower bound. The softer SRs are useful to extend the limits for small M_{*}.
- Extended simplified model reach due to resonant production.
 ⇒ complement the monojet EFT search with direct mediator search.
- Limitation of the plane M_{med} , M_* (inconsistent width).

1. BACKUP SLIDES

0





Comparison with the choice of Q_{tr}

