Simplified models for mono-jet: Proposal for the parameter scan

Felix Kahlhoefer, Uli Haisch, Emanuele Re, Christopher McCabe, David Šálek

DM Forum
12/03/2015

cross-section scaling

- \quad. $\propto g^{2}+g^{2}$
- propagator I / [$\sqrt{ } \mathrm{s}-\mathrm{M}+\mathrm{iM} \Gamma$]

- for off-shell production $(\sqrt{ } s \gg M)$ and EFT $(\sqrt{ } s \ll M)$ the width does not matter in the propagator
$\Rightarrow \sigma \propto g^{2} g^{2}$
- for on-shell production $(\sqrt{ } \mathrm{s} \sim \mathrm{M})$ the width gives dominant contribution
\Rightarrow narrow width approximation: $\int \mathrm{I} /\left[\left(\mathrm{s}-\mathrm{M}^{2}\right)^{2}+\mathrm{M} \Gamma^{2}\right] \mathrm{ds}=\pi / \mathrm{M} \Gamma \rightarrow \sigma \propto \mathrm{g}^{2} \mathrm{~g}^{2} / \Gamma$
- extreme case where $g D M \ll g S M: \sigma \propto g^{2} M^{2} g M^{2} /\left(g_{S M}{ }^{2}+g D M^{2}\right) \rightarrow g D M^{2}$
- extreme case where gDM >> gSM: $\sigma \propto g S M^{2} g D M^{2} /\left(g S M^{2}+g D M^{2}\right) \rightarrow g S M^{2}$

vector mediator, off-shell

I) Generate samples for various choices of couplings
2) Rescale the cross section from the sample with $g=g=0.1$ according to $\sigma \propto g^{2} g^{2}$
3) Compare to the rescaled and generated cross sections (see the ratio above)
\square The scaling works for the off-shell production.

scalar mediator, off-shell

I) Generate samples for various choices of couplings
2) Rescale the cross section from the sample with $g=g=0.1$ according to $\sigma \propto g^{2} g^{2}$
3) Compare to the rescaled and generated cross sections (see the ratio above)
\square The scaling works for the off-shell production.

vector mediator, on-shell

I) Generate samples for various choices of couplings
2) Rescale the cross section from the sample with $g=g=0.1$ according to $\sigma \propto g^{2} g^{2} / \Gamma$
3) Compare to the rescaled and generated cross sections (see the ratio above)
\square The scaling works only for small mediator width.

- Note that the width mainly depends on gSM

scalar on-shell

\Rightarrow The scaling works only for small mediator width.

- Note that the width mainly depends on gDM
- The factor I $-4 \mathrm{~m}^{2} / \mathrm{M}^{2}$ in the width definition is important to understand the numbers.

cross-section scaling

- The scaling $\sigma \propto g^{2} g^{2} / \Gamma$ is indicated in $\underline{1410.6497}$ (MCFM)
- The paper discusses this is true for the finite width calculation whereas there is a secondary effect at $\Gamma / M \geqq 0.1$ where the tail of the mediator $\mathrm{p} T$ can be increased relative to the narrow width approximation (indicated by the red shaded region).

cross-section scaling

- An independent check reveals there are always deviations for sufficiently large Г/M

- The effect depends in a non-trivial way on the mediator mass and the type of the interaction.

gDM-gSM plane

- Show the gDM-gSM plane for one choice of the masses.
- For fixed mediator width and fixed masses, the cross section scales with $\sigma \propto g^{2} g^{2}$
\Rightarrow There is no need to generate the full grid in the gDM-gSM plane.
- One can find the lines of constant width and rescale along these lines.

lines of constant width

- Mediator width for S and P model with $\mathrm{mDM}=100 \mathrm{GeV}$ and $\mathrm{mMed}=300 \mathrm{GeV}$

- The lines of constant width are nearly independent of gSM because of the Yukawa couplings ($\Gamma \propto \mathrm{m}_{\mathrm{q}}{ }^{2} / \mathrm{v}^{2} \mathrm{gsm}{ }^{2}+\mathrm{gDM}{ }^{2}$)
- Mediator width forV and A model with $\mathrm{mDM}=100 \mathrm{GeV}$ and $\mathrm{mMed}=300 \mathrm{GeV}$

- There is a stronger dependence on the quark coupling because it larger contribution to the width (color factor and number of flavours)

verification of the scaling

- Scalar model
$\mathrm{mDM}=100 \mathrm{GeV}$ and $\mathrm{mMed}=300 \mathrm{GeV}$
I) Take a line of the constant width:

2) Compare the cross-section from the generator with the rescaled one:

\Rightarrow There are only up to 3% differences!

mDM-mMed plane

- Can we apply cross-section scaling in the mDM-mMed plane as well?

scaling in the mDM-mMed plane

- The simple scaling $\sigma \propto g^{2} g^{2}$ is not expected to work for different masses:
- For $2 \mathrm{mDM}>\mathrm{mMed}$, PDF will matter because sufficient $\sqrt{ } \mathrm{s}$ energy is needed to produce the DM pair.
- For 2 mDM < mMed, phase-space suppression factor leads to non-trivial scaling with mass.
- lines of constant width
- A kink around the top opening is apparent
- There is no dependence on mDM for the off-shell production

scaling in the mDM-mMed plane

- Scalar model with gSM $=\mathrm{gDM}=4$
I) Take a line of the constant width:

2) See how the cross section from the generator looks along this line:

summary of the cross-section scaling

- We can make use of the $\sigma \propto g^{2} g^{2}$ scaling along the lines of constant width in the gSM-gDM plane.
\Rightarrow For V and A, fix gDM $=I$ and choose grid points for gSM.
\Rightarrow For S and P, fix gSM $=1$ and choose grid points for gDM.
- No scaling is recommended for the mDM-mMed plane.
\Rightarrow Full grid is needed.
- Can we make use of the studies of fiducial cross-sections and shapes of kinematic distributions to define regions where cars binning and interpolation is sufficient?
- see detailed plots here https://indico.cern.ch/event/374678/
- or the summary https://indico.cern.ch/event/374678/session/0/material/3/0.pdf

proposal for the parameter scan

- Show the mDM-mMed plane for one choice of couplings.
- General picture:

- Consider mediator masses from 10 GeV to 3 TeV .
- proposed binning: $10,30,100,300,1000,3000 \mathrm{GeV}$
- For scalar, add I 25.5 GeV as well and remove the highest 3 TeV point.

proposal for the parameter scan

- Five scan directions:
I) Generate a set of samples for light mDM (I GeV) and scan over mMed.

2) Generate a set of samples for $2 \mathrm{mDM}=\mathrm{mMed}, 2 \mathrm{mDM}=\mathrm{mMed} \pm \Delta$ in order to better populate the transition region.
3) Generate a set of samples for light mediator and scan over mDM.
\Rightarrow With 6 mass points, this is ~ 30 samples per model.

mediator width

- In case of the S and P models, it may be interesting to consider cases where the width is larger than the minimal width.
- It has been shown that the shapes of kinematic distributions do not change for different couplings ${ }^{\star}$
\Rightarrow Modifying the mediator width is equivalent to choosing different couplings!
* However, one needs to be careful in the case of very narrow mediators
(see https://indico.cern.ch/event/378495/contribution/I0/material/slides/O.pdf slides 5 and II
and https://indico.cern.ch/event/374678/session/0/material/3/0.pdf slide 23)

summary

- The most important task of the experimental collaborations is understanding the data and getting precise background estimates.
- The following two planes are proposed for the presentation of the results in terms of simplified models:
- gSM-gDM plane
- Only a I-dimensional grid is needed as one can scale the cross section along the lines of constant mediator width.
- mDM-mMed plane
- Full grid scan is needed.
- The transition region around $2 \mathrm{mDM}=\mathrm{mMed}$ needs to be well populated, with a coarser binning otherwise (five scan directions are proposed).

extra material

mediator width

$$
\begin{gathered}
\Gamma_{S}^{\chi \chi}=\frac{g_{\chi}^{2}}{8 \pi} M\left(1-4 m_{\chi}^{2} / M^{2}\right)^{3 / 2} \Theta\left(M-2 m_{\chi}\right) \\
\Gamma_{S}^{q q}=\sum_{q} 3 \frac{g_{q}^{2}}{8 \pi} \frac{M m_{q}^{2}}{v^{2}}\left(1-4 m_{q}^{2} / M^{2}\right)^{3 / 2} \Theta\left(M-2 m_{q}\right) \\
\Gamma_{P}^{\chi \chi}=\frac{g_{\chi}^{2}}{8 \pi} M \sqrt{1-4 m_{\chi}^{2} / M^{2}} \Theta\left(M-2 m_{\chi}\right) \\
\Gamma_{P}^{q q}=\sum_{q} 3 \frac{g_{q}^{2}}{8 \pi} \frac{M m_{q}^{2}}{v^{2}} \sqrt{1-4 m_{q}^{2} / M^{2}} \Theta\left(M-2 m_{q}\right) \\
\Gamma_{S}^{g g}=\frac{\alpha_{s}^{2} M^{3}}{8 \pi \Lambda^{2}}
\end{gathered}
$$

- The mediator does not couple to leptons and gluons.
- Yukawa scaling is assumed for the couplings to SM quarks.
- On the contrary, this is not assumed for the coupling to DM.
- The last equation corresponds to the ggS EFT vertex.
- The maximum coupling value allowed by $\Gamma \leq \mathrm{mMed}$ is 3.2, assuming gSM $=g D M, m M e d>2 m D M$ and and m Med $>2 \mathrm{~m}_{\mathrm{t}}$ top, neglecting the couplings to other than the top quark (note that this is not the most interesting scenario as $\mathrm{gSM}=\mathrm{gDM}$ is non-trivial in a full theory and and the top channel is not open for light mediators)

summary for the scalar models

- Coupling strength does not have an effect on the shape of the kinematic distributions.
- The early Run-2 data can be sensitive to coupling strengths around I for light mediators and larger for heavy mediators.
- The LHC will be sensitive up to mediator masses at the order of 100 GeV .
- Do not generate samples for $\mathrm{mMed} \lesssim \mathrm{mDM}$ (they are suppressed).
- The samples with $\mathrm{mDM} \leqq \mathrm{mMed}<2 \mathrm{mDM}$ are still accessible and should be generated.
- For the samples with mMed $>2 \mathrm{mDM}$, we expect to see no dependence of the kinematic distributions on mDM for fixed mMed (the cross sections will change slightly).
- No special care needs to be taken for mediator masses around the top channel opening.

mediator width

$$
\begin{gathered}
\Gamma_{V}^{\chi \chi}=\frac{g_{\chi}^{2}}{12 \pi} M\left(1+2 m_{\chi}^{2} / M^{2}\right) \sqrt{1-4 m_{\chi}^{2} / M^{2}} \Theta\left(M-2 m_{\chi}\right) \\
\Gamma_{V}^{q q}=\sum_{q} 3 \frac{g_{q}^{2}}{12 \pi} M\left(1+2 m_{q}^{2} / M^{2}\right) \sqrt{1-4 m_{q}^{2} / M^{2}} \Theta\left(M-2 m_{q}\right) \\
\Gamma_{A}^{\chi \chi}=\frac{g_{\chi}^{2}}{12 \pi} M\left(1-4 m_{\chi}^{2} / M^{2}\right)^{3 / 2} \Theta\left(M-2 m_{\chi}\right) \\
\Gamma_{A}^{q q}=\sum_{q} 3 \frac{g_{q}^{2}}{12 \pi} M\left(1-4 m_{q}^{2} / M^{2}\right)^{3 / 2} \Theta\left(M-2 m_{q}\right)
\end{gathered}
$$

- The maximum coupling value allowed by $\Gamma \leq m$ Med is I.4, assuming gSM = gDM, coupling to all six quark flavours, mMed > 2 m_top and mMed > 2 mDM.

summary for the vector models

- We observe differences in the kinematic distributions for heavy narrow mediators that are possibly due to PDFs.
- Otherwise, the choice of the couplings does not seem to have an effect on the shape of the kinematic distributions.
- The early Run-2 data can be sensitive to coupling strengths around 0.1 for light mediators and above I for heavy mediators.
- The LHC will be sensitive up to mediator masses at the order of 1000 GeV .
- Do not generate samples for mMed $\lesssim \mathrm{mDM}$ (they are suppressed).
- The samples with $\mathrm{mDM} \equiv \mathrm{mMed}<2 \mathrm{mDM}$ are still accessible and should be generated.
- For the samples with mMed $>2 \mathrm{mDM}$, we expect to see no dependence of the kinematic distributions on mDM for fixed mMed (the cross sections will change slightly).

