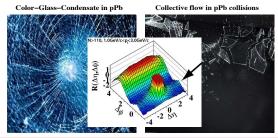
Di-photon correlations in dilute-dense collisions from the CGC

A. Rezaeian

Universidad Tecnica Federico Santa Maria, Valparaiso

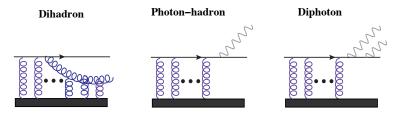
6th International Conference on the "Physics Opportunities at an ElecTron-Ion Collider" Ecole Polytechnique, Palaiseau, 7-11 Sep 2015


In collaboration with: Alex Kovner

11 Sep 2015, POETIC6

1 / 21

What is origin of the observed Ridge phenomenon in p+p(A) collisions?

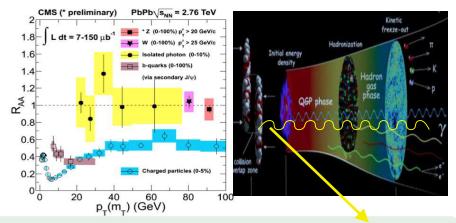

- Does the ridge phenomenon in p+p(A) collisions mainly come from initial-state or final-state effects?
- Is the "ridge" universal phenomenon, for all different two-particle productions in p+p(A) collisions?
- What is nature of high multiplicity events in p+p(A) collisions?

Measurements of di-photon and photon-hadron correlations in p+p(A) collisions can address these questions.

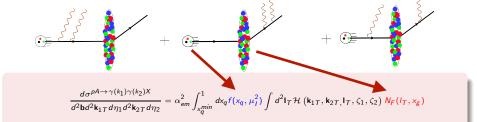
A. Rezaeian (UTFSM, Valparaiso)

2 / 21

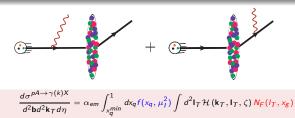
Dihadron v. photon-hadron v. diphoton production in the CGC



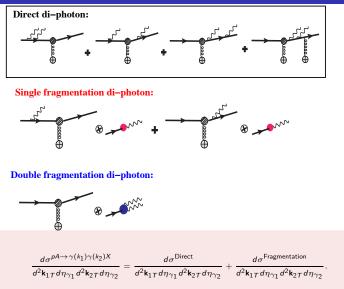
Soft gluons are scattered out of the projectile wave function by directly scattering on a saturated target.
 Photons do not scatter themselves, but rather decohere from the


scattered quarks.

- Virtual photons do not directly interact with the gluons inside target.
- Final-state effects are absent in the photon production, no initial-final state interference, and no hadronization.


Inclusive prompt photon v. hadron production

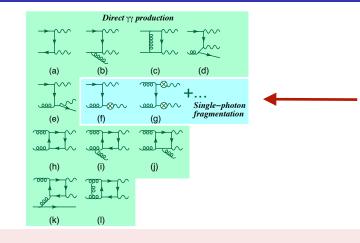
- Photons can be produced at different stages of collisions (prompt, thermal, decay). Here I only discuss prompt photon coming from hard collisions in small-x region.
- In AA collisions all hadrons are strongly quenched except prompt photon → prompt photon can be a good probe of initial-state effects.



• Di-photon production in p+A collisions at LO: \mathcal{H} is a few pages formula, Kovner and Rezaeian, arXiv:1508.02412, arXiv:1404.5632.

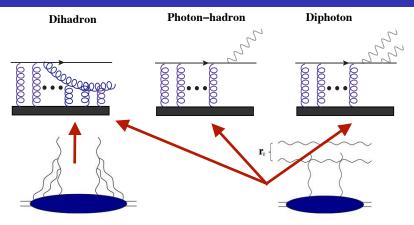
 Single photon production in p+A collisions at LO: Gelis, Jalilian-Marian, hep-ph/0205037; Baier, Mueller, Schiff, hep-ph/0403201; Kovner, Rezaeian, arXiv:1404.5632.

Inclusive prompt di-photon production in high-energy p+A collisions



Both single and double fragmentation di-photon contributions, as well direct di-photon part are sensitive to the saturation dynamics via $N_F(x_g, l_T)$.

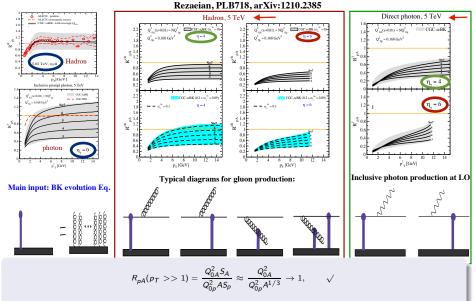
A. Rezaeian (UTFSM, Valparaiso)


11 Sep 2015, POETIC6 6 / 21

Inclusive di-photon production in p+p collisions (pQCD:NLO)

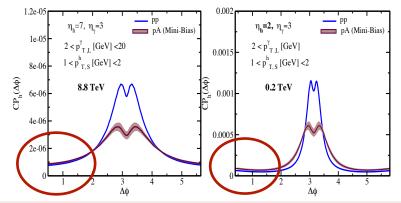
 $\frac{d\sigma^{pA\to\gamma(k_1)\gamma(k_2)X}}{d^2\mathbf{k}_{1T}d\eta_{\gamma_1}d^2\mathbf{k}_{2T}d\eta_{\gamma_2}} = \frac{d\sigma^{\text{Direct}}}{d^2\mathbf{k}_{1T}d\eta_{\gamma_1}d^2\mathbf{k}_{2T}d\eta_{\gamma_2}} + \frac{d\sigma^{\text{Fragmentation}}}{d^2\mathbf{k}_{1T}d\eta_{\gamma_1}d^2\mathbf{k}_{2T}d\eta_{\gamma_2}}.$

Two-particle production in p+A collisions from the CGC



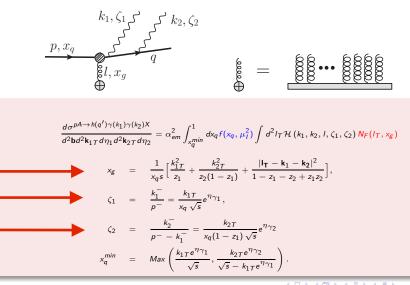
Weizsacker–Williams (WW) gluon distribution (quadropole) counts the number of gluons (never measured) $Color\ dipole\ gluon\ distribution\ (dipole)$ appears in $F_2\,$, $F_L\,$ structure\ functions\ (measured)

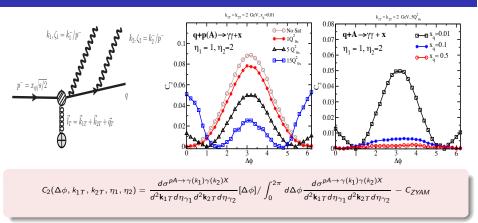
Dihadron v. photon-hadron v. diphoton production in the CGC


 In contrast to dihadron production, photon-hadron and diphoton cross section depend only on the dipole amplitude (not WW gluon distribution).

Inclusive direct photon v. hadron production in p+A collisions at the LHC

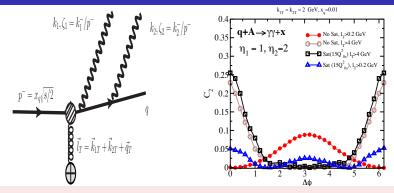
The suppression of the inclusive prompt photon and inclusive hadron production in $p{+}A$ collisions at the LHC are rather similar.


Rezaeian, PRD86, arXiv:1209.0478


 No ridge-like structure at the near-side for photon-hadron correlations in p+p(A) minimum-bias collisions at RHIC and the LHC from the CGC.

Inclusive di-photon production in p+A collisions from the CGC

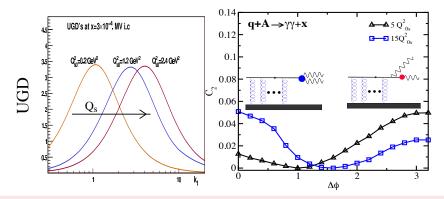
Kovner and Rezaeian, arXiv:1508.02412.



Di-photon correlations in q+A collisions at the LHC 5 TeV

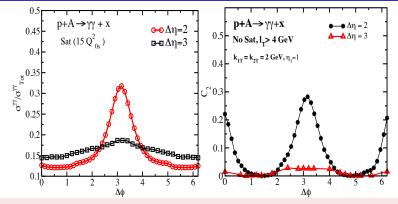
- Near-side and away-side correlations are enhanced at small x_q → 0 or large ζ₁, ζ₂ → 1. At large x_q, near-side correlations diminish and only away-side peak survives.
- Near-side correlations are enhanced while away-side correlations are suppressed by increasing the saturation scale Q_s.

Di-photon correlations in q+A collisions at the LHC 5 TeV

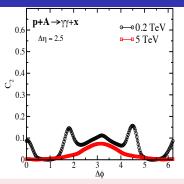


• At the near-side, the main contribution comes from large momentum transfer to target I_T , while away-side correlations come from low I_T .

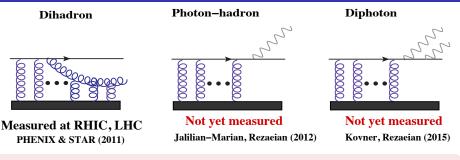
$$\frac{d\sigma^{qA \to h(q')\gamma(k_1)\gamma(k_2)X}}{d^2\mathbf{b}d^2\mathbf{k}_{1T}d\eta_1 d^2\mathbf{k}_{2T}d\eta_2} = \alpha_{em}^2 \int_{I_T \to I_T^{Min}} d^2I_T \mathcal{H}\left(k_1, k_2, I, \zeta_1, \zeta_2\right) N_F(I_T, \mathbf{x}_g)$$


 Near-side peak mainly comes from double-fragmentation contribution while away-side peak comes from the single fragmentation contribution.

Di-photon correlations in q+A collisions at the LHC 5 TeV

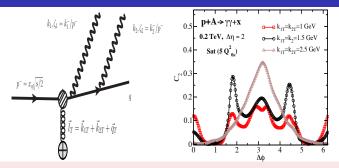

 A larger saturation scale shifts the main contribution of integrand to higher *I_T* ⇒ enhances the double-fragmentation contribution and the near-side peak while suppresses the single-fragmentation contribution and the away-side correlations (unbalance the back-to-back).

Di-photon correlations in p+A collisions at the LHC



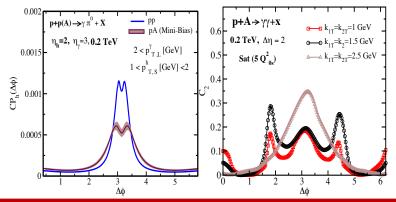
- The near-side correlations and peak are partly washed away at the LHC by integrating over x_q (or convolution with pdf).
- The correlations strongly depend on the lower cut on the total transfer momentum *I_T*, and transverse momentum of the produced di-photon.
 One may enhance the near-side peak by isolation cut techniques!.

Di-photon correlations in p+A collisions at the RHIC

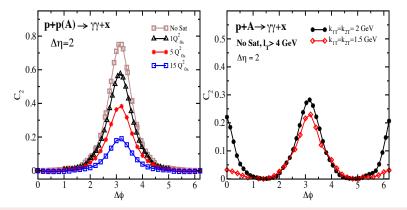


- Di-photon correlations at near-side at the RHIC has a **ridge-like** structure: the effect is extended upto $\Delta \eta \approx 3$.
- Di-photon correlations at near-side is larger at RHIC (0.2 TeV) compared to the LHC (5 TeV).
- The di-photon ridge disappears in the non-saturation model, it shows up at intermediate energy (RHIC) and it switches itself off at very high-energy and large rapidity interval.

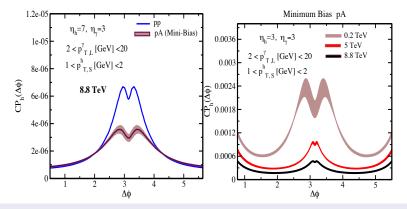
- Back-to-back correlation gets suppressed due to the saturation scale.
 This feature is universal to all semi-inclusive production shown above.
- The near-side correlations (the ridge) for different two-particle productions come from different mechanisms and is NOT universal.
- There is NO ridge-like structure for di-photon and photon-hadron correlations at the LHC in p+A collisions from the initial-state physics.
- Such measurments can help to discriminate among initial- and final-state models.


Backup: The origin of di-photon double-peak at $\Delta \phi = \pi$

- Local minimum: $\sigma^{\gamma\gamma}(I_T \to 0) \to 0$.
- 2 Local maximum: single-fragmentation contribution is larger at lower I_T and has a maximum at $\Delta \phi = \pi$ (back-to-back).
- Oue to convolution with PDF and N(x_g, I_T), the local min and max get smeared out (the double-peak structure appears within a kinematic region).


e.g: a higher k_{1T} or k_{2T} excludes low- I_T region (condition 1) \Longrightarrow double-peak structure disappears.

Backup: Away-side double-peak structure for Electromagnetic Probes


The away-side double-peak structure seems to be universal for EM probes:

Di-photon correlations: Kovner and Rezaeian, arXiv:1508.02412. **Photon**- π^0 correlations: Rezaeian, arXiv:1209.0478. **Drell-Yan Lepton-pair**- π^0 correlations: Stasto, Xiao, Zaslavsky, arXiv:1204.4861.

• The back-to-back (de)-correlations in prompt di-photon production are suppressed by increasing the saturation scale.

Backup: $\gamma - \pi^0$ away-side decorrelations in p+A collisions

Existence of the saturation scale unbalances the back-to-back correlations.

- Denser nuclei or/and Higher energy or/and Lower transverse momentum
 → larger saturation scale → more suppression of away-side correlations.
- The double peak structure becomes stronger and wider at forward rapidities.