Multiparton interactions in pp collisions: between bug and feature

M. Diehl
Deutsches Elektronen-Synchroton DESY

POETIC 6, Palaiseau, 11 September 2015
/ HELMHOLTZ
GEMEINSCHAFT

Hadron-hadron collisions

- standard description based on factorization formulae

$$
\text { cross sect }=\text { parton distributions } \times \text { parton-level cross sect }
$$

example: Z production

$$
p p \rightarrow Z+X \rightarrow \ell^{+} \ell^{-}+X
$$

- factorization formulae are for inclusive cross sections $p p \rightarrow Y+X$ where $Y=$ produced in parton-level scattering, specified in detail $X=$ summed over, no details

Hadron-hadron collisions

- standard description based on factorization formulae

$$
\text { cross sect }=\text { parton distributions } \times \text { parton-level cross sect }
$$

example: Z production

$$
p p \rightarrow Z+X \rightarrow \ell^{+} \ell^{-}+X
$$

- factorization formulae are for inclusive cross sections $p p \rightarrow Y+X$ where $Y=$ produced in parton-level scattering, specified in detail $X=$ summed over, no details
- also have interactions between "spectator" partons their effects cancel in inclusive cross sections thanks to unitarity but they affect the final state X

Multiparton interactions

- secondary, tertiary etc. interactions generically take place in hadron-hadron collisions
- predominantly low- p_{T} scattering \rightsquigarrow underlying event
- at high collision energy can be hard \rightsquigarrow multiple hard scattering
- many studies theory: phenomenology, theory foundations (1980s, recent activity) experiment: ISR, SPS, HERA (photoproduction), Tevatron, LHC Monte Carlo generators: Pythia, Herwig++, Sherpa, ... and ongoing activity: see e.g. the MPI@LHC workshop series http://indico.cern.ch/event/305160
- here: concentrate on double hard scattering (DPS)

Single vs. double hard scattering

- example: prod'n of two gauge bosons, transverse momenta $\boldsymbol{q}_{T 1}$ and $\boldsymbol{q}_{T 2}$

single scattering:

$$
\begin{aligned}
& \left|\boldsymbol{q}_{T 1}\right| \text { and }\left|\boldsymbol{q}_{T 1}\right| \sim \text { hard scale } Q^{2} \\
& \left|\boldsymbol{q}_{T 1}+\boldsymbol{q}_{T 2}\right| \ll Q^{2}
\end{aligned}
$$

- for transv. mom. $\sim \Lambda \ll Q$:

$$
\frac{d \sigma_{\text {single }}}{d^{2} \boldsymbol{q}_{T 1} d^{2} \boldsymbol{q}_{T 2}} \sim \frac{d \sigma_{\text {double }}}{d^{2} \boldsymbol{q}_{T 1} d^{2} \boldsymbol{q}_{T 2}} \sim \frac{1}{Q^{4} \Lambda^{2}}
$$

but single scattering populates larger phase space:

$$
\sigma_{\text {single }} \sim \frac{1}{Q^{2}} \gg \sigma_{\text {double }} \sim \frac{\Lambda^{2}}{Q^{4}}
$$

Scale and energy dependence

$$
\frac{s d \sigma}{\prod_{i=1}^{2} d x_{i} d \bar{x}_{i} d^{2} \boldsymbol{q}_{i}} \quad \frac{s d \sigma}{\prod_{i=1}^{2} d x_{i} d \bar{x}_{i}}
$$

- interference between single and double scattering:
- leading power when differential in \boldsymbol{q}_{i}
- power suppressed when $\int d^{2} \boldsymbol{q}_{i}$, twist-three parton distributions
- at small $x_{1} \sim x_{2} \sim x$ expect
- single scattering $\propto x^{-\lambda}$

$$
\text { with } x f(x) \sim x^{-\lambda}
$$

- double scattering $\propto x^{-2 \lambda}$
- interference? how do three-particle correlators behave for small x ?

A numerical estimate

 gauge boson pair production
single scattering:

J Gaunt et al, arXiv:1003.3953 based on pocket formula to be discussed shortly

Cross section formula

$$
\begin{aligned}
\frac{d \sigma_{\text {double }}}{d x_{1} d \bar{x}_{1} d x_{2} d \bar{x}_{2}} & =\frac{1}{C} \hat{\sigma}_{1} \hat{\sigma}_{2} \int d^{2} \boldsymbol{y} F\left(x_{1}, x_{2}, \boldsymbol{y}\right) F\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right) \\
C & =\text { combinatorial factor } \\
\hat{\sigma}_{i} & =\text { parton-level cross sections } \\
F\left(x_{1}, x_{2}, \boldsymbol{y}\right) & =\text { double parton distribution (DPD) } \\
\boldsymbol{y} & =\text { transv. distance between partons }
\end{aligned}
$$

- follows from Feynman graphs and hard-scattering approximation no semi-classical approximation required
- can make $\hat{\sigma}_{i}$ differential in further variables (e.g. for jet pairs)
- can extend $\hat{\sigma}_{i}$ to higher orders in α_{s} get usual convolution integrals over x_{i} in $\hat{\sigma}_{i}$ and F

Cross section formula

- for measured transv. momenta

$$
\begin{aligned}
& \frac{d \sigma_{\text {double }}}{d x_{1} d \bar{x}_{1} d^{2} \boldsymbol{q}_{1} d x_{2} d \bar{x}_{2} d^{2} \boldsymbol{q}_{2}}=\frac{1}{C} \hat{\sigma}_{1} \hat{\sigma}_{2} \\
& \times\left[\prod_{i=1}^{2} \int d^{2} \boldsymbol{k}_{i} d^{2} \overline{\boldsymbol{k}}_{i} \delta\left(\boldsymbol{q}_{i}-\boldsymbol{k}_{i}-\overline{\boldsymbol{k}}_{i}\right)\right] \int d^{2} \boldsymbol{y} F\left(x_{i}, \boldsymbol{k}_{i}, \boldsymbol{y}\right) F\left(\bar{x}_{i}, \overline{\boldsymbol{k}}_{i}, \boldsymbol{y}\right)
\end{aligned}
$$

- $F\left(x_{i}, \boldsymbol{k}_{i}, \boldsymbol{y}\right)=k_{T}$ dependent two-parton distribution
- has structure of a Wigner function:
$\boldsymbol{k}_{1}, \boldsymbol{k}_{2}=$ transv. parton momenta averaged over \mathcal{A} and \mathcal{A}^{*}
$\boldsymbol{y}=$ transv. distance between partons averaged over \mathcal{A} and \mathcal{A}^{*}

Pocket formula

- make simplest possible assumptions
- if two-parton density factorizes as

$$
F\left(x_{1}, x_{2}, \boldsymbol{y}\right)=f\left(x_{1}\right) f\left(x_{2}\right) G(\boldsymbol{y})
$$

where $f\left(x_{i}\right)=$ usual PDF

- if assume same $G(\boldsymbol{y})$ for all parton types then cross sect. formula turns into

$$
\frac{d \sigma_{\text {double }}}{d x_{1} d \bar{x}_{1} d x_{2} d \bar{x}_{2}}=\frac{1}{C} \frac{d \sigma_{1}}{d x_{1} d \bar{x}_{1}} \frac{d \sigma_{2}}{d x_{2} d \bar{x}_{2}} \frac{1}{\sigma_{\text {eff }}}
$$

with $1 / \sigma_{\text {eff }}=\int d^{2} \boldsymbol{y} G(\boldsymbol{y})^{2}$
\rightsquigarrow scatters are completely independent

- underlies bulk of phenomenological estimates
- fails if any of the above assumptions is invalid or if original cross sect. formula misses important contributions
cf. Calucci, Treleani 1999; Frankfurt, Strikman, Weiss 2003-04; Blok et al 2013

Experimental investigations (very incomplete)

- other channels:
- double charm production ($c \bar{c} c \bar{c})$ LHCb 2011, 2012; CMS 2014 $J / \Psi+J / \Psi, J / \Psi+C, C+C$ with $C=D^{0}, D^{+}, D_{s}^{+}, \Lambda_{c}^{+}$
- $W+J / \Psi$

Parton correlations

- if neglect correlations between two partons

$$
F\left(x_{1}, x_{2}, \boldsymbol{y}\right)=\int d^{2} \boldsymbol{b} f\left(x_{1}, \boldsymbol{b}+\boldsymbol{y}\right) f\left(x_{2}, \boldsymbol{b}\right)
$$

where $f\left(x_{i}, \boldsymbol{y}\right)=$ impact parameter dependent single-parton density
and if neglect correlations between x and \boldsymbol{y} of single parton

$$
f\left(x_{i}, \boldsymbol{y}\right)=f\left(x_{i}\right) F(\boldsymbol{y})
$$

then in pocket formula $G(\boldsymbol{y})=\int d^{2} \boldsymbol{b} F(\boldsymbol{b}) F(\boldsymbol{b}+\boldsymbol{y})$

- for Gaussian $F(\boldsymbol{b})$ with average $\left\langle\boldsymbol{b}^{2}\right\rangle$

$$
\sigma_{\text {eff }}=4 \pi\left\langle\boldsymbol{b}^{2}\right\rangle=41 \mathrm{mb} \times\left\langle\boldsymbol{b}^{2}\right\rangle /(0.57 \mathrm{fm})^{2}
$$

determinations of $\left\langle\boldsymbol{b}^{2}\right\rangle$ from form factors or GPDs: $(0.57 \mathrm{fm}-0.67 \mathrm{fm})^{2}$ if $F(\boldsymbol{b})$ is Fourier trf. of dipole then $41 \mathrm{mb} \rightarrow 36 \mathrm{mb}$
is $\gg \sigma_{\text {eff }} \sim 5$ to 20 mb from experimental extractions

Parton correlations

at certain level of accuracy expect correlations between

- x_{1} and x_{2} of partons
- most obvious: energy conservation $\Rightarrow x_{1}+x_{2} \leq 1$
- significant $x_{1}-x_{2}$ correlations found in constituent quark model

Rinaldi, Scopetta, Vento 2013

- $\quad x_{i}$ and \boldsymbol{y}
even for single partons see correlations between x and \boldsymbol{b} distribution
- HERA results on $\gamma p \rightarrow J / \Psi p$ give

$$
\left\langle\boldsymbol{b}^{2}\right\rangle \propto \text { const }+4 \alpha^{\prime} \log (1 / x) \text { with } 4 \alpha^{\prime} \approx(0.16 \mathrm{fm})^{2}
$$

for gluons with $x \sim 10^{-3}$

- lattice calculations of x^{0}, x^{1}, x^{2} moments
\rightarrow strong decrease of $\left\langle\boldsymbol{b}^{2}\right\rangle$ with x above ~ 0.1
plausible to expect similar correlations in double parton distributions even if two partons not uncorrelated
impact on observables: L Frankfurt, M Strikman, C Weiss 2003
R Corke, T Sjöstrand 2011; B Blok, P Gunnellini 2015

Spin correlations

- polarizations of two partons can be correlated even in unpolarized proton
- quarks: longitudinal and transverse pol.
- gluons: longitudinal and linear pol.
- can be included in factorization formula
\rightsquigarrow extra terms with polarized DPDs and partonic cross sections
- if spin correlations are large \rightarrow large effects for rate and final state distributions of double hard scattering
A. Manohar, W. Waalewijn 2011; T. Kasemets, MD 2012
M. Echevarria, T. Kasemets, P. Mulders, C. Pisano 2015
- large spin correlations found in MIT bag model

Chang, Manohar, Waalewijn 2012

- for x_{1}, x_{2} small: size of correlations unknown known: evolution to higher scales tends to wash out polarization unpol. densities evolve faster than polarized ones

MD, T. Kasemets 2014

Behavior at small interparton distance

- for $\boldsymbol{y} \ll 1 / \Lambda$ in perturbative region $F\left(x_{1}, x_{2}, \boldsymbol{y}\right)$ dominated by graphs with splitting of single parton

- gives strong correlations in x_{1}, x_{2}, spin and color between two partons

$$
\text { e.g. }-100 \% \text { correlation for longitudinal pol. of } q \text { and } \bar{q}
$$

- can compute short-distance behavior:

$$
F\left(x_{1}, x_{2}, \boldsymbol{y}\right) \sim \frac{1}{\boldsymbol{y}^{2}} \text { splitting fct } \otimes \text { usual PDF }
$$

Problems with the splitting graphs

- contribution from splitting graphs in cross section gives UV divergent integrals $\int d^{2} \boldsymbol{y} F\left(x_{1}, x_{2}, \boldsymbol{y}\right) F\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right) \sim \int d \boldsymbol{y}^{2} / \boldsymbol{y}^{4}$
- double counting problem between double scattering with splitting and single scattering at loop level

MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012
Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012 already noted by Cacciari, Salam, Sapeta 2009

- possible solution:
only large \boldsymbol{y} in double, only small \boldsymbol{y} in single hard scattering remains to be worked out

Problems with the splitting graphs

- contribution from splitting graphs in cross section gives UV divergent integrals $\int d^{2} \boldsymbol{y} F\left(x_{1}, x_{2}, \boldsymbol{y}\right) F\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right) \sim \int d \boldsymbol{y}^{2} / \boldsymbol{y}^{4}$
- also have graphs with single PDF for one and double PDF for other proton
$\sim \int d \boldsymbol{y}^{2} / \boldsymbol{y}^{2} \times F_{\text {no split }}\left(x_{1}, x_{2}, \boldsymbol{y}\right)$
B Blok et al 2011-13
J Gaunt 2012
B Blok, P Gunnellini 2015

Does the DPS cross section factorize at all?

- problem already for single hard scattering exchange of soft gluons

- gluons with "generic" soft momentum: to 1 st approx. only see colour charge of fast partons
\rightsquigarrow approx. fast partons by Wilson lines
\rightsquigarrow soft gluon exchange factorises
\rightsquigarrow can compute effects of Sudakov logarithms, Sivers effect, etc
- approx. fails if transverse \gg longitudinal gluon mom. (Glauber region)

Glauber gluons

- physics of Glauber gluon exchange: low-angle scattering of partons moving in opposite directions
- physical effects: deflection of beam remnants,
 specific spin asymmetries
T Rogers 2013; J Gaunt 2014; M Zeng 2015
- in initial state: avoid Glauber by deforming gluon mom. in complex plane
- in final state: cancel in sum over all final state cuts
if observable sufficiently inclusive
- proof of soft-gluon-cancellation for single Drell-Yan process:

G Bodwin 1984; J Collins, G Sterman, D Soper 1988; J Collins 2011

- works for collinear and TMD factorisation
- only with fast partons moving one of two directions
- for more directions (e.g. jet production) should work in collin. fact. unsolved problems with TMDs T Rogers, P Mulders 2010
- can generalise from single to double Drell-Yan process

MD, J. Gaunt, D. Ostermeier, D. Plößl, A. Schäfer: in preparation

Conclusions

- multiparton interactions ubiquitous in hadron-hadron collisions multiple hard scattering often suppressed, but not necessarily
- in specific kinematics
- for multi-differential cross sections, high-multiplicity final states
- most phenomenology relies on strong simplifications some improvements are being explored
- have more and more elements for a formulation of factorization but important open questions remain
- crosstalk with single hard scattering at small distances
- double hard scattering depends on detailed hadron structure
- transverse spatial distribution
- different correlation and interference effects
- subject remains of high interest for
- control over final states at LHC
- understanding QCD dynamics

Backup

Spin correlations

- can (almost) compute x_{1}, x_{2} moments of DPDs in lattice QCD
- pilot study for the pion G Bali, L Castagnini, S Collins, MD, M Engelhardt, J Gaunt, B Gläßle, A Sternbeck, A Schäfer, Ch Zimmermann

lattice spacing $a \approx 0.07 \mathrm{fm}$ pion mass 280 MeV
- $V V$: spin averaged
- $T T$: transverse spin corr. $\propto \boldsymbol{s}_{u} \cdot \boldsymbol{s}_{\bar{d}}$ find very small $A_{T T} \sim-0.1 \times A_{V V}$
- $A A$: longitudinal spin corr. even smaller (not shown)
- VT: correlation $\propto \boldsymbol{y} \cdot \boldsymbol{s}_{\bar{d}}$ maximal at small $|\boldsymbol{y}|$, then decreases

Color correlations

- color of two quarks and gluons can be correlated

- suppressed by Sudakov logarithms

Mekhfi 1988
. . . but not necessarily negligible for moderately hard scales

Manohar, Waalewijn arXiv:1202:3794
$U=$ Sudakov factor for quarks

$$
Q=\text { hard scale }
$$

from incomplete cancellation between graphs with real/virtual soft gluons

Scale evolution for distributions without color correlation

- if define two-parton distributions as operator matrix elements in analogy with usual PDFs

$$
F\left(x_{1}, x_{2}, \boldsymbol{y} ; \mu\right) \sim\langle p| \mathcal{O}_{1}(\mathbf{0} ; \mu) \mathcal{O}_{2}(\boldsymbol{y} ; \mu)|p\rangle \quad f(x ; \mu) \sim\langle p| \mathcal{O}(\mathbf{0} ; \mu)|p\rangle
$$

where $\mathcal{O}(\boldsymbol{y} ; \mu)=$ twist-two operator renormalized at scale μ

- $F\left(x_{i}, \boldsymbol{y}\right)$ for $\boldsymbol{y} \neq \mathbf{0}$:
separate DGLAP evolution for partons 1 and 2

$$
\frac{d}{d \log \mu} F\left(x_{i}, \boldsymbol{y}\right)=P \otimes_{x_{1}} F+P \otimes_{x_{2}} F
$$

two independent parton cascades

- $\int d^{2} \boldsymbol{y} F\left(x_{i}, \boldsymbol{y}\right)$:
extra term from $2 \rightarrow 4$ parton transition since $F\left(x_{i}, \boldsymbol{y}\right) \sim 1 / \boldsymbol{y}^{2}$
Kirschner 1979; Shelest, Snigirev, Zinovev 1982
Gaunt, Stirling 2009; Ceccopieri 2011

Scale evolution for distributions without color correlation

- if define two-parton distributions as operator matrix elements in analogy with usual PDFs

$$
F\left(x_{1}, x_{2}, \boldsymbol{y} ; \mu\right) \sim\langle p| \mathcal{O}_{1}(\mathbf{0} ; \mu) \mathcal{O}_{2}(\boldsymbol{y} ; \mu)|p\rangle \quad f(x ; \mu) \sim\langle p| \mathcal{O}(\mathbf{0} ; \mu)|p\rangle
$$

where $\mathcal{O}(\boldsymbol{y} ; \mu)=$ twist-two operator renormalized at scale μ

- $F\left(x_{i}, \boldsymbol{y}\right)$ for $\boldsymbol{y} \neq \mathbf{0}$:
separate DGLAP evolution for partons 1 and 2

$$
\frac{d}{d \log \mu} F\left(x_{i}, \boldsymbol{y}\right)=P \otimes_{x_{1}} F+P \otimes_{x_{2}} F
$$

two independent parton cascades

- $\int d^{2} \boldsymbol{y} F\left(x_{i}, \boldsymbol{y}\right)$:
extra term from $2 \rightarrow 4$ parton transition since $F\left(x_{i}, \boldsymbol{y}\right) \sim 1 / \boldsymbol{y}^{2}$
Kirschner 1979; Shelest, Snigirev, Zinovev 1982
Gaunt, Stirling 2009; Ceccopieri 2011

Phenomenological estimates of double parton scattering

- pocket formula used in most estimate for DPS contribution
- some recent studies (apologies for omissions):
- double dijets
- $W / Z+$ jets
- $\gamma \gamma+$ jets
- like-sign W pairs
- double Drell-Yan
- double charmonium
- double charm

Domdey, Pirner, Wiedemann 2009;
Berger, Jackson, Shaughnessy 2009
Maina 2009, 2011
Tao et al, 2015
Kulesza, Stirling 2009; Gaunt et al 2010;
Berger et al 2011

> Kom, Kulesza, Stirling 2011; Kom, Kulesza, Stirling 2011;
> Baranov et al. 2011, 2012; Novoselov 2011
> Berezhnoy et al 2012; Luszczak et al 2011;
> Cazaroto et al 2013; Maciula, Szczurek 2012, 2013;
> van Hameren, Maciula, Szczurek 2014, 2015

- also several studies for proton-nucleus collisions

