Multiparton interactions in pp collisions: between bug and feature

M. Diehl

Deutsches Elektronen-Synchroton DESY

POETIC 6, Palaiseau, 11 September 2015

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
•0	00000	00	000	0000	0

Hadron-hadron collisions

standard description based on factorization formulae

cross sect = parton distributions \times parton-level cross sect

• factorization formulae are for inclusive cross sections $pp \rightarrow Y + X$ where Y = produced in parton-level scattering, specified in detail X = summed over, no details

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
•0	00000	00	000	0000	0

Hadron-hadron collisions

standard description based on factorization formulae

cross sect = parton distributions \times parton-level cross sect

- factorization formulae are for inclusive cross sections $pp \rightarrow Y + X$ where Y = produced in parton-level scattering, specified in detail X = summed over, no details
- also have interactions between "spectator" partons their effects cancel in inclusive cross sections thanks to unitarity but they affect the final state X

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
0.	00000	00	000	0000	0

Multiparton interactions

- secondary, tertiary etc. interactions generically take place in hadron-hadron collisions
- ▶ predominantly low- p_T scattering \rightsquigarrow underlying event
- ▶ at high collision energy can be hard ~→ multiple hard scattering
- many studies

theory: phenomenology, theory foundations (1980s, recent activity) experiment: ISR, SPS, HERA (photoproduction), Tevatron, LHC Monte Carlo generators: Pythia, Herwig++, Sherpa, ... and ongoing activity: see e.g. the MPI@LHC workshop series

- http://indico.cern.ch/event/305160
- here: concentrate on double hard scattering (DPS)

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	●0000	00	000	0000	0

Single vs. double hard scattering

 \blacktriangleright example: prod'n of two gauge bosons, transverse momenta $m{q}_{T1}$ and $m{q}_{T2}$

single scattering:

 $|m{q}_{T1}|$ and $|m{q}_{T1}|\sim$ hard scale Q^2 $|m{q}_{T1}+m{q}_{T2}|\ll Q^2$

double scattering:

both $|oldsymbol{q}_{T1}|$ and $|oldsymbol{q}_{T1}| \ll Q^2$

$$\blacktriangleright$$
 for transv. mom. $\sim \Lambda \ll Q$:

$$rac{d\sigma_{\mathsf{single}}}{d^2 oldsymbol{q}_{T1} \, d^2 oldsymbol{q}_{T2}} \sim rac{d\sigma_{\mathsf{double}}}{d^2 oldsymbol{q}_{T1} \, d^2 oldsymbol{q}_{T2}} \sim rac{1}{Q^4 \Lambda^2}$$

but single scattering populates larger phase space:

$$\sigma_{\rm single} \sim \frac{1}{Q^2} \ \gg \ \sigma_{\rm double} \sim \frac{\Lambda^2}{Q^4}$$

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

- interference between single and double scattering:
 - leading power when differential in $oldsymbol{q}_i$
 - power suppressed when $\int d^2 \boldsymbol{q}_i$, twist-three parton distributions
- at small $x_1 \sim x_2 \sim x$ expect
 - single scattering $\propto x^{-\lambda}$
 - double scattering $\propto x^{-2\lambda}$
 - interference? how do three-particle correlators behave for small x?

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

A numerical estimate

gauge boson pair production

single scattering:

 $\begin{array}{l} qq \rightarrow qq + W^+W^+ \\ \text{suppressed by } \alpha_s^2 \end{array}$

J Gaunt et al, arXiv:1003.3953 based on pocket formula to be discussed shortly

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Cross section formula

$$\frac{d\sigma_{\text{double}}}{dx_1 \, d\bar{x}_1 \, dx_2 \, d\bar{x}_2} = \frac{1}{C} \, \hat{\sigma}_1 \, \hat{\sigma}_2 \int d^2 \boldsymbol{y} \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$$
$$C = \text{combinatorial factor}$$
$$\hat{\sigma}_i = \text{parton-level cross sections}$$

$$F(x_1, x_2, y) =$$
 double parton distribution (DPD)

y = transv. distance between partons

- follows from Feynman graphs and hard-scattering approximation no semi-classical approximation required
- can make $\hat{\sigma}_i$ differential in further variables (e.g. for jet pairs)
- ► can extend $\hat{\sigma}_i$ to higher orders in α_s get usual convolution integrals over x_i in $\hat{\sigma}_i$ and F

Introduction Theory bas	ics A simple ansatz	Correlations	Advanced theory	Summary
00000	00	000	0000	0

Cross section formula

▶ for measured transv. momenta

$$\frac{d\sigma_{\text{double}}}{dx_1 \, d\bar{x}_1 \, d^2 \boldsymbol{q}_1 \, dx_2 \, d\bar{x}_2 \, d^2 \boldsymbol{q}_2} = \frac{1}{C} \, \hat{\sigma}_1 \, \hat{\sigma}_2$$
$$\times \left[\prod_{i=1}^2 \int d^2 \boldsymbol{k}_i \, d^2 \bar{\boldsymbol{k}}_i \, \delta(\boldsymbol{q}_i - \boldsymbol{k}_i - \bar{\boldsymbol{k}}_i) \right] \int d^2 \boldsymbol{y} \, F(x_i, \boldsymbol{k}_i, \boldsymbol{y}) \, F(\bar{x}_i, \bar{\boldsymbol{k}}_i, \boldsymbol{y})$$

• $F(x_i, k_i, y) = k_T$ dependent two-parton distribution

has structure of a Wigner function:

 k_1, k_2 = transv. parton momenta averaged over A and A^* y = transv. distance between partons averaged over A and A^*

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	•0	000	0000	0

Pocket formula

- make simplest possible assumptions
- if two-parton density factorizes as

$$F(x_1, x_2, \boldsymbol{y}) = f(x_1) f(x_2) G(\boldsymbol{y})$$

where $f(x_i) = usual PDF$

▶ if assume same G(y) for all parton types then cross sect. formula turns into

$$\frac{d\sigma_{\text{double}}}{dx_1 \, d\bar{x}_1 \, dx_2 \, d\bar{x}_2} = \frac{1}{C} \frac{d\sigma_1}{dx_1 \, d\bar{x}_1} \frac{d\sigma_2}{dx_2 \, d\bar{x}_2} \frac{1}{\sigma_{\text{eff}}}$$

with $1/\sigma_{\rm eff} = \int\! d^2 {\bm y}\; G({\bm y})^2$

 \rightsquigarrow scatters are completely independent

- underlies bulk of phenomenological estimates
- fails if any of the above assumptions is invalid or if original cross sect. formula misses important contributions (examples later)

cf. Calucci, Treleani 1999; Frankfurt, Strikman, Weiss 2003-04; Blok et al 2013

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	0•	000	0000	0

Experimental investigations (very incomplete)

- other channels:
 - double charm production $(c\bar{c}c\bar{c})$ LHCb 2011, 2012; CMS 2014 $J/\Psi + J/\Psi$, $J/\Psi + C$, C + C with $C = D^0, D^+, D_s^+, \Lambda_c^+$ • $W + J/\Psi$ ATLAS 2014

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	●OO	0000	0

Parton correlations

if neglect correlations between two partons

$$F(x_1, x_2, \boldsymbol{y}) = \int d^2 \boldsymbol{b} f(x_1, \boldsymbol{b} + \boldsymbol{y}) f(x_2, \boldsymbol{b})$$

where $f(x_i, y) = \text{impact parameter dependent single-parton density}$

and if neglect correlations between x and y of single parton

$$f(x_i, \boldsymbol{y}) = f(x_i)F(\boldsymbol{y})$$

then in pocket formula $~G({\boldsymbol y}) = \int\! d^2 {\boldsymbol b} ~F({\boldsymbol b}) \, F({\boldsymbol b}+{\boldsymbol y})$

$$\left| \underbrace{-\underbrace{x_1}}_{x_2} \uparrow \boldsymbol{y} \right|^2 \approx \int d^2 \boldsymbol{b} \quad \left| \underbrace{-\underbrace{x_2}}_{x_2} \quad \overset{\boldsymbol{b}}{\boldsymbol{y}} \right|^2 \times \left| \underbrace{-\underbrace{x_1}}_{x_2} \uparrow \boldsymbol{b} + \boldsymbol{y} \right|^2$$

► for Gaussian $F(\mathbf{b})$ with average $\langle \mathbf{b}^2 \rangle$ $\sigma_{\text{eff}} = 4\pi \langle \mathbf{b}^2 \rangle = 41 \text{ mb } \times \langle \mathbf{b}^2 \rangle / (0.57 \text{ fm})^2$

determinations of $\langle {\pmb b}^2 \rangle$ from form factors or GPDs: $(0.57\,{\rm fm}-0.67\,{\rm fm})^2$ if $F({\pmb b})$ is Fourier trf. of dipole then $41\,{\rm mb}\to 36\,{\rm mb}$

is $\gg \sigma_{\rm eff} \sim 5 \mbox{ to } 20 \, mb$ from experimental extractions

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Parton correlations

at certain level of accuracy expect correlations between

- x_1 and x_2 of partons
 - most obvious: energy conservation $\Rightarrow x_1 + x_2 \leq 1$
 - significant $x_1 x_2$ correlations found in constituent quark model

Rinaldi, Scopetta, Vento 2013

• x_i and y

even for single partons see correlations between x and b distribution

- HERA results on $\gamma p \rightarrow J/\Psi p$ give $\langle b^2 \rangle \propto \text{const} + 4\alpha' \log(1/x) \text{ with } 4\alpha' \approx (0.16 \text{ fm})^2$ for gluons with $x \sim 10^{-3}$
- lattice calculations of x⁰, x¹, x² moments
 → strong decrease of ⟨b²⟩ with x above ~ 0.1

plausible to expect similar correlations in double parton distributions even if two partons not uncorrelated

> impact on observables: L Frankfurt, M Strikman, C Weiss 2003 R Corke, T Sjöstrand 2011; B Blok, P Gunnellini 2015

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Spin correlations

- > polarizations of two partons can be correlated even in unpolarized proton
 - quarks: longitudinal and transverse pol.
 - gluons: longitudinal and linear pol.
- can be included in factorization formula
 ~> extra terms with polarized DPDs and partonic cross sections
- ▶ if spin correlations are large → large effects for rate and final state distributions of double hard scattering

A. Manohar, W. Waalewijn 2011; T. Kasemets, MD 2012
 M. Echevarria, T. Kasemets, P. Mulders, C. Pisano 2015

large spin correlations found in MIT bag model

Chang, Manohar, Waalewijn 2012

 for x₁, x₂ small: size of correlations unknown known: evolution to higher scales tends to wash out polarization unpol. densities evolve faster than polarized ones

MD, T. Kasemets 2014

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	●000	0

Behavior at small interparton distance

• for $y \ll 1/\Lambda$ in perturbative region $F(x_1, x_2, y)$ dominated by graphs with splitting of single parton

▶ gives strong correlations in x_1, x_2 , spin and color between two partons e.g. -100% correlation for longitudinal pol. of q and \bar{q}

can compute short-distance behavior:

$$F(x_1,x_2,oldsymbol{y})\sim rac{1}{oldsymbol{y}^2}$$
 splitting fct \otimes usual PDF

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Problems with the splitting graphs

- double counting problem between double scattering with splitting and single scattering at loop level

MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012 Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012 already noted by Cacciari, Salam, Sapeta 2009

possible solution: only large y in double, only small y in single hard scattering remains to be worked out

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Problems with the splitting graphs

- ▶ contribution from splitting graphs in cross section gives UV divergent integrals $\int d^2 y F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y) \sim \int dy^2 / y^4$
- also have graphs with single PDF for one and double PDF for other proton

$$\sim \int d\boldsymbol{y}^2 / \boldsymbol{y}^2 \times F_{no\ split}(x_1, x_2, \boldsymbol{y})$$

B Blok et al 2011-13
J Gaunt 2012
B Blok, P Gunnellini 2015

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Does the DPS cross section factorize at all?

 ▶ gluons with "generic" soft momentum: to 1st approx. only see colour charge of fast partons
 → approx. fast partons by Wilson lines
 → soft gluon exchange factorises
 → can compute effects of Sudakov logarithms, Sivers effect, etc

▶ approx. fails if transverse ≫ longitudinal gluon mom. (Glauber region)

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Glauber gluons

- physics of Glauber gluon exchange: low-angle scattering of partons moving in opposite directions
- physical effects: deflection of beam remnants, specific spin asymmetries
 T Rogers 2013; J Gaunt 2014; M Zeng 2015

- ▶ in initial state: avoid Glauber by deforming gluon mom. in complex plane
- in final state: cancel in sum over all final state cuts if observable sufficiently inclusive
- proof of soft-gluon-cancellation for single Drell-Yan process:

G Bodwin 1984; J Collins, G Sterman, D Soper 1988; J Collins 2011

- works for collinear and TMD factorisation
- only with fast partons moving one of two directions
- for more directions (e.g. jet production) should work in collin. fact. unsolved problems with TMDs
 T Rogers, P Mulders 2010
- can generalise from single to double Drell-Yan process

MD, J. Gaunt, D. Ostermeier, D. Plößl, A. Schäfer: in preparation

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	•

Conclusions

- multiparton interactions ubiquitous in hadron-hadron collisions multiple hard scattering often suppressed, but not necessarily
 - in specific kinematics
 - for multi-differential cross sections, high-multiplicity final states
- most phenomenology relies on strong simplifications some improvements are being explored
- have more and more elements for a formulation of factorization but important open questions remain
 - crosstalk with single hard scattering at small distances
- double hard scattering depends on detailed hadron structure
 - transverse spatial distribution
 - different correlation and interference effects
- subject remains of high interest for
 - control over final states at LHC
 - understanding QCD dynamics

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Backup

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Spin correlations

- can (almost) compute x_1, x_2 moments of DPDs in lattice QCD
- pilot study for the pion G Bali, L Castagnini, S Collins, MD, M Engelhardt, J Gaunt, B Gläßle, A Sternbeck, A Schäfer, Ch Zimmermann

- VV: spin averaged
- TT: transverse spin corr. $\propto s_u \cdot s_{\bar{d}}$ find very small $A_{TT} \sim -0.1 \times A_{VV}$
- AA: longitudinal spin corr. even smaller (not shown)
- VT: correlation $\propto \boldsymbol{y} \cdot \boldsymbol{s}_{\bar{d}}$ maximal at small $|\boldsymbol{y}|$, then decreases

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Color correlations

color of two quarks and gluons can be correlated

Mekhfi 1988

suppressed by Sudakov logarithms

... but not necessarily negligible for moderately hard scales

Manohar, Waalewijn arXiv:1202:3794

 $U = {\sf Sudakov} \mbox{ factor for quarks} \\ Q = {\sf hard scale} \label{eq:Q}$

from incomplete cancellation between graphs with real/virtual soft gluons

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Scale evolution for distributions without color correlation

 if define two-parton distributions as operator matrix elements in analogy with usual PDFs

 $F(x_1, x_2, \boldsymbol{y}; \mu) \sim \langle p | \mathcal{O}_1(\boldsymbol{0}; \mu) \mathcal{O}_2(\boldsymbol{y}; \mu) | p \rangle \quad f(x; \mu) \sim \langle p | \mathcal{O}(\boldsymbol{0}; \mu) | p \rangle$

where $\mathcal{O}(\boldsymbol{y};\mu) =$ twist-two operator renormalized at scale μ

•
$$F(x_i, y)$$
 for $y \neq 0$

separate DGLAP evolution for partons 1 and 2

$$\frac{d}{d\log\mu}F(x_i,\boldsymbol{y}) = P \otimes_{x_1} F + P \otimes_{x_2} F$$

two independent parton cascades

•
$$\int d^2 \boldsymbol{y} F(x_i, \boldsymbol{y})$$
:

extra term from $2 \to 4$ parton transition since $F(x_i, {\bm y}) \sim 1/{\bm y}^2$

Kirschner 1979; Shelest, Snigirev, Zinovev 1982 Gaunt, Stirling 2009; Ceccopieri 2011

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Scale evolution for distributions without color correlation

 if define two-parton distributions as operator matrix elements in analogy with usual PDFs

 $F(x_1, x_2, \boldsymbol{y}; \mu) \sim \langle p | \mathcal{O}_1(\boldsymbol{0}; \mu) \mathcal{O}_2(\boldsymbol{y}; \mu) | p \rangle \quad f(x; \mu) \sim \langle p | \mathcal{O}(\boldsymbol{0}; \mu) | p \rangle$

where $\mathcal{O}(\boldsymbol{y};\mu) =$ twist-two operator renormalized at scale μ

•
$$F(x_i, y)$$
 for $y \neq 0$

separate DGLAP evolution for partons 1 and 2

$$\frac{d}{d\log\mu}F(x_i,\boldsymbol{y}) = P \otimes_{x_1} F + P \otimes_{x_2} F$$

two independent parton cascades

•
$$\int d^2 \boldsymbol{y} F(x_i, \boldsymbol{y})$$
:

extra term from $2 \to 4$ parton transition since $F(x_i, {\bm y}) \sim 1/{\bm y}^2$

Kirschner 1979; Shelest, Snigirev, Zinovev 1982 Gaunt, Stirling 2009; Ceccopieri 2011

Introduction	Theory basics	A simple ansatz	Correlations	Advanced theory	Summary
00	00000	00	000	0000	0

Phenomenological estimates of double parton scattering

- pocket formula used in most estimate for DPS contribution
- some recent studies (apologies for omissions):
 - double dijets Domdey, Pirner, Wiedemann 2009: Berger, Jackson, Shaughnessy 2009 • W/Z + jets Maina 2009, 2011 • $\gamma\gamma$ + jets Tao et al. 2015 like-sign W pairs Kulesza, Stirling 2009: Gaunt et al 2010: Berger et al 2011 double Drell-Yan Kom, Kulesza, Stirling 2011 double charmonium Kom, Kulesza, Stirling 2011; Baranov et al. 2011, 2012; Novoselov 2011 double charm Berezhnoy et al 2012; Luszczak et al 2011; Cazaroto et al 2013; Maciula, Szczurek 2012, 2013; van Hameren, Maciula, Szczurek 2014, 2015
- also several studies for proton-nucleus collisions