The 3D structure of QCD the roots of the standard model

Piet Mulders

mulders@few.vu.nl

Introduction

■ High-energy (short-distance) QCD shows strong/successful 'collinear' features
■ Jets, PDFs, CSS formalism, SCET, ...
■ This makes it challenging to look at transverse structure
■ TMDs, azimuthal (spin) asymmetries \& their QCD operator structure
■ Need to understand TMD factorization and TMD evolution
■ Double role: TMDs encode novel QCD-structure (like GPDs and DPDs) and provides possible tools

Introduction

■ High-energy (short-distance) QCD shows strong/successful 'collinear' features

- Jets, PDFs, CSS formalism, SCET, ...

■ This makes it challenging to look at transverse structure
■ TMDs, azimuthal (spin) asymmetries \& their QCD operator structure
■ Need to understand TMD factorization and TMD evolution
■ Double role: TMDs encode novel QCD-structure (like GPDs and DPDs) and provides possible tools

■ Several TMDs still have interpretations as densities, but they no longer fully decouple from interactions
■ Gauge links and process dependence
■ Sign changes generalized into gluonic pole factors

- Multiple functions for quark Pretzelocity and linear gluon polarization
- See proceedings DIS 2015 or QCD evolution 2015

Introduction

■ High-energy (short-distance) QCD shows strong/successful 'collinear' features
■ Jets, PDFs, CSS formalism, SCET, ...
■ This makes it challenging to look at transverse structure
■ TMDs, azimuthal (spin) asymmetries \& their QCD operator structure
■ Need to understand TMD factorization and TMD evolution
■ Double role: TMDs encode novel QCD-structure (like GPDs and DPDs) and provides possible tools

■ Is there something underlying 1D to 3D transition in QCD ?
■ Maybe!

Excitations in the world

■ $\mathrm{D}=2$ is more natural than $\mathrm{D}=4$

- Basic symmetry IO(1,1): H (hamiltonian), P (momentum), K (boost)
- In $D=2$ one has $\operatorname{dim}[\phi]=0$ and $\operatorname{dim}[\psi]=1 / 2$

■ Real bosonic or fermionic excitations: $\phi_{R^{\prime}} \phi_{L^{\prime}}$ and $\xi_{R^{\prime}} \xi_{R}$ (decoupled right/left)

$$
M=0 \Rightarrow \phi_{R}(x)=\exp \left(i k^{+} x^{-}\right) \Rightarrow i \partial_{+} \phi_{R}=\left[P^{-}, \phi_{R}\right]=0
$$

■ Supersymmetric starting point is very natural in $\mathrm{D}=2$:

$$
\begin{array}{ll}
{\left[Q_{R / L}, \phi_{R / L}\right]=\xi_{R / L}} & \left\{Q_{R / L}, Q_{R / L}^{\dagger}\right\}=2 P^{ \pm} \\
\left\{Q_{R / L}, \xi_{R / L}\right\}=\left[P^{ \pm}, \phi_{R / L}\right] & \\
\hline
\end{array}
$$

- CP symmetry
- Interactions: M (couples right-left)

$$
\left[P^{-}, \xi_{R}\right]=-i M \xi_{L} \quad\left[P^{+}, \xi_{L}\right]=i M \xi_{R}
$$

■ Boosts: $\left[K, P^{ \pm}\right]= \pm i P^{ \pm} \quad\left[K, Q_{R / L}\right]= \pm \frac{1}{2} i Q_{R / L}$

A basic supersymmetric starting point

■ Wess-Zumino (1974), but let us look at $\mathrm{D}=2$ (superrenormalizable):
Interactions: M (couples right-left), g (Yukawa coupling) $\operatorname{dim}[\mathrm{M}]=\operatorname{dim}[\mathrm{g}]=1$

$$
\begin{aligned}
L & =\frac{1}{2} \partial_{-} \phi_{R} \partial_{+} \phi_{R}+\frac{1}{2} \partial_{+} \phi_{L} \partial_{-} \phi_{L}+\frac{i}{2} \xi_{R} \partial_{+} \xi_{R}+\frac{i}{2} \xi_{L} \partial_{-} \xi_{L}-V \\
& =\frac{1}{2} \partial^{\mu} \phi_{S} \partial_{\mu} \phi_{S}+\frac{1}{2} \partial^{\mu} \phi_{P} \partial_{\mu} \phi_{P}+\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-V
\end{aligned}
$$

$$
\psi=\frac{1}{\sqrt{2}}\binom{\xi_{R}}{-i \xi_{L}} \quad \phi_{S / P}=\left(\phi_{R} \pm \phi_{L}\right) / \sqrt{2}
$$

$$
\begin{aligned}
V=\frac{1}{2}\left(M+g \phi_{S}\right)^{2}\left(\phi_{S}^{2}\right. & \left.+\phi_{P}^{2}\right)+\frac{1}{2} g^{2} \phi_{P}^{2}\left(\phi_{S}^{2}+\phi_{P}^{2}\right) \\
& +\bar{\psi}\left(M+g \phi_{S}+g \phi_{P} \gamma^{1}\right) \psi
\end{aligned}
$$

- Constraint: $\left(\phi_{R} \sqrt{2}+v\right)\left(\phi_{L} \sqrt{2}+v\right)-v^{2}=\left(\phi_{S}+v\right)^{2}-\phi_{P}^{2}-v^{2}=0$

$$
v=M / 2 g
$$

Bosonic excitations

- Constraint using $\quad v=M / 2 g$

$$
\left(\phi_{R} \sqrt{2}+v\right)\left(\phi_{L} \sqrt{2}+v\right)-v^{2}=\left(\phi_{S}+v\right)^{2}-\phi_{P}^{2}-v^{2}=0
$$

■ Scalar and pseudoscalar fields + constraint

$$
\begin{array}{cll}
v \Phi_{S}=\phi_{S}+v & \text { with } & \left\langle\Phi_{S}\right\rangle=1 \\
v \Phi_{P}=\phi_{P} & \text { with } & \left\langle\Phi_{P}\right\rangle=0
\end{array} \quad \Phi_{S}=\cosh \eta \quad \Phi_{P}=\sinh \eta \quad \text { or } \quad \begin{aligned}
& \Phi_{S}=\cos \theta \\
& \Phi_{P}=i \sin \theta
\end{aligned}
$$

- In d=2 pseudoscalar \rightarrow vector field $\phi_{P}=A^{+}=-A^{-}$

$$
\frac{1}{2} \partial^{\mu} \phi_{P} \partial_{\mu} \phi_{P}=\frac{1}{2}\left(\partial_{+} \phi_{P}\right)\left(\partial_{-} \phi_{P}\right)=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-\frac{1}{2}\left(\partial_{\mu} A^{\mu}\right)^{2}
$$

- Left and right fields with opposite phases (in Hilbert space)

$$
\Phi_{L}^{*}=\Phi_{R} \text { with }\left\langle\Phi_{R}\right\rangle=\left\langle\Phi_{L}\right\rangle=1 / \sqrt{2}
$$

A world with three (real) boson and fermion fields

- Extend to three real fields with SO(3) field symmetry ($\mathrm{N}=3$)
- Requires M to be proportional to unit matrix and one coupling g
- Including complex phases, look at $\mathrm{SU}(3)$ as full symmetry

■ Symmetry of lagrangian and ground state: SO(3), but also P and T
■ $\mathrm{IO}(1,1) \times \mathrm{SO}(3)=\mathrm{IO}(1,3): \mathrm{D}=4$ Poincaré symmetry

- Real SO(3) symmetric fluctuations identify space-time

■ Asymptotic fields living in $E(1,4)$

- Internal symmetries
- (Oriented) embedding of $\mathrm{SO}(3)$, say $\lambda_{21},-\lambda_{5}, \lambda_{7}$ in $\mathrm{SU}(3) \rightarrow$

■ Identify $\mathrm{SU}(2) \times \mathrm{U}(1)$ generators $\mathrm{T}_{1}=\lambda_{1} / 2, \mathrm{~T}_{2}=\lambda_{2} / 2 \mathrm{~T}_{3}=\lambda_{3} / 2$ (isospin plane) and $Y \sim \lambda_{8}$ (hypercharge). It also fixes the charge operator $Q=T_{3}+Y / 2$.

- decoupling required for internal symmetries [Mandula-Coleman 1967]
$\square S O(3)$ embedding is not unique: Z_{3} or A_{4} symmetry
- identify A_{4} singlets with families [Ma-Rajasekaran 2001, Altarelli-Feruglio 2006] $S U(3) \supset S O(3) \times A_{4} \times[S U(2) \otimes U(1)] \rightarrow S O(3) \otimes\left[S U(2)_{I} \otimes U(1)_{Y}\right]$

Bosonic excitations

$$
\begin{gathered}
I O(1,1) \otimes S U(3) \supset \underbrace{I O(1,1) \times S O(3)}_{I O(1,3)} \otimes \underbrace{S U(2)_{I} \otimes U(1)_{Y}}_{\rightarrow U(1)_{Q}}, \\
E(1,1): \quad i D_{\mu} \Phi^{i}=i \partial_{\mu} \Phi^{i}+g \sum_{a=1, \ldots, 8} A_{\mu}^{a}\left(T_{a}\right)_{j}^{i} \Phi^{j} \\
E(1,3): \quad i D_{\mu} \Phi^{i}=i \partial_{\mu} \Phi^{i}+g \sum_{a=1,2,3,8} A_{\mu}^{a}\left(T_{a}\right)_{j}^{i} \Phi^{j}
\end{gathered}
$$

$$
\begin{aligned}
& \Phi_{L}=\frac{1}{\sqrt{2}} \exp \left(-\frac{i}{2} \sum_{a=1,2,3} \theta^{a} \lambda_{a}\right)\left(\begin{array}{c}
0 \\
1+H \\
0
\end{array}\right) \\
& \Phi_{R}=\frac{1}{\sqrt{2}} \exp \left(+\frac{i}{2} \sum_{a=1,2,3} \theta^{a} \lambda_{a}\right)\left(\begin{array}{c}
1+H \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Bosonic excitations

$$
\begin{gathered}
I O(1,1) \otimes S U(3) \supset \underbrace{I O(1,1) \times S O(3)}_{I O(1,3)} \otimes \underbrace{S U(2)_{I} \otimes U(1)_{Y}}_{\rightarrow U(1)_{Q}} \\
E(1,1): \quad i D_{\mu} \Phi^{i}=i \partial_{\mu} \Phi^{i}+g \sum_{a=1, \ldots 8} A_{\mu}^{a}\left(T_{a}\right)_{j}^{i} \Phi^{j} \\
E(1,3): \quad i D_{\mu} \Phi^{i}=i \partial_{\mu} \Phi^{i}+g \sum_{a=1,2,3,8} A_{\mu}^{a}\left(T_{a}\right)_{j}^{i} \Phi^{j}
\end{gathered}
$$

$$
i D_{\mu} \Phi=i \partial_{\mu} \Phi+\frac{g}{2}\left(\sum_{i=1}^{3} W_{\mu}^{i} \lambda_{i}+B_{\mu} \lambda_{8}\right) \Phi
$$

$$
=i \partial_{\mu} \Phi+\frac{g}{\sqrt{2}}\left(W_{\mu}^{+} I_{-}+W_{\mu}^{-} I_{+}\right) \Phi+g\left(W_{\mu}^{0} I_{3}+\frac{1}{2 \sqrt{3}} B_{\mu} Y\right) \Phi
$$

$$
\sin \theta_{W}=1 / 2
$$

[Weinberg, 1972]

$$
M=M_{\mathrm{top}} \longrightarrow M_{W}=M_{\mathrm{top}} / 2, M_{Z}=M_{\mathrm{top}} / \sqrt{3}, M_{H}=M_{\mathrm{top}} / \sqrt{2}
$$

$$
M / 2 g=v=1 \longrightarrow e / M=1 / 4(\text { note } \sqrt{4 \pi \alpha} \approx 0.3)
$$

Fermionic excitations (leptons)

$$
\begin{gathered}
I O(1,1) \otimes S U(3) \supset \underbrace{I O(1,1) \times S O(3)}_{I O(1,3)} \otimes \underbrace{S U(2)_{I} \otimes U(1)_{Y}}_{\rightarrow U(1)_{Q}} \\
E(1,1): \quad i D_{\mu} \Phi^{i}=i \partial_{\mu} \Phi^{i}+g \sum_{a=1, \ldots 8} A_{\mu}^{a}\left(T_{a}\right)_{j}^{i} \Phi^{j} \\
E(1,3): \quad i D_{\mu} \Phi^{i}=i \partial_{\mu} \Phi^{i}+g \sum_{a=1,2,3,8} A_{\mu}^{a}\left(T_{a}\right)_{j}^{i} \Phi^{j}
\end{gathered}
$$

- leptons: 3 majorana's
\rightarrow charged Dirac + neutral majorana
- lefthanded doublet + righthanded singlet lefthanded singlet + righthanded doublet
- custodial symmetry
- Electroweak charges (in 3D space) can be free!

Fermionic excitations (quarks)

$$
\begin{gathered}
I O(1,1) \otimes S U(3) \supset \underbrace{I O(1,1) \times S O(3)}_{I O(1,3)} \otimes \underbrace{S U(2)_{I} \otimes U(1)_{Y}}_{\rightarrow U(1)_{Q}} \\
E(1,1): i D_{\mu} \Phi^{i}=i \partial_{\mu} \Phi^{i}+g \sum_{a=1, \ldots 8} A_{\mu}^{a}\left(T_{a}\right)_{j}^{i} \Phi^{j} \\
E(1,3): i D_{\mu} \Phi^{i}=i \partial_{\mu} \Phi^{i}+g \sum_{a=1,2,3,8} A_{\mu}^{a}\left(T_{a}\right)_{j}^{i} \Phi^{j}
\end{gathered}
$$

■ Lagrangian in D = 2 includes massless scalar [XQCD, D.B. Kaplan]

- Confinement automatic (color charges in 1D space)
- Electroweak quantum numbers (valence picture)

■ Frozen color (valence) scheme

- Requirement that $\left(\mathrm{I}_{3}, \mathrm{Y}\right)$ are $\mathrm{SU}(3)$ roots

Fermionic excitations (quarks)

- Quarks live in $\mathrm{E}(1,1)$, coming in 3 families and 3 colors. Only instantaneous interaction. Confinement automatic
- Electroweak interactions
- In $\mathrm{d}=1$: ξ^{0}, ξ^{+}, or ξ^{-}charge/momentum eigenstates

■ In $d=2$: $\left(\xi^{0} \xi^{0}\right)$, $\left(\xi^{+} \xi^{+}\right)$and $\left(\xi^{-} \xi^{-}\right)$charge/helicity eigenstates
■ In $\mathrm{d}=3$: $\xi_{L}{ }^{0}\left(\xi_{L}{ }^{0} \xi_{L}{ }^{0}\right)$ is acceptable $\mathrm{SU}(3)$ root [I_{3} quantum numbers] $\xi_{L}{ }^{0}\left(\xi_{L}{ }^{+} \xi_{L}{ }^{+}\right)$and $\xi_{L}{ }^{0}\left(\xi_{L}{ }^{-} \xi_{L}{ }^{-}\right)$are not acceptable!

- $\mathrm{E}(1,3)$: gluons dynamical and 'electroweak properties' of quarks (= QCD)

Freeze color, e.g. $\mathrm{R}=$ red (in triplet 3), $\mathrm{L}=$ anti-red (in anti-triplet 3^{*})

- For $\xi_{L}{ }^{0}$ only $\xi_{L}{ }^{0}\left(\xi_{R}{ }^{+} \xi_{R}{ }^{+}\right)$and $\xi_{L}{ }^{0}\left(\xi_{L}{ }^{-} \xi_{R}{ }^{-}\right)$are acceptable giving the quarks u_{L} (red) and $\mathrm{u}_{\mathrm{L}}{ }^{*}$ (anti-red), the latter being an iso-singlet
- $\xi_{L}{ }^{0}\left(\xi_{R}{ }^{+} \xi_{R}{ }^{+}\right)$and $\xi_{L}{ }^{-}\left(\xi_{R}{ }^{0} \xi_{R}{ }^{0}\right)$ form a red iso-doublet u_{L} and d_{L}

■ Structure similar as in Rishon Model [Harari \& Seiberg 1982]

Fermionic content of standard model

particle	space			isospin		hypercharge Y	charge Q	color c
	L	T_{1}	T_{2}	I	I_{3}			
ν_{L}	ξ_{L}^{0}	ξ_{L}^{0}	ξ_{L}^{0}	1/2	+1/2	-1	0	1
e_{L}^{-}	ξ_{L}	ξ_{L}	ξ_{L}	1/2	$-1 / 2$	-1	-1	$\underline{1}$
e_{L}^{+}	ξ_{L}^{+}	ξ_{L}^{+}	ξ_{L}^{+}	0	0	+2	+1	$\underline{1}$
$\begin{aligned} & \nu_{R} \\ & e_{R}^{+} \end{aligned}$	ξ_{R}^{0} ξ_{R}^{+}	ξ_{R}^{0} ξ_{R}^{+}	ξ_{R}^{0} ξ_{R}^{+}	$\begin{aligned} & \hline 1 / 2 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & -1 / 2 \\ & +1 / 2 \end{aligned}$	$\begin{aligned} & \hline+1 \\ & +1 \end{aligned}$	$\begin{gathered} \hline 0 \\ +1 \end{gathered}$	$\begin{aligned} & \hline \underline{1} \\ & \underline{1} \end{aligned}$
e_{R}^{-}	ξ_{R}^{-}	ξ_{R}^{-}	ξ_{R}^{-}	0	0	-2	-1	$\underline{1}$
u_{L}	ξ_{L}^{0}	$\left(\xi_{R}^{+}\right.$	$\left.\xi_{R}^{+}\right)$	1/2	+1/2	+1/3	$+2 / 3$	$\underline{3}$
d_{L}	ξ_{L}^{-}	$\left(\xi_{R}^{0}\right.$	$\left.\xi_{R}^{0}\right)$	1/2	$-1 / 2$	+1/3	$-1 / 3$	$\underline{3}$
\bar{u}_{L}	ξ_{L}^{0}	$\left(\xi_{L}^{-}\right.$	$\left.\xi_{R}^{-}\right)$	0	0	$-4 / 3$	$-2 / 3$	$\underline{3}^{*}$
$\overline{\bar{d}}_{L}$	ξ_{L}^{+}	$\left(\xi_{L}^{0}\right.$	$\left.\xi_{R}^{0}\right)$	0	0	$+2 / 3$	$+1 / 3$	$\underline{3}^{*}$
$\begin{aligned} & \bar{u}_{R} \\ & \bar{d}_{R} \end{aligned}$	$\begin{gathered} \hline \hline \xi_{R}^{0} \\ \xi_{R}^{+} \end{gathered}$	$\begin{gathered} \hline \hline \xi_{L}^{-} \\ \left(\xi_{L}^{0}\right. \end{gathered}$	$\begin{aligned} & \left.\hline \xi_{L}^{-}\right) \\ & \left.\xi_{L}^{0}\right) \end{aligned}$	$\begin{aligned} & \hline 1 / 2 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & -1 / 2 \\ & +1 / 2 \end{aligned}$	$\begin{aligned} & \hline \hline-1 / 3 \\ & -1 / 3 \end{aligned}$	$\begin{aligned} & -2 / 3 \\ & +1 / 3 \end{aligned}$	$\begin{aligned} & \underline{3}^{*} \\ & \underline{3}^{*} \end{aligned}$
u_{R}	ξ_{R}^{0}	$\left(\xi_{L}^{+}\right.$	$\left.\xi_{R}^{+}\right)$	0	0	$+4 / 3$	$+2 / 3$	$\underline{3}$
d_{R}	ξ_{R}^{-}	$\left(\xi_{L}^{0}\right.$	$\left.\xi_{R}^{0}\right)$	0	0	$-2 / 3$	$-1 / 3$	$\underline{3}$

Fermionic content of standard model

particle	space			isospin		hyperchargeY	charge Q	$\begin{gathered} \text { color } \\ \underline{c} \\ \hline \end{gathered}$
	L	T_{1}	T_{2}	I	I_{3}			
ν_{L}	ξ_{L}^{0}	ξ_{L}^{0}	ξ_{L}^{0}	1/2	+1/2	-1	0	$\underline{1}$
e_{L}^{-}	ξ_{L}^{-}	ξ_{L}^{-}	ξ_{L}^{-}	1/2	-1/2	-1	-1	1
e_{L}^{+}	ξ_{L}^{+}	ξ_{L}^{+}	ξ_{L}^{+}	0	0	+2	+1	1
ν_{R}	ξ_{R}^{0}	ξ_{R}^{0}	ξ_{R}^{0}	1/2	-1/2	+1	0	$\underline{1}$
e_{R}^{+}	ξ_{R}^{+}	ξ_{R}^{+}	ξ_{R}^{+}	$1 / 2$	+1/2	+1	+1	1
e_{R}^{-}	ξ_{R}^{-}	ξ_{R}^{-}	ξ_{R}^{-}	0	0	-2	-1	$\underline{1}$
u_{L}	ξ_{L}^{0}	ξ_{R}^{+}	$\left.\xi_{R}^{+}\right)$	1/2	+1/2	+1/3	+2/3	$\underline{3}$
d_{L}	ξ_{L}^{-}	$\left(\xi_{R}^{0}\right.$	$\left.\xi_{R}^{0}\right)$	$1 / 2$	-1/2	+1/3	$-1 / 3$	$\underline{3}$
\bar{u}_{L}	ξ_{L}^{0}	$\left(\xi_{L}^{-}\right.$	$\left.\xi_{R}^{-}\right)$	0	0	$-4 / 3$	-2/3	$\underline{3}^{*}$
\bar{d}_{L}	ξ_{L}^{+}	$\left(\xi_{L}^{0}\right.$	$\left.\xi_{R}^{0}\right)$	0	0	+2/3	+1/3	$\underline{3}^{*}$
\bar{u}_{R}	ξ_{R}^{0}	$\left(\xi_{L}^{-}\right.$	$\left.\xi_{L}^{-}\right)$	1/2	-1/2	$-1 / 3$	-2/3	$\underline{3}^{*}$
\bar{d}_{R}	ξ_{R}^{+}	$\left(\xi_{L}^{0}\right.$	$\left.\xi_{L}^{0}\right)$	$1 / 2$	+1/2	$-1 / 3$	+1/3	$\underline{3}^{*}$
u_{R}	ξ_{R}^{0}	$\left(\xi_{L}^{+}\right.$	$\left.\xi_{R}^{+}\right)$	0	0	+4/3	+2/3	$\underline{3}$
d_{R}	ξ_{R}^{-}	$\left(\xi_{L}^{0}\right.$	$\left.\xi_{R}^{0}\right)$	0	0	-2/3	-1/3	$\underline{3}$

Fermionic excitations (quarks)

$$
\begin{gathered}
I O(1,1) \otimes S U(3) \supset \underbrace{I O(1,1) \times S O(3)}_{I O(1,3)} \otimes \underbrace{S U(2)_{I} \otimes U(1)_{Y}}_{\rightarrow U(1)_{Q}}, \\
E(1,1): i D_{\mu} \Phi^{i}=i \partial_{\mu} \Phi^{i}+g \sum_{a=1, \ldots, 8} A_{\mu}^{a}\left(T_{a}\right)_{j}^{i} \Phi^{j} \\
E(1,3): i D_{\mu} \Phi^{i}=i \partial_{\mu} \Phi^{i}+g \sum_{a=1,2,3,8} A_{\mu}^{a}\left(T_{a}\right)_{j}^{i} \Phi^{j}
\end{gathered}
$$

- Lagrangian in $\mathrm{D}=2$ includes massless scalar coupling to [XQCD, D.B. Kaplan]
- Confinement automatic (color charges in 1D space)
- Electroweak quantum numbers (valence picture)
- Frozen color (valence) scheme
- Requirement that (I_{3}, Y) are $\operatorname{SU}(3)$ roots

■ Doublets of lefthanded quarks and righthanded antiquarks
■ Two singlets of lefthanded and righthanded singlets
■ In zeroth order one family takes all mass: top-quark, $\mathrm{t} \sim \xi^{0}\left(\xi^{+} \xi^{+}\right)$

Concluding remarks

$$
I O(1,1) \otimes S U(3) \supset \underbrace{I O(1,1) \times S O(3)}_{I O(1,3)} \otimes \underbrace{S U(2)_{I} \otimes U(1)_{Y}}_{\rightarrow U(1)_{Q}} .
$$

■ Basic supersymmetric starting point, solves hierarchy and naturalness problems

- Links \# space dimensions, \# colors, \# families
- Provides spectrum of bosons and fermions in standard model
- Allows for family mixing (M and g can be complex symmetric), role for A_{4}

■ Left-right symmetric starting point and custodial symmetry

- B-L symmetry

■ $\mathrm{D}=2$ and $\mathrm{D}=4$ worlds meet at QCD scale !!!

- Provides a new view for many phenomena in QCD (Confinement, importance of SCET for PDFs, PFFs including TMDs, multitude of effective models for QCD)
■ Electroweak charges are interesting region: $1-4 \sin ^{2} \theta_{\mathrm{w}}$
■ Hydrogen involves all excitations in lowest family: $\left(\xi^{+} \xi^{-} \xi^{0}\right)^{4}$
Family-breaking effects when different embeddings meet: proton radius puzzle

■ There are still many open ends !

Disney Frozen Color Changers Elsa Anna Royal Changing Dolls

