

The 3D structure of QCD the roots of the standard model

Piet Mulders

mulders@few.vu.nl

Introduction

- High-energy (short-distance) QCD shows strong/successful 'collinear' features
 - Jets, PDFs, CSS formalism, SCET, ...
- This makes it challenging to look at transverse structure
 - TMDs, azimuthal (spin) asymmetries & their QCD operator structure
 - Need to understand TMD factorization and TMD evolution
- Double role: TMDs encode novel QCD-structure (like GPDs and DPDs) and provides possible tools

Introduction

- High-energy (short-distance) QCD shows strong/successful 'collinear' features
 - Jets, PDFs, CSS formalism, SCET, ...
- This makes it challenging to look at transverse structure
 - TMDs, azimuthal (spin) asymmetries & their QCD operator structure
 - Need to understand TMD factorization and TMD evolution
- Double role: TMDs encode novel QCD-structure (like GPDs and DPDs) and provides possible tools
- Several TMDs still have interpretations as densities, but they no longer fully decouple from interactions
 - Gauge links and process dependence
 - Sign changes generalized into gluonic pole factors
 - Multiple functions for quark Pretzelocity and linear gluon polarization
- See proceedings DIS 2015 or QCD evolution 2015

Introduction

- High-energy (short-distance) QCD shows strong/successful 'collinear' features
 - Jets, PDFs, CSS formalism, SCET, ...
- This makes it challenging to look at transverse structure
 - TMDs, azimuthal (spin) asymmetries & their QCD operator structure
 - Need to understand TMD factorization and TMD evolution
- Double role: TMDs encode novel QCD-structure (like GPDs and DPDs) and provides possible tools

- Is there something underlying 1D to 3D transition in QCD?
- Maybe!

Excitations in the world

- D = 2 is more natural than D = 4
 - Basic symmetry IO(1,1): H (hamiltonian), P (momentum), K (boost)
 - In D = 2 one has $dim[\phi] = 0$ and $dim[\psi] = \frac{1}{2}$
- Real bosonic or fermionic excitations: ϕ_R , ϕ_L , and ξ_R , ξ_R (decoupled right/left)

$$M = 0 \implies \phi_R(x) = \exp(ik^+x^-) \implies i\partial_+\phi_R = [P^-, \phi_R] = 0$$

 \blacksquare Supersymmetric starting point is very natural in D = 2:

$$[Q_{R/L}, \phi_{R/L}] = \xi_{R/L}$$

$$\{Q_{R/L}, Q_{R/L}^{\dagger}\} = 2 P^{\pm}$$

$$\{Q_{R/L}, \xi_{R/L}\} = [P^{\pm}, \phi_{R/L}]$$

- CP symmetry
- Interactions: M (couples right-left)

$$[P^-, \xi_R] = -iM\xi_L \qquad [P^+, \xi_L] = iM\xi_R$$

■ Boosts: $[K, P^{\pm}] = \pm i P^{\pm}$ $[K, Q_{R/L}] = \pm \frac{1}{2} i Q_{R/L}$

A basic supersymmetric starting point

Wess-Zumino (1974), but let us look at D=2 (superrenormalizable): Interactions: M (couples right-left), g (Yukawa coupling) dim[M] = dim[g] = 1

$$L = \frac{1}{2}\partial_{-}\phi_{R}\,\partial_{+}\phi_{R} + \frac{1}{2}\partial_{+}\phi_{L}\,\partial_{-}\phi_{L} + \frac{i}{2}\,\xi_{R}\partial_{+}\xi_{R} + \frac{i}{2}\xi_{L}\partial_{-}\xi_{L} - V$$
$$= \frac{1}{2}\partial^{\mu}\phi_{S}\,\partial_{\mu}\phi_{S} + \frac{1}{2}\partial^{\mu}\phi_{P}\,\partial_{\mu}\phi_{P} + \overline{\psi}\,i\,\gamma^{\mu}\partial_{\mu}\,\psi - V$$

$$\psi = \frac{1}{\sqrt{2}} \begin{pmatrix} \xi_R \\ -i\xi_L \end{pmatrix} \qquad \phi_{S/P} = (\phi_R \pm \phi_L)/\sqrt{2}$$

$$V = \frac{1}{2}(M + g\phi_S)^2(\phi_S^2 + \phi_P^2) + \frac{1}{2}g^2\phi_P^2(\phi_S^2 + \phi_P^2) + \overline{\psi}(M + g\phi_S + g\phi_P\gamma^1)\psi$$

Constraint: $(\phi_R \sqrt{2} + v)(\phi_L \sqrt{2} + v) - v^2 = (\phi_S + v)^2 - \phi_P^2 - v^2 = 0$ v = M/2g

Bosonic excitations

Constraint using v = M/2g

$$(\phi_R \sqrt{2} + v)(\phi_L \sqrt{2} + v) - v^2 = (\phi_S + v)^2 - \phi_P^2 - v^2 = 0$$

Scalar and pseudoscalar fields + constraint

$$v\Phi_S = \phi_S + v \quad \text{with} \quad \langle \Phi_S \rangle = 1$$

 $v\Phi_P = \phi_P \quad \text{with} \quad \langle \Phi_P \rangle = 0$

$$\Phi_S = \cosh \eta$$
 or $\Phi_S = \cos \theta$ $\Phi_P = \sinh \eta$

In d=2 pseudoscalar \rightarrow vector field $\phi_P = A^+ = -A^-$

$$\frac{1}{2} \partial^{\mu} \phi_{P} \partial_{\mu} \phi_{P} = \frac{1}{2} (\partial_{+} \phi_{P}) (\partial_{-} \phi_{P}) = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{2} (\partial_{\mu} A^{\mu})^{2}$$

Left and right fields with opposite phases (in Hilbert space)

$$\Phi_L^* = \Phi_R \text{ with } \langle \Phi_R \rangle = \langle \Phi_L \rangle = 1/\sqrt{2}$$

A world with three (real) boson and fermion fields

- \blacksquare Extend to three real fields with SO(3) field symmetry (N = 3)
 - Requires M to be proportional to unit matrix and one coupling g
 - Including complex phases, look at SU(3) as full symmetry
- Symmetry of lagrangian and ground state: SO(3), but also P and T
 - $IO(1,1) \times SO(3) = IO(1,3)$: D = 4 Poincaré symmetry
 - Real SO(3) symmetric fluctuations identify space-time
- Asymptotic fields living in E(1,4)
- Internal symmetries
 - (Oriented) embedding of SO(3), say λ_2 , $-\lambda_5$, λ_7 in SU(3) \rightarrow
 - Identify SU(2) x U(1) generators $T_1 = \lambda_1/2$, $T_2 = \lambda_2/2$ $T_3 = \lambda_3/2$ (isospin plane) and Y ~ λ_8 (hypercharge). It also fixes the charge operator Q = T_3 + Y/2.
 - decoupling required for internal symmetries [Mandula-Coleman 1967]
 - \blacksquare SO(3) embedding is not unique: Z_3 or A_4 symmetry
 - identify A₄ singlets with families [Ma-Rajasekaran 2001, Altarelli-Feruglio 2006] $SU(3) \supset SO(3) \times A_4 \times [SU(2) \otimes U(1)] \rightarrow SO(3) \otimes [SU(2)_I \otimes U(1)_Y]$

Bosonic excitations

$$IO(1,1)\otimes SU(3) \supset \underbrace{IO(1,1)\times SO(3)}_{IO(1,3)} \otimes \underbrace{SU(2)_I \otimes U(1)_Y}_{\rightarrow U(1)_Q}$$

$$E(1,1): iD_{\mu}\Phi^{i} = i\partial_{\mu}\Phi^{i} + g\sum_{a=1,...8} A^{a}_{\mu}(T_{a})^{i}_{j}\Phi^{j}$$

$$E(1,3): iD_{\mu}\Phi^{i} = i\partial_{\mu}\Phi^{i} + g\sum_{a=1,2,3,8} A^{a}_{\mu}(T_{a})^{i}_{j}\Phi^{j}$$

$$\Phi_L = \frac{1}{\sqrt{2}} \exp\left(-\frac{i}{2} \sum_{a=1,2,3} \theta^a \lambda_a\right) \begin{pmatrix} 0 \\ 1 + H \\ 0 \end{pmatrix}$$

$$\Phi_{L} = \frac{1}{\sqrt{2}} \exp\left(-\frac{i}{2} \sum_{a=1,2,3} \theta^{a} \lambda_{a}\right) \begin{pmatrix} 0 \\ 1+H \\ 0 \end{pmatrix}$$

$$\Phi_{R} = \frac{1}{\sqrt{2}} \exp\left(+\frac{i}{2} \sum_{a=1,2,3} \theta^{a} \lambda_{a}\right) \begin{pmatrix} 1+H \\ 0 \\ 0 \end{pmatrix}$$

Bosonic excitations

$$IO(1,1) \otimes SU(3) \supset \underbrace{IO(1,1) \times SO(3)}_{IO(1,3)} \otimes \underbrace{SU(2)_I \otimes U(1)_Y}_{\rightarrow U(1)_Q}.$$

$$E(1,1): iD_{\mu}\Phi^i = i\partial_{\mu}\Phi^i + g \sum_{a=1,\dots 8} A^a_{\mu}(T_a)^i_j\Phi^j$$

$$E(1,3): iD_{\mu}\Phi^i = i\partial_{\mu}\Phi^i + g \sum_{a=1,2,3,8} A^a_{\mu}(T_a)^i_j\Phi^j$$

$$iD_{\mu}\Phi = i\partial_{\mu}\Phi + \frac{g}{2} \left(\sum_{i=1}^{3} W_{\mu}^{i} \lambda_{i} + B_{\mu} \lambda_{8} \right) \Phi$$

$$= i\partial_{\mu}\Phi + \frac{g}{\sqrt{2}} (W_{\mu}^{+} I_{-} + W_{\mu}^{-} I_{+}) \Phi + g(W_{\mu}^{0} I_{3} + \frac{1}{2\sqrt{3}} B_{\mu} Y) \Phi$$

 $\sin \theta_W = 1/2$

[Weinberg, 1972]

$$M = M_{\rm top} \longrightarrow M_W = M_{\rm top}/2, M_Z = M_{\rm top}/\sqrt{3}, M_H = M_{\rm top}/\sqrt{2}$$

 $M/2g = v = 1 \longrightarrow e/M = 1/4 \text{ (note } \sqrt{4\pi\alpha} \approx 0.3)$

Fermionic excitations (leptons)

$$IO(1,1) \otimes SU(3) \supset \underbrace{IO(1,1) \times SO(3)}_{IO(1,3)} \otimes \underbrace{SU(2)_I \otimes U(1)_Y}_{\rightarrow U(1)_Q}$$

$$E(1,1): iD_{\mu}\Phi^{i} = i\partial_{\mu}\Phi^{i} + g\sum_{a=1,...8} A^{a}_{\mu}(T_{a})^{i}_{j}\Phi^{j}$$

$$E(1,3): iD_{\mu}\Phi^{i} = i\partial_{\mu}\Phi^{i} + g\sum_{a=1,2,3,8} A^{a}_{\mu}(T_{a})^{i}_{j}\Phi^{j}$$

- leptons: 3 majorana's
 - → charged Dirac + neutral majorana
- lefthanded doublet + righthanded singlet
 lefthanded singlet + righthanded doublet
- custodial symmetry
- Electroweak charges (in 3D space) can be free!

Fermionic excitations (quarks)

$$IO(1,1) \otimes SU(3) \supset \underbrace{IO(1,1) \times SO(3)}_{IO(1,3)} \otimes \underbrace{SU(2)_{I} \otimes U(1)_{Y}}_{Y}.$$

$$E(1,1): iD_{\mu}\Phi^{i} = i\partial_{\mu}\Phi^{i} + g \sum_{a=1,\dots 8} A^{a}_{\mu}(T_{a})^{i}_{j}\Phi^{j}$$

$$E(1,3): iD_{\mu}\Phi^{i} = i\partial_{\mu}\Phi^{i} + g \sum_{a=1,2,3,8} A^{a}_{\mu}(T_{a})^{i}_{j}\Phi^{j}$$

- Lagrangian in D = 2 includes massless scalar [XQCD, D.B. Kaplan]
- Confinement automatic (color charges in 1D space)
- Electroweak quantum numbers (valence picture)
 - Frozen color (valence) scheme
 - Requirement that (I_3, Y) are SU(3) roots
- Structure as in Rishon Model [Harari & Seiberg 1982]
- Doublets of lefthanded quarks and righthanded antiquarks
- Two singlets of lefthanded and righthanded singlets

Fermionic excitations (quarks)

- Quarks live in E(1,1), coming in 3 families and 3 colors. Only instantaneous interaction. Confinement automatic
- Electroweak interactions
 - In d = 1: ξ^0 , ξ^+ , or ξ^- charge/momentum eigenstates
 - In d = 2: $(\xi^0 \xi^0)$, $(\xi^+ \xi^+)$ and $(\xi^- \xi^-)$ charge/helicity eigenstates
 - In d = 3: $\xi_L^0(\xi_L^0 \xi_L^0)$ is acceptable SU(3) root $[I_3]$ quantum numbers $\xi_L^0(\xi_L^+ \xi_L^+)$ and $\xi_L^0(\xi_L^- \xi_L^-)$ are not acceptable!
- E(1,3): gluons dynamical and 'electroweak properties' of quarks (= QCD) Freeze color, e.g. R = red (in triplet 3), L = anti-red (in anti-triplet 3*)
 - For ξ_L^0 only $\xi_L^0(\xi_R^+ \xi_R^+)$ and $\xi_L^0(\xi_L^- \xi_R^-)$ are acceptable giving the quarks u_L (red) and u_L^* (anti-red), the latter being an iso-singlet
 - \blacksquare $\xi_L^0(\xi_R^+\xi_R^+)$ and $\xi_L^-(\xi_R^0\xi_R^0)$ form a red iso-doublet u_L and d_L
- Structure similar as in Rishon Model [Harari & Seiberg 1982]

Fermionic content of standard model

particle	space			isospin		hypercharge	charge	color
	L	T_1	T_2	I	I_3	Y	Q	<u>c</u>
$ u_L$	ξ_L^0	ξ_L^0	ξ_L^0	1/2	+1/2	-1	0	<u>1</u>
e_L^-	ξ_L^-	ξ_L^-	ξ_L^-	1/2	-1/2	-1	-1	<u>1</u>
e_L^+	ξ_L^+	ξ_L^+	ξ_L^+	0	0	+2	+1	<u>1</u>
$ u_R$	ξ_R^0	ξ_R^0	ξ_R^0	1/2	-1/2	+1	0	<u>1</u>
e_R^+	$egin{array}{c} \xi_R^0 \ \xi_R^+ \ \end{array}$	$\xi_R^0 \ \xi_R^+$	$egin{array}{c} \xi_R^0 \ \xi_R^+ \ \end{array}$	1/2	+1/2	+1	+1	<u>1</u>
e_R^-	ξ_R^-	ξ_R^-	ξ_R^-	0	0	-2	-1	<u>1</u>
u_L	ξ_L^0	$(\xi_R^+$	$\xi_R^+)$	1/2	+1/2	+1/3	+2/3	<u>3</u> <u>3</u>
d_L	ξ_L^-	$(\xi_R^0$	$\xi_R^0)$	1/2	-1/2	+1/3	-1/3	<u>3</u>
\overline{u}_L	ξ_L^0	$(\xi_L^-$	$\xi_R^-)$	0	0	-4/3	-2/3	<u>3</u> *
\overline{d}_L	ξ_L^+	$(\xi_L^0$	$\xi_R^0)$	0	0	+2/3	+1/3	<u>3</u> *
$\overline{\underline{u}}_R$	ξ_R^0	$(\xi_L^-$	$\xi_L^-)$	1/2	-1/2	-1/3	-2/3	<u>3</u> *
\overline{d}_R	$\xi_R^0 \ \xi_R^+$	$(\xi_L^0$	$\xi_L^{\overline 0})$	1/2	+1/2	-1/3	+1/3	$\underline{3}^*$
u_R	ξ_R^0	$(\xi_L^+$	$\xi_R^+)$	0	0	+4/3	+2/3	3
d_R	ξ_R^-	$(\xi_L^0$	$\xi_R^0)$	0	0	-2/3	-1/3	3

Fermionic content of standard model

particle	space			isospin		hypercharge	charge	color
	L	T_1	T_2	I	I_3	Y	Q	<u>c</u>
$ u_L$	ξ_L^0	ξ_L^0	ξ_L^0	1/2	+1/2	-1	0	$\frac{1}{1}$
e_L^-	ξ_L^-	ξ_L^-	ξ_L^-	1/2	-1/2	-1	-1	<u>1</u>
e_L^+	ξ_L^+	ξ_L^+	ξ_L^+	0	0	+2	+1	1
$ u_R$	$egin{array}{c} \xi_R^0 \ \xi_R^+ \ \end{array}$	$\xi_R^0 \ \xi_R^+$	$\xi_R^0 \ \xi_R^+$	1/2	-1/2	+1	0	<u>1</u>
$ \begin{array}{c} \nu_R \\ e_R^+ \end{array}$	ξ_R^+	ξ_R^+	ξ_R^+	1/2	+1/2	+1	+1	1 1
e_R^-	ξ_R^-	ξ_R^-	ξ_R^-	0	0	-2	-1	<u>1</u>
u_L	ξ_L^0	$(\xi_R^+$	$\xi_R^+)$	1/2	+1/2	+1/3	+2/3	$\frac{3}{3}$
d_L	$rac{\xi_L^0}{\xi_L^-}$	$(\xi_R^0$	ξ_R^0	1/2	-1/2	+1/3	-1/3	<u>3</u>
\overline{u}_L	ξ_L^0	$(\xi_L^-$	$\xi_R^-)$	0	0	-4/3	-2/3	<u>3</u> *
\overline{d}_L	ξ_L^+	$(\xi_L^0$	$\xi_R^0)$	0	0	+2/3	+1/3	<u>3</u> *
$\overline{\underline{u}}_R$	ξ_R^0	$(\xi_L^-$	$\xi_L^-)$	1/2	-1/2	-1/3	-2/3	<u>3</u> *
\overline{d}_R	$\xi_R^0 \ \xi_R^+$	$(\xi_L^0$	$arxi_L^{\overline 0})$	1/2	+1/2	-1/3	+1/3	<u>3</u> *
u_R	ξ_R^0	$(\xi_L^+$	$\xi_R^+)$	0	0	+4/3	+2/3	3
d_R	ξ_R^-	$(\xi_L^0$	$\xi_R^0)$	0	0	-2/3	-1/3	3

Fermionic excitations (quarks)

$$IO(1,1) \otimes SU(3) \supset \underbrace{IO(1,1) \times SO(3)}_{IO(1,3)} \otimes \underbrace{SU(2)_I \otimes U(1)_Y}_{IO(1)_Q}.$$

$$E(1,1): iD_{\mu}\Phi^i = i\partial_{\mu}\Phi^i + g \sum_{a=1,\dots,8} A^a_{\mu}(T_a)^i_j\Phi^j$$

$$E(1,3): iD_{\mu}\Phi^i = i\partial_{\mu}\Phi^i + g \sum_{a=1,2,3,8} A^a_{\mu}(T_a)^i_j\Phi^j$$

- Lagrangian in D = 2 includes massless scalar coupling to [XQCD, D.B. Kaplan]
- Confinement automatic (color charges in 1D space)
- Electroweak quantum numbers (valence picture)
 - Frozen color (valence) scheme
 - \blacksquare Requirement that (I₃, Y) are SU(3) roots
- Doublets of lefthanded quarks and righthanded antiquarks
- Two singlets of lefthanded and righthanded singlets
- In zeroth order one family takes all mass: top-quark, t $\sim \xi^0 (\xi^+ \xi^+)$

Concluding remarks

$$IO(1,1)\otimes SU(3) \supset \underbrace{IO(1,1)\times SO(3)}_{IO(1,3)} \otimes \underbrace{SU(2)_I \otimes U(1)_Y}_{\rightarrow U(1)_Q}.$$

- Basic supersymmetric starting point, solves hierarchy and naturalness problems
- Links # space dimensions, # colors, # families
- Provides spectrum of bosons and fermions in standard model
- Allows for family mixing (M and g can be complex symmetric), role for A_4
- Left-right symmetric starting point and custodial symmetry
- B-L symmetry
- \blacksquare D = 2 and D = 4 worlds meet at QCD scale !!!
- Provides a new view for many phenomena in QCD (Confinement, importance of SCET for PDFs, PFFs including TMDs, multitude of effective models for QCD)
- Electroweak charges are interesting region: $1 4 \sin^2 \theta_W$
- Hydrogen involves all excitations in lowest family: $(\xi^+\xi^-\xi^0)^4$ Family-breaking effects when different embeddings meet: proton radius puzzle
- There are still many open ends!

Frozen color scheme

Disney Frozen Color Changers Elsa Anna Royal Changing Dolls

