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Forward dijets in dilute-dense hadronic collisions

ŝ = (p + k)2

t̂ = (p2 − p)2

û = (p1 − p)2

Incoming partons’ energy fractions:

x1 = 1√
s

(|p1t |ey1 + |p2t |ey2 )

x2 = 1√
s

(|p1t |e−y1 + |p2t |e−y2 )

y1,y2�0−→ x1 ∼ 1

x2 � 1

Gluon’s transverse momentum (p1t , p2t imbalance):

|kt |2 = |p1t + p2t |2 = |p1t |2 + |p2t |2 + 2|p1t ||p2t | cos∆φ
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Scales and regimes

Pt – average jet transverse momentum
kt – target gluon’s transverse momentum (dijets imbalance)
Qs – saturation scale

High Energy Factorization

Generalized Transverse
Momentum Dependent

Factorization

Collinear factorization

Improved Transverse
Momentum Dependent

Factorization
(this talk)
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HEF and generalized TMD factorization

High Energy Factorization [Catani, Ciafaloni, Hautmann 1991]

dσpA→dijets+X

dy1dy2d2p1td2p2t
∝
∑
a,c,d

x1fa/p(x1, µ
2) |Mag∗→cd |2Fg/A(x2, kt)

x1fa/p(x1, µ
2) – collinear PDF in p, suitable for x1 ∼ 1

|Mag∗→cd |2 – matrix element with off-shell incoming gluon

Fg/A(x2, kt) – unintegrated gluon PDF in A, suitable for x2 � 1

Generalized TMD factorization [Dominguez, Marquet, Xiao, Yuan 2011]

dσpA→dijets+X

dy1dy2d2p1td2p2t
∝
∑
a,c,d

x1fa/p(x1, µ
2)
∑
i

H
(i)
ag→cdF

(i)
ag (x2, kt)

H
(i)
ag→cd – hard factor of i-th type, with on-shell incoming gluon

F (i)
ag (x2, kt) – unintegrated gluon distribution of i-th type in A
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Successes, strengths and limitations of HEF (1/2)

Forward-central dijet production: proton-proton
[van Hameren, Kotko, Kutak and SS 2014]
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KS nonlinear + Sudakov
CMS PAS FSQ-12-008

HEF approach with:

I KS gluon: BK with kinematic
constraint, non-singular DGLAP
pieces, running coupling – fitted
to combined F2 HERA data

I Sudakov resummation: ensures
no emission between kt and µ
(turns out to be relevant for
moderate ∆φ)

Successful description
of azimuthal decorrelations!
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Successes, strengths and limitations of HEF (2/2)

Forward-forward dijet production: proton-proton vs proton-lead
[van Hameren, Kotko, Kutak, Marquet and SS 2014]
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HEF approach with:

I Nuclear modification factor

RpA =
dσp+A

Adσp+p

I KS gluon: parameter c controls
strength of the non-linear term

I rcBK gluon: BK equation with
running coupling, parameter d
modifies saturation scale in the
initial condition

Sizable effects of gluon saturation at ∆φ = π →
Predictions qualitatively

consistent for all gluons

and model parameters.
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Observations:

I HEF does a good job in describing data and provides interesting
predictions. Reliable when kt ∼ Pt . Not applicable in the strict
back-to-back limit with ∆φ ' π, which corresponds to kt � Pt .

I In the strict back-to-back limit, one needs to turn into generalized
TMD factorization – reliable when kt � Pt . But that approach
misses important ingredient of HEF namely kt dependence in the
matrix element. It is therefore not applicable when kt ∼ Pt .

Would there be a way to combine virtues of the two approaches?
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Relating HEF and generalized TMD factorization

HEF

generalized TMD

6

?

???
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� [Dominguez, Marquet, Xiao, Yuan 2011]
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TMD gluon distribution (first try)

Fg/A(x2, kt)
naive
= 2

∫
dξ+d2ξt
(2π)3p−A

e ix2p
−
A ξ

+−ikt ·ξt
〈
A|Tr

[
F i− (ξ+, ξt

)
F i− (0)

]
|A
〉

This definition is gauge dependent!
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TMD gluon distributions (proper definition)

+ +

+ similar diagrams with 2, 3, . . . gluon exchanges

They all contribute at leading power and need to be resummed.

That is done by gauge links U[α,β]

Fg/A(x2, kt) = 2

∫
dξ+d2ξt
(2π)3p−A

e ix2p
−
A ξ

+−ikt ·ξt
〈
A|Tr

[
F i− (ξ+, ξt

)
U[ξ,0]F

i− (0)
]
|A
〉

I U[α,β] renders gluon distribution gauge invariant
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Gauge links

Wilson lines along the path from α to β

W[α,β] = P exp

[
−ig

∫ β

α

dηµAa(η)T a

]
The path [α, β] depends on the hard process.

I Gluon TMD, F , is in general process-dependent.

Cross section for dijet production in hadron-hadron collisions cannot be
written down with just a single gluon! [Bomhof, Mulders, Pijlman 2006]

F (1)
qg ,F (2)

qg

F (1)
gg ,F (2)

gg ,F (3)
gg ,F (4)

gg ,F (5)
gg ,F (6)

gg
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Generalized TMD factorization

[Dominguez, Marquet, Xiao, Yuan 2011]

dσpA→cdX

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2
x1fq/p(x1, µ

2)
n∑

i=1

F (i)
ag H

(i)
ag→cd

1

1 + δcd

I qg → qg : n = 2

gg → qq̄: n = 3

gg → gg : n = 6

I H
(i)
ag→cd obtained in large Nc limit

I H
(i)
ag→cd obtained in the approximation kt = 0
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Towards improved TMD factorization (see Elena’s talk)

[Kotko, Kutak, Marquet, Petreska, SS and van Hameren 2015]

I Reduce to n = 2 for all channels

dσpA→dijets+X

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2

∑
a,c,d

x1fa/p(x1, µ
2)

2∑
i=1

K
(i)
ag→cdΦ

(i)
ag→cd

1

1 + δcd

I Restore all the finite-Nc terms in the hard factors

K
(1)
ag→cd K

(2)
ag→cd

qg → qg − ŝ2 + û2

2t̂2ŝ û

[
û2 +

ŝ2 − t̂2

N2
c

]
−CF

Nc

ŝ(ŝ2 + û2)

t̂2û

gg → qq̄
1

2Nc

(t̂2 + û2)2

ŝ2t̂ û
− 1

2CFN2
c

t̂2 + û2

ŝ2

gg → gg
2Nc

CF

(ŝ2 − t̂ û)2(t̂2 + û2)

t̂2û2ŝ2

2Nc

CF

(ŝ2 − t̂ û)2

t̂ ûŝ2
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Relating HEF and generalized TMD factorization
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Off-shell matrix elements

I On-shell matrix element is a very bad approximation for dijet
configurations with the two jets close in azimuthal angle ∆φ ' 0.

I These configurations arise when the gluon transverse momentum
kt � 0.
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Off-shell matrix elements
I We cannot just use the usual prescriptions for calculating on-shell

matrix elements and keep the gluon off-shell. Such result would
not be gauge-invariant!

The process ag∗ → cd must be embedded in an on-shell process.

Effective procedure: [Catani, Ciafaloni, Hautmann 1991]

I Standard Feynman rules with the
gauge vector n = pA.

I Off-shell gluon’s longitudinal
polarization vector:

ε0
µ =

i
√

2 x2

|kt |
pAµ .

This procedure is just enough to render the result gauge-invariant.
Generalizations to arbitrary gauge and higher multiplicities exist. [Lipatov 1995;

Antonov, Lipatov, Kuraev, Chrednikov 2005] [van Hameren, Kotko, Kutak 2013]
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Colour ordered amplitudes

N-gluon amplitude:

Ma1...aN
(
ελ1

1 , . . . , ε
λN

N

)
=∑

σ∈SN−2

(F aσ2 . . .F aσN−1 )a1aN
M
(

1λ1 , σ
λσ2
2 , . . . , σ

λσN−1

N−1 ,NλN

)
,

where (F a)bc = fabc and SN−2 are (N − 2)! non-cyclic permutations.

I colour ordered amplitudes M
(

1λ1 , σ
λσ2
2 , . . . , σ

λσN−1

N−1 ,NλN

)
are

gauge invariant

I only (N − 2)! of them needed for amplitude with N external legs
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TMDs from colour ordered amplitudes
In the gg∗ → gg channel:

Ma1a2a3a4
gg∗→gg

(
n1, ε

λ2
2 , ε

λ3
3 , ε

λ4
4

)
= fa1a2c fca3a4Mgg∗→gg (1∗, 2, 3, 4)

+ fa1a3c fca2a4Mgg∗→gg (1∗, 3, 2, 4) ,

where k1 = n1 + kT .

Only two unique colour structures multiplying the gauge links

corresponding to F (i)
gg → two independent TMDs.

colour-ordered amplitude squared gluon TMD

|Mgg∗→gg (1∗, 2, 3, 4)|2 Φ
(1)
gg→gg = 1

2N2
c

(
N2

cF
(1)
gg − 2F (3)

gg

|Mgg∗→gg (1∗, 3, 2, 4)|2 +F (4)
gg + F (5)

gg + N2
cF

(6)
gg

)
Mgg∗→gg (1∗, 2, 3, 4)M∗gg∗→gg (1∗, 3, 2, 4) Φ

(2)
gg→gg = 1

N2
c

(
N2

cF
(2)
gg − 2F (3)

gg

M∗gg∗→gg (1∗, 2, 3, 4)Mgg∗→gg (1∗, 3, 2, 4) +F (4)
gg + F (5)

gg + N2
cF

(6)
gg

)
Similar story for the other two channels qg → qg and gg → qq̄.
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Improved TMD factorization

The final formula

dσpA→dijets+X

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2

∑
a,c,d

x1fa/p(x1, µ
2)

2∑
i=1

K
(i)
ag∗→cdΦ

(i)
ag→cd

1

1 + δcd

i 1 2

K
(i)
gg∗→gg

Nc

CF

(s4+t4+u4)(uû+tt̂)
t̄ t̂ ūûs̄ ŝ

− Nc

2CF

(s4+t4+u4)(uû+tt̂−sŝ)
t̄ t̂ ūûs̄ ŝ

K
(i)
gg∗→qq

1
2Nc

(t2+u2)(uû+tt̂)
sŝ t̂û

1
4N2

cCF

(t2+u2)(uû+tt̂−sŝ)
sŝ t̂û

K
(i)
qg∗→qg −u (s2+u2)

2tt̂ŝ
(1 + sŝ−tt̂

N2
c uû

) −CF

Nc

s(s2+u2)
tt̂û

Modified Mandelstam variables:

I s̄ = (x2pA + p)2, t̄ = (x2pA − p1)2, ū = (x2pA − p2)2

Recovery of the on-shell limit:

I lim|kt |→0(s̄ − ŝ) = 0, lim|kt |→0(t̄ − t̂) = 0, lim|kt |→0(ū − û) = 0
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First numerical results: improved TMD vs HEF

I GBW model used
to compute TMDs

I off-shell hard
factors

I large Nc limit

Improved TMD
factorization points

towards less
correlations.

Azimuthal correlations
in forward dijets production
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Conclusions
I We have developed the improved TMD factorization approach for

forward dijet production in dilute-dense hadronic collisions.

I Our framework unifies HEF (off-shell ME but single gluon TMD) and
generalized TMD factorization (multiple TMDs but on-shell ME).

I The improved TMD factorization formula is valid in the limit
|p1t |, |p2t | � Qs with an arbitrary value of |kt |.

I Our result provides a robust framework for studies of saturation
domain with hard objects.

I We have just begun numerical studies: first results with GBW model
point towards slightly smaller azimuthal correlations in forward dijet
production.

Future

I Phenomenology of improved TMD factorization with gluons from
a range of models.

I Exploration of all-order validity of the improved TMD factorization
in for hadronic dijet production in dilute-dense collisions.
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