Elliptic azimuthal anisotropy and the distribution of linearly polarized gluons in DIS dijet production at high energy

> Adrian Dumitru Baruch College, CUNY

POETIC VI 7-11 Sept. 2015, Palaiseau, France

based on: A.D., T. Lappi, V. Skokov, 1508.04438

WW gluon distribution, unpolarized target

(Mulders, Rodrigues, PRD 2001 Metz, Zhou, PRD 2011, Dominguez, Qiu, Xiao, Yuan, PRD 2012)

$$\int d^{2}\xi \ d\xi^{-}e^{ixP^{+}\xi^{-}-i\vec{q}_{\perp}\cdot\vec{\xi}} \left\langle \operatorname{tr} \ F^{i+}(\xi)U_{\xi}^{[+]\dagger} \ F^{j+}(0)U_{0}^{[+]} \right\rangle$$

$$\sim \quad \delta^{ij} \ xG^{(1)}(x,q_{\perp}) + \left(\frac{2q_{\perp}^{i}q_{\perp}^{j}}{q_{\perp}^{2}} - \delta^{ij}\right) \ xh^{(1)}(x,q_{\perp})$$

$$\delta^{ij} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (e_{x}^{i}e_{x}^{j} + e_{y}^{i}e_{y}^{j}) = \left[\varepsilon_{+}^{*i}\varepsilon_{+}^{j} + \varepsilon_{-}^{*i}\varepsilon_{-}^{j}\right]$$

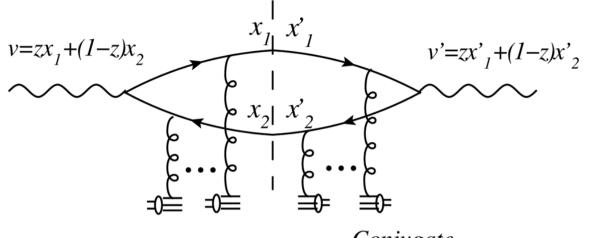
$$\left(\frac{2q_{\perp}^{i}q_{\perp}^{j}}{q_{\perp}^{2}} - \delta^{ij}\right) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (e_{x}^{i}e_{y}^{j} + e_{y}^{i}e_{x}^{j}) = -i\left[\varepsilon_{+}^{*i}\varepsilon_{-}^{j} - \varepsilon_{-}^{*i}\varepsilon_{+}^{j}\right]$$
(in frame where $q_{x} = q_{y}$)

compare to gluon helicity distribution

$$i\epsilon^{ij} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} = ie_x^i e_y^j - e_y^i e_x^j = \varepsilon_+^{*i} \varepsilon_+^j - \varepsilon_-^{*i} \varepsilon_-^j$$

Dijets in γ^*A :

(Dominguez, Marquet, Xiao, Yuan, PRD 2011)



Amplitude

Conjugate amplitude

Dijet total tr. momentum:

$$\vec{P} = \frac{1}{2} \left(\vec{k}_1 - \vec{k}_2 \right)$$
 or $\widetilde{P} = (1 - z)\vec{k}_1 - z\vec{k}_2$

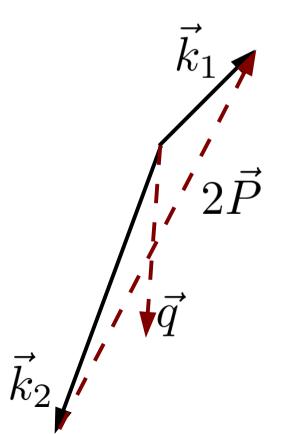
and net momentum (imbalance): $\vec{q} = \vec{k}_1 + \vec{k}_2$

"correlation limit" $P \gg q$ involves only 2-point functions / TMDs, no quadrupole

Azimuthal anisotropy

(Dominguez, Qiu, Xiao, Yuan, PRD 2012)

→ rotate net transverse momentum vector q around and measure amplitude of cos(2\$\phi\$) modulation $v_2(q, x) = \langle \cos 2\phi \rangle = \frac{1}{2} \frac{h_{\perp}^{(1)}(x, q)}{G^{(1)}(x, q)}$



The distribution of linearly polarized gluons

(in terms of L.C. gauge E-field correlator)

(Metz, Zhou: PRD 2011; Dominguez, Qiu, Xiao, Yuan, PRD 2012)

$$\begin{aligned} xG_{\perp}^{(1)}(x,k) &= -\frac{2}{\alpha_s L^2} \delta^{ij} \left\langle \operatorname{Tr} \left[E_i(\vec{k}) E_j(-\vec{k}) \right] \right\rangle \\ xh_{\perp}^{(1)}(x,k) &= \frac{2}{\alpha_s L^2} \left(\delta^{ij} - 2\frac{k^i k^j}{k^2} \right) \left\langle \operatorname{Tr} \left[E_i(\vec{k}) E_j(-\vec{k}) \right] \right\rangle \\ E_i(\vec{k}) &= \int \frac{d^2 y}{(2\pi)^2} e^{-i\vec{k}\cdot\vec{y}} U^{\dagger}(\vec{y}) \partial_i U(\vec{y}) \end{aligned}$$

We have computed these functions at small x by solving JIMWLK from MV model initial conditions

(A.D., T. Lappi, V. Skokov: 1508.04438)

Resummation of boost-invariant quantum fluctuations (JIMWLK):

classical ensemble at Y = log $x_0/x = 0$:

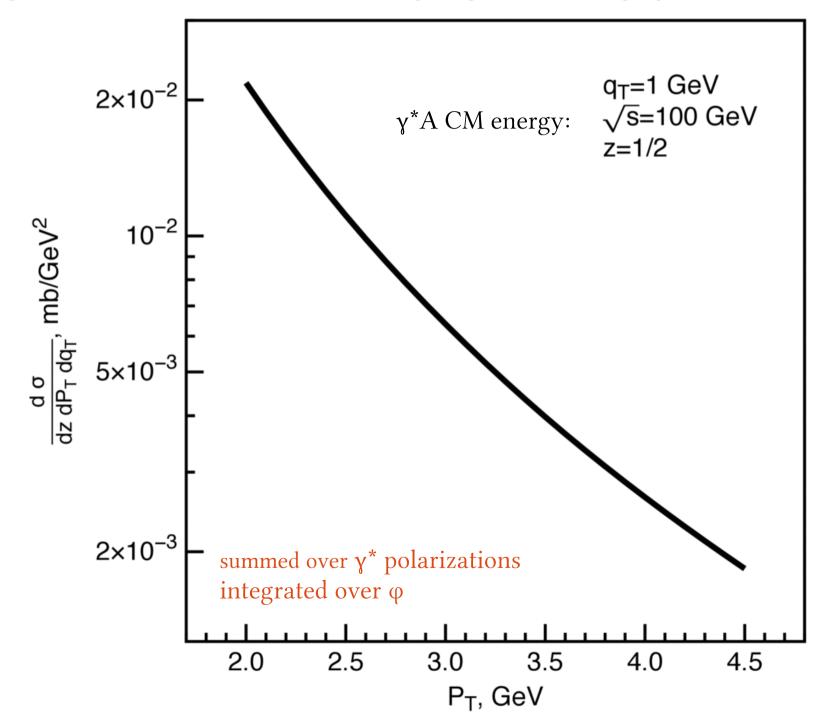
$$\begin{split} P[\rho] \sim e^{-S_{\rm cl}[\rho]} \ , \ S_{\rm MV} &= \int d^2 x_{\perp} \ dx^- \frac{1}{2\mu^2} \rho^a \rho^a \ , \\ V(x_{\perp}) = \mathcal{P} \exp ig^2 \int dx^- \frac{1}{\nabla_{\perp}^2} \rho(x_{\perp}) \end{split}$$

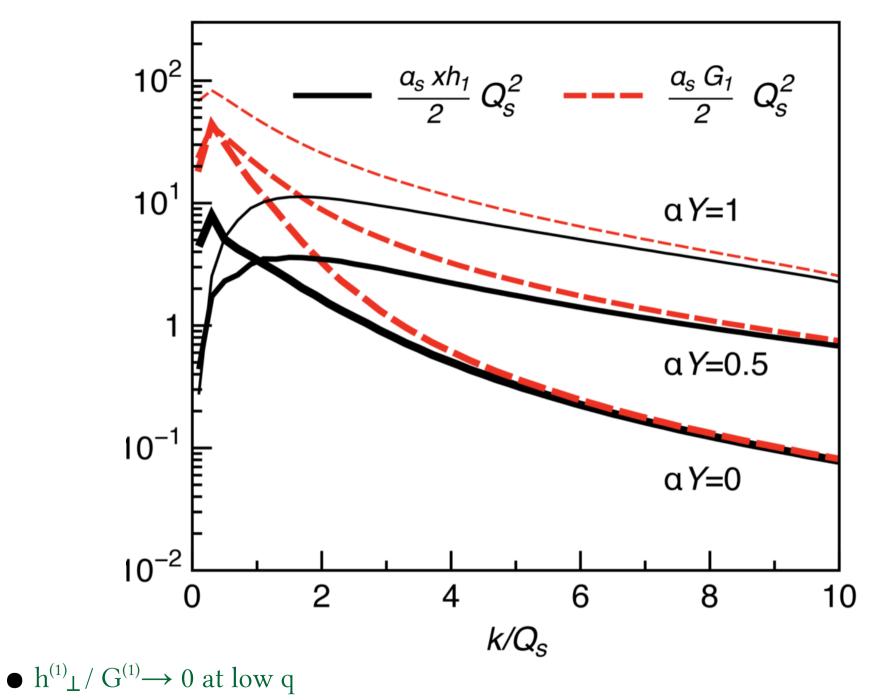
quantum evolution to Y>0: random walk in space of Wilson lines

$$\partial_Y V(x_{\perp}) = V(x_{\perp}) it^a \left\{ \int d^2 y_{\perp} \, \varepsilon_k^{ab}(x_{\perp}, y_{\perp}) \, \xi_k^b(y_{\perp}) + \sigma^a(x_{\perp}) \right\}$$
$$\varepsilon_k^{ab} = \left(\frac{\alpha_s}{\pi}\right)^{1/2} \, \frac{(x_{\perp} - y_{\perp})_k}{(x_{\perp} - y_{\perp})^2} \, \left[1 - U^{\dagger}(x_{\perp})U(y_{\perp})\right]^{ab}$$
$$\langle \xi_i^a(x_{\perp}) \, \xi_j^b(y_{\perp}) \rangle = \delta^{ab} \delta_{ij} \delta^{(2)}(x_{\perp} - y_{\perp})$$

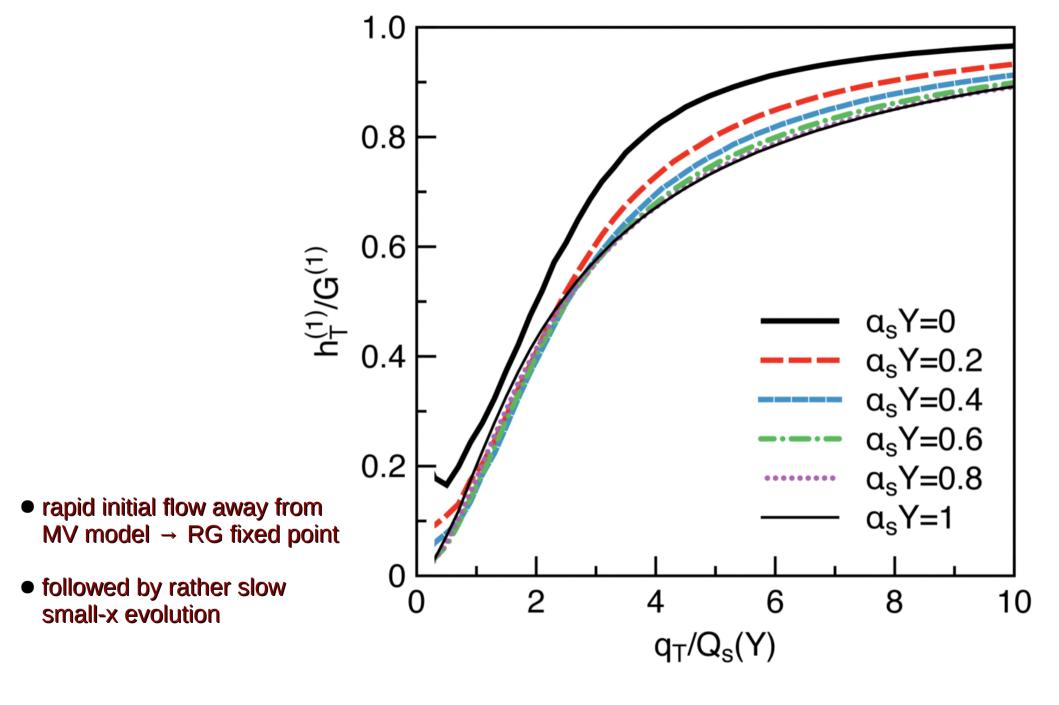
$$\sigma^a(x_{\perp}) = -i\frac{\alpha_s}{2\pi^2} \int d^2 z_{\perp} \frac{1}{(x_{\perp} - z_{\perp})^2} \operatorname{tr} \left(T^a U^{\dagger}(x_{\perp}) U(z_{\perp})\right)$$

Magnitude of cross-section (angular integr.)



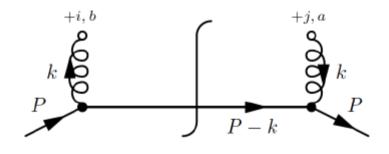


• but $h^{(1)} \perp / G^{(1)} \rightarrow 1$ at high transv. momentum: $d\sigma(\gamma^* \rightarrow q\overline{q}) \approx 0$ at $\Phi = \pm 90^\circ !$



Gluon TMDs in Quark-Target Model

(Meißner, AM, Goeke, 2007)



• Results for f_1^g and $h_1^{\perp g}$

$$\begin{split} f_1^g &= \frac{8\alpha_s}{3(2\pi)^2 x} \frac{(2(1-x)+x^2)\vec{k}_T^2 + x^4m^2}{(\vec{k}_T^2+m^2)^2} \\ h_1^{\perp g} &= \frac{32\alpha_s}{3(2\pi)^2 x} \frac{(1-x)\vec{k}_T^2}{(\vec{k}_T^2+m^2)^2} \end{split}$$

• Limit of small x

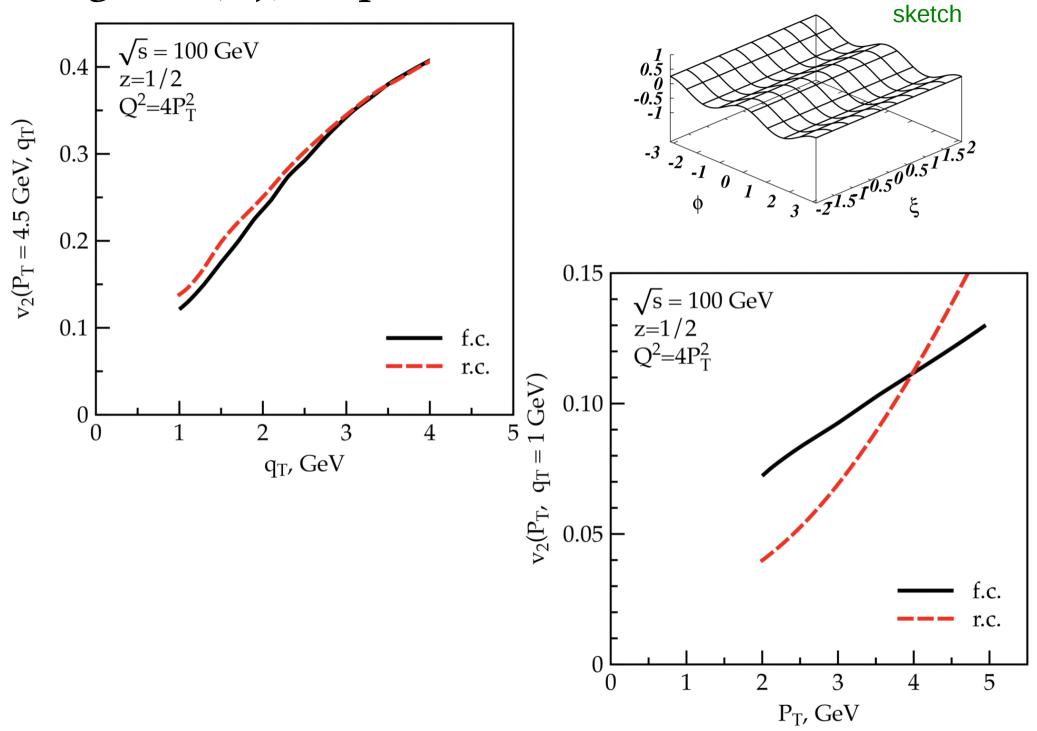
$$h_1^{\perp g}(x, \vec{k}_T^2) = 2 f_1^g(x, \vec{k}_T^2)$$

 \rightarrow saturation of positivity bound (Mulders, Rodrigues, 2000) \rightarrow 100 % polarization

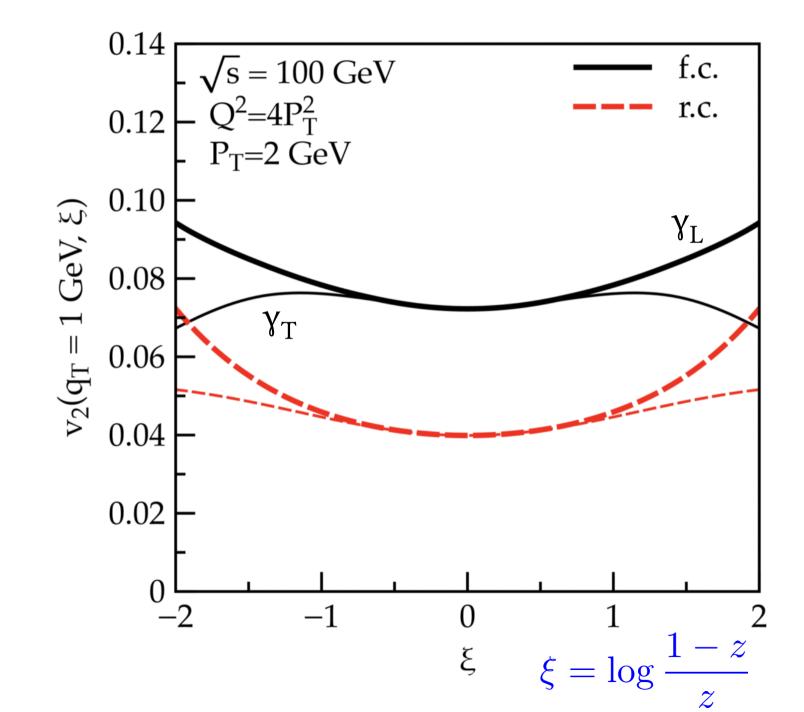
 Result for h₁^{⊥g} can also be red off from higher order pQCD calculation of processes (Nadolsky, Balazs, Berger, Yuan, 2007 / Catani, Grazzini, 2010 / ...)

Slide by A. Metz, POETIC V, Yale, New Haven 2014

Large cos(2\$\$) amplitudes...



Amplitude of $cos(2\Phi)$ is long range in rapidity



Summary:

- Dijet production in eA probes WW gluon distribution $(P_T * q_T \text{ limit})$
- WW distribution can be decomposed in two UGDs / TMDs

 isotropic gluon probability xG⁽¹⁾(x,q_T)
 ~cos(2Φ) anisotropic distribution xh⁽¹⁾(x,q_T) for orthogonal polarizations in amplitude vs. conjugate amplitude
- MV model gives large $\sim \cos(2\Phi)$ anisotropies at $q_T > Qs$
- JIMWLK small-x evolution: strong growth of both $xG^{(1)}(x,q_T)$ and $xh^{(1)}(x,q_T)$, their ratio drops slowly with Y
- this would result in "ridge"-like structure in terms of azimuthal angle of \vec{q}_\perp
- long-range in rapidity asymmetry $\xi = \log (1-z)/z$