

6TH International COnference on Physics Opportunities at an Eic POETIC VI, $7^{\mathrm{TH}}$ - $\mathrm{m}^{\mathrm{TH}}$ OF SEPTEMBER 2015, PALAISEAU, PARIS, FRANCE

## Accessing TMD PDFs and FFs

- SIDIS off polarized p, d, $n$ targets


HERMES
COMPASS JLab

$$
\sigma^{\ell p \rightarrow \ell^{\prime} h X} \sim q(x) \otimes \hat{\sigma}^{\gamma q \rightarrow q} \otimes D_{q}^{h}(z)
$$

future: eN colliders?

- hard polarised pp scattering


RHIC

- polarised Drell-Yan


COMPASS
RHIC

$$
\sigma^{h p \rightarrow \mu \mu} \sim \bar{q}_{h}\left(x_{1}\right) \otimes q_{p}\left(x_{2}\right) \otimes \hat{\sigma}^{\bar{q} q \rightarrow \mu \mu}(\hat{s})
$$

FNAL
future: FAIR, JPark, NICA

- $e^{+} e^{-} \rightarrow h_{1} h_{2}$


BaBar
Belle

$$
\sigma^{e^{+} e^{-} \rightarrow h_{1} h_{2}} \sim \hat{\sigma}^{l l \rightarrow \bar{q} q}(\hat{s}) \otimes D_{q}^{h_{1}}\left(z_{1}\right) \otimes D_{q}^{h_{2}}\left(z_{2}\right)
$$

Bes III

## SIDIS 1h x-section

$$
A_{U(L), T}^{w\left(\varphi_{h}, \varphi_{S}\right)}=\frac{F_{U(L), T}^{w\left(\varphi_{h}, \varphi_{S}\right)}}{F_{U U, T}+\varepsilon F_{U U, L}}
$$

$$
\begin{aligned}
& \varepsilon=\frac{1-y-\frac{1}{4} y^{2} \gamma^{2}}{1-y+\frac{1}{2} y^{2}+\frac{1}{4} y^{2} \gamma^{2}}, \gamma=\frac{2 x M}{Q} \\
& \frac{d \sigma}{d x d y d z d P_{h \perp}^{2} d \varphi_{h} d \psi}=\left[\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\right] \times\left(F_{U U, T}+\varepsilon F_{U U, L}\right) \times \\
& \left(1+\cos \varphi_{h} \times \sqrt{2 \varepsilon(1+\varepsilon)} A_{U U}^{\cos \phi_{h}}+\cos \left(2 \varphi_{h}\right) \times \varepsilon A_{U U}^{\cos \left(2 \varphi_{h}\right)}+\lambda \sin \varphi_{h} \times \sqrt{2 \varepsilon(1-\varepsilon)} A_{L U}^{\sin \varphi_{h}}+\right. \\
& S_{L}\left[\sin \varphi_{h} \times \sqrt{2 \varepsilon(1+\varepsilon)} A_{U L}^{\sin \varphi_{h}}+\sin \left(2 \varphi_{h}\right) \times \varepsilon A_{U L}^{\sin \left(2 \varphi_{h}\right)}\right]+ \\
& S_{L} \lambda\left[\sqrt{1-\varepsilon^{2}} A_{L L}+\cos \varphi_{h} \sqrt{2 \varepsilon(1-\varepsilon)} A_{L L}^{\cos \varphi_{h}}\right. \\
& \sin \varphi_{S} \times\left(\sqrt{2 \varepsilon(1+\varepsilon)} A_{U T}^{\sin \varphi_{S}}\right)+ \\
& \sin \left(\varphi_{h}-\varphi_{S}\right) \times\left(A_{U T}^{\sin \left(\varphi_{h}-\varphi_{S}\right)}\right)+ \\
& \mathbf{S}_{T} \quad \sin \left(\varphi_{h}+\varphi_{S}\right) \times\left(\varepsilon A_{U T}^{\sin \left(\varphi_{h}+\varphi_{S}\right)}\right)+ \\
& \sin \left(2 \varphi_{h}-\varphi_{S}\right) \times\left(\sqrt{2 \varepsilon(1+\varepsilon)} A_{U T}^{\sin \left(2 \varphi_{h}-\varphi_{S}\right)}\right)+ \\
& \sin \left(3 \varphi_{h}-\varphi_{S}\right) \times\left(\varepsilon A_{U T}^{\sin \left(3 \varphi_{h}-\varphi_{S}\right)}\right) \\
& {\left[\cos \varphi_{S} \times\left(\sqrt{2 \varepsilon(1-\varepsilon)} A_{L T}^{\cos \varphi_{S}}\right)+\right.} \\
& \mathbf{S}_{T} \lambda \cos \left(\varphi_{h}-\varphi_{S}\right) \times\left(\sqrt{\left(1-\varepsilon^{2}\right)} A_{U T}^{\cos \left(\varphi_{h}-\varphi_{S}\right)}\right)+ \\
& \cos \left(2 \varphi_{h}-\varphi_{S}\right) \times\left(\sqrt{2 \varepsilon(1-\varepsilon)} A_{U T}^{\cos \left(2 \varphi_{h}-\varphi_{S}\right)}\right)
\end{aligned}
$$

## The polarized Drell-Yan process in $\pi^{-} p$

$\frac{d \sigma}{d^{4} q d \Omega}=\left[\frac{\alpha^{2}}{F q^{2}}\left(F_{U U}^{1}+F_{U U}^{1}\right)\left(1+A_{U U}^{1} \cos ^{2} \theta\right)\right] \times$
$\binom{1+\cos \varphi \times D_{[\sin 2 \theta]} A_{U U}^{\cos \varphi}+\cos (2 \varphi) \times D_{\left[\sin ^{2} \theta\right]} A_{U U}^{\cos \left(2 \varphi_{h}\right)}+}{S_{L}\left[\sin \varphi \times D_{[\sin 2 \theta]} A_{U L}^{\sin \varphi}+\sin (2 \varphi) \times D_{\left[\sin ^{2} \theta\right]} A_{U L}^{\sin (2 \varphi)}\right]+}$

$$
\mathbf{S}_{T}\left[\begin{array}{l}
\sin \varphi_{S} \times\left(D_{[1]} A_{U T}^{\sin \varphi_{S}}+D_{\left[\cos ^{2} \theta\right]} \tilde{A}_{U T}^{\sin \varphi_{S}}\right)+ \\
\sin \left(\varphi-\varphi_{S}\right) \times\left(D_{[\sin 2 \theta]} A_{U T}^{\sin \left(\varphi-\varphi_{S}\right)}\right)+ \\
\sin \left(\varphi+\varphi_{S}\right) \times\left(D_{[\sin 2 \theta]} A_{U T}^{\sin \left(\varphi+\varphi_{S}\right)}\right)+ \\
\sin \left(2 \varphi-\varphi_{S}\right) \times\left(D_{\left[\sin ^{2} \theta\right]} A_{U T}^{\sin \left(2 \varphi-\varphi_{S}\right)}\right)+ \\
\sin \left(2 \varphi+\varphi_{S}\right) \times\left(D_{\left[\sin ^{2} \theta\right]} A_{U U}^{\sin \left(2 \varphi_{h}+\varphi_{S}\right)}\right)
\end{array}\right]+
$$

Collins-Soper frame (of virtual photon) $\theta, \varphi$ lepton plane wrt hadron plane target rest frame
$\varphi_{S}$ target transverse spin vector /virtual photon


## TMD Distribution Functions


(O) nucleon with transverse or longitudinal spin

parton with transverse or longitudinal spin parton transverse momentum
Proton goes out of the screen. Photon goes into the screen


$$
\mathbf{k}_{T}-\text { intrinsic transverse momentum of the quark }
$$

## LO content

## SIDIS

$$
\begin{array}{llll}
A_{U U}^{\cos \phi_{h}} & \propto \frac{1}{Q}\left(f_{1}^{q} \otimes D_{1 q}^{h}-h_{1}^{\perp q} \otimes H_{1 q}^{\perp h}+\cdots\right) & A_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)} & \propto g_{1 T}^{q} \otimes D_{1 q}^{h} \\
A_{U U}^{\cos 2 \phi_{h}} & \propto h_{1}^{\perp q} \otimes H_{1 q}^{\perp h}+\frac{1}{Q}\left(f_{1}^{q} \otimes D_{1 q}^{h}+\cdots\right) & A_{U T}^{\sin \phi_{S}} & \propto \frac{1}{Q}\left(h_{1}^{q} \otimes H_{1 q}^{\perp h}+f_{1 T}^{\perp q} \otimes D_{1 q}^{h}+\cdots\right) \\
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)} & \propto f_{1 T}^{\perp q} \otimes D_{1 q}^{h} & A_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)} & \propto \frac{1}{Q}\left(h_{1}^{\perp q} \otimes H_{1 q}^{\perp h}+f_{1 T}^{\perp q} \otimes D_{1 q}^{h}+\cdots\right) \\
A_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)} & \propto h_{1}^{q} \otimes H_{1 q}^{\perp h} & A_{L T}^{\cos \phi_{S}} & \propto \frac{1}{Q}\left(g_{1 T}^{q} \otimes D_{1 q}^{h}+\cdots\right) \\
A_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)} & \propto h_{1 T}^{\perp q} \otimes H_{1 q}^{\perp h} & A_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)} & \propto \frac{1}{Q}\left(g_{1 T}^{q} \otimes D_{1 q}^{h}+\cdots\right)
\end{array}
$$

$$
\begin{array}{lll}
A_{U}^{\cos 2 \varphi_{C S}} & \propto & h_{1, \pi}^{\perp q} \otimes h_{1, p}^{\perp q} \\
A_{T}^{\sin \left(2 \varphi_{C S}-\varphi_{S}\right)} & \propto & h_{1, \pi}^{\perp q} \otimes h_{1}^{q}
\end{array}
$$

$$
\begin{array}{lll}
A_{T}^{\sin \varphi_{C S}} & \propto & f_{1, \pi}^{q} \otimes f_{1 T, p}^{\perp q} \\
A_{T}^{\sin \left(2 \varphi_{C S}+\varphi_{S}\right)} & \propto & h_{1, \pi}^{\perp q} \otimes h_{1 T, p}^{\perp q}
\end{array}
$$

COmmon
Muon and Proton Apparatus for Structure and Spectroscopy

## Collaboration

~ 250 physicists from 24 Institutions of 13 Countries

- fixed target
- experiment
- at the CERN SPS
data taking: since 2002



## COMPASS Collaboration



Tel Aviv

- high energy beam
- large angular acceptance
- broad kinematical range
two stages sppełprGaFieter
Large Angletspeshotomer2GBNIC) Small Angle Spectrometer ${ }^{\mathbf{K}}(\mathrm{Sip} 2$ )


## COMPASS




## Space resolution



## the polarized target system (>2005)

${ }^{3} \mathrm{He}-{ }^{4} \mathrm{He}$ dilution refrigerator ( $\mathrm{T} \sim 50 \mathrm{mK}$ )


opposite polarisation

|  | d (6LiD) | p ( $\mathrm{NH}_{3}$ ) |
| :---: | :---: | :---: |
| polarization | 50\% | 90\% |
| dilution factor | 40\% | 16\% |

## Few facts:

- Transverse Spin and Momentum effects were put under scrutiny by the COMPASS Proposal in 1996, starting with transversity via the Collins mechanism

We propose to measure in semi-inclusive DIS on transversely polarised proton and deuterium targets the transverse spin distribution functions $\Delta_{T} q(x)=q_{\uparrow}(x)-q_{\downarrow}(x)$, where $\uparrow(\downarrow)$ indicates a quark polarisation parallel (antiparallel) to the transverse polarisation of the nucleon. Hadron identification allows to tag the quark flavour.

As suggested by J. Collins [71], the fragmentation function for transversely polarised quarks should exhibit a specific azimuthal dependence. The transversely polarised quark
fragmentation function $\mathcal{D}_{q}^{h}$ should be built up from two pieces, a spin-independent part $D_{q}^{h}$, and a spin-dependent part $\Delta D_{q}^{h}$ :

$$
\begin{equation*}
\mathcal{D}_{q}^{h}\left(z, \vec{p}_{q}^{h}\right)=D_{q}^{h}\left(z, p_{q}^{h}\right)+\Delta D_{q}^{h}\left(z, p_{q}^{h}\right) \cdot \sin \left(\phi_{h}-\phi_{S^{\prime}}\right), \tag{3.23}
\end{equation*}
$$

- The measurement of the Sivers PDF was added to the program soon after ... the other TMD with the developments over the years
- Measurements started in 2002 by HERMES (p) and COMPASS (d)
- This field has grown considerably in the last years and comes one of high priority measurements for the JLab12 program


## Unpolarized SIDIS

- The cross-section dependence from $p_{T}^{h}$ results from:
- intrinsic $k_{\perp}$ of the quarks
- $p_{\perp}$ generated in the quark fragmentation
- A Gaussian ansatz for $k_{\perp}$ and $p_{\perp}$ leads to

$$
\left\langle p_{T, h}^{2}\right\rangle=z^{2}\left\langle k_{\perp}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle
$$



The azimuthal modulations in the unpolarized cross-sections comes from:

- Intrinsic $k_{\perp}$ of the quarks
- The Boer-Mulders PDF

Difficult measurements were one has to correct for the apparatus acceptance

## Unpolarized SIDIS



## Boer-Mulders in $\cos 2 \phi$



$$
\begin{aligned}
& F_{U U}^{\cos 2 \phi}\left(x, z, P_{h T}^{2} ; Q^{2}\right) \\
& =-x \sum_{q} e_{q}^{2} \int d^{2} \vec{k}_{\perp} d^{2} \vec{p}_{\perp} \frac{2\left(\hat{h} \cdot \vec{k}_{\perp}\right)\left(\hat{h} \cdot \vec{k}_{\perp}\right)-\vec{k}_{\perp} \cdot \vec{p}_{\perp}}{M m_{h}} h_{1}^{\perp, q}\left(x, k_{\perp}^{2} ; Q^{2}\right) H_{1}^{\perp, q \rightarrow h}\left(z, p_{\perp}^{2} ; Q^{2}\right)
\end{aligned}
$$

## Boer-Mulders in $\cos 2 \phi$




## Transversity

is chiral-odd: observable effects are given only by the product of $h_{1}^{q}(x)$ and an other chiral-odd function can be measured in SIDIS on a transversely polarised target via "quark polarimetry"

$$
\begin{aligned}
& \ell \mathbf{N}^{\uparrow} \rightarrow \ell^{\prime} \mathrm{h} \mathbf{X} \\
& \ell \mathbf{N}^{\uparrow} \rightarrow \ell^{\prime} \mathrm{h} \mathbf{h X} \\
& \ell \mathbf{N}^{\uparrow} \rightarrow \ell^{\prime} \wedge \mathbf{X}
\end{aligned}
$$

## Transversity from Collins SSA and Collins FF

$$
A_{U T}^{\sin \left(\phi_{h}+\phi_{S}-\pi\right), h}=\frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(k_{\perp}\right) \otimes H_{1}^{\perp q \rightarrow h}\left(p_{\perp}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q} \otimes D_{1}^{q \rightarrow h}}
$$



$$
A_{12}^{h_{1} h_{2}}=\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \frac{\sum_{q} e_{q}^{2} H_{1}^{\perp(1 / 2) q \rightarrow h_{1 / 2}} H_{1}^{\perp(1 / 2) \bar{q} \rightarrow h_{1 / 2}}}{\sum_{q} e_{q}^{2} D_{1}^{q \rightarrow h_{1 / 2}} D_{1}^{\bar{q} \rightarrow h_{1 / 2}}}
$$

Collins effect:
a quark with an upward (downward) polarization, perpendicular to the motion, prefers to emit the leading meson to the left (right) side with respect to the quark direction

## Collins asymmetry on proton

## charged pions

## COMPASS and HERMES results



## Collins asymmetry on proton. Multidimensional

First extraction of TSAs within a Multi-D $\left(x: Q^{2}: z: \boldsymbol{p}_{T}\right)$ approach


## Collins asymmetry fits

M. Anselmino et al., arXiv:1303.3822
fit to HERMES p, COMPASS p and d, Belle $e^{+} e^{-}$data


## Transversity from Collins

Combined analyses of HERMES, COMPASS and BELLE fragm.fct. data


Anselmino et al. arXiv: 1303.3822

## $2 h$ asymmetries on $p$



## Transversity from $2 h p$ and $d$ results


use the same coefficients evaluated by A. Bacchetta et al. from Belle data [JHEP1303 (2013)119]



Torino


## Hadron correlations



Interplay between Collins and IFF asymmetries

common hadron sample for Collins and 2 h analysis



## Asymmetries for $x>0.032$ vs $\Delta \phi=\phi_{h^{+}}-\phi_{h^{-}}$


ratio of the integrals compatible with $4 / \pi$

## Sivers Asymmetry

Sivers: correlates nucleon spin \& quark transverse momentum $\mathrm{k}_{\mathrm{I}} /$ T-ODD at LO:

$$
A_{S i v}=\frac{\sum_{q} e_{q}^{2} f_{1 T q}^{\perp} \otimes D_{q}^{h}}{\sum_{q} e_{q}^{2} q \otimes D_{q}^{h}}
$$

$$
\boldsymbol{\mu} \boldsymbol{p}^{\uparrow} \rightarrow \boldsymbol{\mu} \mathrm{Xh}^{ \pm}
$$

The Sivers PDF

| 1992 | Sivers proposes $f_{1 T}^{\perp}$ |
| :---: | :--- |
| 1993 | J. Collins proofs $f_{1 T}^{\perp}=0$ for T invariance |
| 2002 | S. Brodsky, Hwang and Schmidt demonstrate that $f_{1}$ <br> may be $\neq 0$ due to FSI |
| 2002 | J. Collins shows that $\left(f_{1 T}^{\perp}\right)_{D Y}=-\left(f_{1 T}^{\perp}\right)_{\text {SIDIS }}$ |
| 2004 | HERMES on p: $A_{S i v}^{\pi^{+} \neq 0 \text { and } A_{S i v}^{\pi^{-}}=0}$ |
| 2004 | COMPASS on d: $A_{S i v}^{\pi^{+}}=0$ and $A_{\text {Siv }}^{\pi^{-}}=0$ |
| 2008 | COMPASS on p: $A_{\text {Siv }}^{\pi^{+}} \neq 0$ and $A_{\text {Siv }}^{\pi^{-}}=0$ |

## Sivers asymmetry on $p$

## charged pions (and kaons), HERMES and COMPASS



$\pi=$
COMPASS
$\circ$
nermes

## Sivers asymmetry on proton

## charged hadrons, 2010 data - $\mathbf{Q}^{2}$ evolution

 comparison withS. M. Aybat, A. Prokudin and T. C. Rogers calculations PRL 108 (2012) 242003


No TMD
evolution
$\mathrm{xf}_{1 T}^{\mathrm{I}^{(1)}(\mathrm{x})}$

with TMD
evolution

## Sivers asymmetry on proton. Multidimensional

First ever extraction of TSAs within such a Multi-D ( $\left.x: Q^{2}: z: p_{T}\right)$ approach


## Sivers asymmetry on deuteron and proton for Gluons






# NEAR FUTURE: <br> - polarized DY <br> - unpolarized SIDIS <br> -DVCS 

## Test of universality

T-odd character of the Boer-Mulders and Sivers functions
In order not vanish by time-reversal invariance T-odd SSA require an interaction phase generated by a rescattering of the struck parton in the field of the hadron remnant

these functions are process dependent, they change sign to provide the gauge invariance

$$
h_{1}^{\perp}(\text { SIDIS })=-h_{1}^{\perp}(D Y)
$$

Boer-Mulders
Sivers

$$
f_{1} \stackrel{\perp}{T}(S I D I S)=-f_{1} \stackrel{\perp}{T}(D Y)
$$

## $\mathbf{Q}^{2}$ vs x phase space at COMPASS




The phase spaces of the two processes overlap at COMPASS
$\rightarrow$ Consistent extraction of TMD DPFs in the same region

## Sivers in DY range



## Hadron beam: Drell-Yan setup




## Upgrades of the COMPASS spectrometer

New equipements: $>2.5 \mathrm{~m}$ LH2 target $>4 \mathrm{~m}$ ToF Barrel CAMERA >ECALO



## GPDs with Hard Exclusive $\gamma$ and Meson Production

COMPASS-II 2016-17: with LH target + RPD (phase 1) $\mu^{\downarrow \downarrow}, \mu^{-\uparrow} 160 \mathrm{GeV}$
$\checkmark$ the $t$-slope of the DVCS and HEMP cross section
$\rightarrow$ transverse distribution of partons
$\checkmark$ the Beam Charge and Spin Sum and Difference
$\rightarrow \mathcal{R e} T^{D V C S}$ and $\mathfrak{I m} T^{D V C S}$ for the GPD $H$ determination
$\checkmark$ Vector Meson $\rho^{0}, \rho^{+}, \omega, \Phi$
$\checkmark$ Pseudo-saclar $\pi^{0}$
(Using the 2007-10 data: transv. polarized $\mathrm{NH}_{3}$ target without RPD)

- 2014-2015: Transversely polarized DY - to check pseudo-universality $\left(\left[f_{1 T}^{\perp}\left(x, Q^{2}\right)\right]_{D Y} \approx-\left[f_{1 T}^{\perp}\left(x, Q^{2}\right)\right]_{\text {SIDIS }}\right)$
- 2016-2017: Unpolarised DVCS/HVMP
- (B slope and GPD H)
- and unpolarised SIDIS on $\mathrm{LH}_{2}$
- $d n^{h} /\left(d N^{\mu} d z d p_{T}^{2}\right)$ i.e. $p_{T}$ dependent multiplicities, and $h_{1 T}^{\perp}$ BoerMulders TMD PDF
- 2018 to be discussed having in hand the performances in the previous years


## More in the FUTURE:

|  | physics item | key aspects of the measurement |
| :---: | :---: | :---: |
| Hadron | glueballs | 280 GeV beam, higher intensity, $\pi, K$ and $\bar{p}$ separation |
| GPD | E | transversely polarized proton target |
| SIDIS | $h_{1}^{d}$ with same accuracy as $h_{1}^{u}$ <br> $f_{1}^{\perp}$ evolution | transversely polarized deuteron target <br> 100 GeV and transversely polarized proton target |
| DY | universality of TMD PDFs <br> flavor separation <br> test of the Lam-Tung relation <br> EMC effect in DY | higher statistics with transversely polarized proton target <br> transversely polarized deuteron target <br> hydrogen target |
| different nuclear targets |  |  |

## For the next 10 years

- before any collider is available,
- and complementary to Jlab $12 \mathbf{G e V}$

COMPASS@CERN can be a major player in QCD physics using its unique high energy both:

- hadron beam and
- positive and negative muon beams Looking even further...a polarized leptonnucleon collider well be a mandatory tool


## Thank You




## Chromodynamic lensing

Use SIDIS Sivers asymmetry data to constrain shape Use anomalous magnetic moments to constrain integral
$f_{1 T}^{\perp(0) q}\left(x, Q_{L}^{2}\right)=-L(x) E^{q}\left(x, 0,0, Q_{L}^{2}\right)$
$L(x)$ - Lensing function (from Burkart) $E^{q}-G P D$ related to quark OAM
$n$-th moment of a TMD with respect to $k_{\perp}$

$$
f_{1 T}^{\perp(n) q}\left(x, Q^{2}\right)=\int d^{2} k_{\perp}\left(\frac{k_{\perp}^{2}}{2 M^{2}}\right)^{n} f_{1 T}^{\perp(0) q}\left(x, k_{\perp}^{2}, Q_{L}^{2}\right)
$$



## Kinematic coverage



## Kinematic coverage



$0.004<x<0.3,25<W^{2}<200 \mathrm{GeV}^{2}$ $0.023<x<0.4,10<W^{2}<50 \mathrm{GeV}^{2}$ $0.14<x<0.5,4<W^{2}<10 \mathrm{GeV}^{2}$

## Other SSAs - proton data

| $F_{L T}^{\cos \left(\phi_{h}-\phi_{s}\right)}$ | $\propto g_{1 T}^{q} \otimes D_{1 q}^{h}$ |
| :--- | :--- |
| $F_{U T}^{\sin \left(3 \phi_{h}-\phi_{s}\right)}$ | $\propto h_{1 T}^{\perp q} \otimes H_{1 q}^{\perp h}$ |

two twist-2 asymmetries can be interpreted in QCD parton



## Other Transverse Target spin asymmetries on $p$

$$
\begin{aligned}
& A_{L T}^{\cos \left(\varphi_{n}-\varphi_{2}\right)} \\
& \text { Contive hadrons } \\
& A_{L T}^{\cos \left(\phi_{n}-\phi_{s}\right)} \propto g_{1 T}^{q} \otimes D_{1 q}^{h}, \quad \text { "Worm Gear" PDF } g_{1 T}^{q} \\
& \rightarrow--\odot
\end{aligned}
$$

## Other Transverse Target spin asymmetries on $p$




## Collins asymmetry on proton $x>0.032$ region

## charged kaons COMPASS and HERMES results



## Is correlation having an impact?



## Unpolarised Azimuthal Modulation

Huge azimuthal $\phi$ modulation on unpolrised target measured by EMC in 1987

$d \sigma^{\ell p \rightarrow \ell^{\prime} h x}=\sum_{q} f_{q}\left(x, Q^{2}\right) \otimes d \sigma^{\ell q \rightarrow \ell^{\prime} q} \otimes D_{q}^{h}\left(z, Q^{2}\right)$ where, in collinear PM $d \sigma^{\ell q \rightarrow \ell^{\prime} q}=\hat{s}^{2}+$ $\hat{u}^{2}=x\left[1+(1-y)^{2}\right]$, i.e. no $\phi_{h}$ dependence. Taking into account the parton transverse momentum in the kinematics leads to:
$\hat{s}=s x\left[1-\frac{2 k_{\perp}}{Q} \sqrt{1-y} \cos \phi_{h}\right]+\sigma\left(\frac{k_{\perp}^{2}}{Q}\right) \hat{u}=s x(1-y)\left[1-\frac{2 k_{\perp}}{Q \sqrt{1-y}} \cos \phi_{h}\right]+\sigma\left(\frac{k_{\perp}^{2}}{Q}\right)$
Resulting in the $\cos \phi_{h}$ and $\cos 2 \phi_{h}$ modulations observed in the azimuthal distributions

SIDIS access to TMDs

$$
\sigma\left(\ell p \rightarrow \ell^{\prime} h X\right) \sim q(x) \otimes \tilde{\sigma}^{\gamma q \rightarrow q} \otimes D_{\ell}^{h}(z)
$$




T odd chiral odd

| $\frac{\stackrel{C}{0}}{\stackrel{1}{\sigma}}$ | Hadron polarization |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | U | T | L |
| $\stackrel{N}{N}$ | U | $D_{1}$ | $D_{1 T}^{\perp}$ |  |
| 응 | T | $H_{1}^{\perp}$ | $H_{1}, H_{1 T}^{\perp}$ | $H_{1 T}^{\perp}$ |
| $\frac{4}{\pi}$ | L |  | $G_{1 T}$ | $G_{1 L}$ |

Factorisation (Collins \& Soper, Ji, Ma, Yuan, Qiu \& Vogelsang, Collins \& Metz...)

## Collins asymmetry on $e^{+} e^{-}$





$$
X\left(\mathrm{p}_{\mathrm{tr}} \mathrm{p}_{\mathrm{t}}\right)=[0 ., 0.25][0,0.025]
$$

$$
\left(\mathrm{p}_{\mathrm{t} \mid}, \mathrm{p}_{\mathrm{t}}\right)=[0,0.25][0.25,0.5]
$$

$\triangle$
$\left(\mathrm{p}_{\mathrm{t} 1} \mathrm{p}_{\mathrm{p}}\right)=[0,0.25][>0.5]$
$\boldsymbol{\nabla}\left(\mathrm{p}_{\mathrm{t} 1} \mathrm{p}_{\mathrm{r}}\right)=[0.25,0.5][0 ., 0.25] \bigcirc\left(\mathrm{p}_{\mathrm{t} 1} \mathrm{p}_{\mathrm{r}}\right)=[0.25,0.5][0.25,0.5] \boldsymbol{\Delta}\left(\mathrm{p}_{\mathrm{tr}} . \mathrm{p}_{\mathrm{r}}\right)=[0.25,0.5][>0.5]$
$\square\left(\mathrm{p}_{\mathrm{t1}} \mathrm{p}_{\mathrm{r}}\right)=[>0.5][0,0.25]$
§ $\left(p_{t 1} p_{12}\right)=[>0.5][0.25,0.5]$
$\left(\mathrm{p}_{\mathrm{t} 1} \mathrm{p}_{\mathrm{t}}\right)=[>0.5][>0.5]$

## Collins asymmetry on $e^{+} e^{-}$

$\pi \pi=>$ non-zero asymmetries, increase with $z_{1}, z_{2}$
$\pi \mathrm{K}=>$ asymmetries compatible, with zero
$K K=>$ non-zero asymmetries, increase with $z_{1}, z_{2}$


$B E L L E$

## IFF asymmetry on $e^{+} e^{-}$



Paris, September $7^{\text {th }}-11^{\text {th }} 2015$
POETIC VI
$\frac{\text { SIDIS } 1 \text { h } X}{d x d y d z d P_{h \perp}^{2} d \varphi_{h} d \varphi_{S}}=\left[\frac{\text { SeCtion }}{1-\sin ^{2} \theta \sin ^{2} \varphi_{S}}\right]\left[\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\right] \times\left(F_{U U, T}+\varepsilon F_{U U, L}\right) \times$
$\left(1+\cos \varphi_{h} \times \sqrt{2 \varepsilon(1+\varepsilon)} A_{U U}^{\cos \phi_{h}}+\cos \left(2 \varphi_{h}\right) \times \varepsilon A_{U U}^{\cos \left(2 \varphi_{h}\right)}+\lambda \sin \varphi_{h} \times \sqrt{2 \varepsilon(1-\varepsilon)} A_{L U}^{\sin \varphi_{h}}+\right.$

$$
\left[\sin \varphi_{S} \times\left(\cos \theta \sqrt{2 \varepsilon(1+\varepsilon)} A_{U T}^{\sin \varphi_{S}}\right)+\right.
$$

$$
\sin \left(\varphi_{h}-\varphi_{S}\right) \times\left(\cos \theta A_{U T}^{\sin \left(\varphi_{h}-\varphi_{S}\right)}+\frac{1}{2} \sin \theta \sqrt{2 \varepsilon(1+\varepsilon)} A_{U L}^{\sin 2 \varphi_{h}}\right)+
$$

$$
\frac{\mathbf{P}_{T}}{\sqrt{1-\sin ^{2} \theta \sin ^{2} \varphi_{S}}}
$$

$$
\sin \left(\varphi_{h}+\varphi_{S}\right) \times\left(\cos \theta \varepsilon A_{U T}^{\sin \left(\varphi_{h}+\varphi_{S}\right)}+\frac{1}{2} \sin \theta \sqrt{2 \varepsilon(1+\varepsilon)} A_{U L}^{\sin 2 \varphi_{h}}\right)+
$$

$$
\sin \left(2 \varphi_{h}-\varphi_{S}\right) \times\left(\cos \theta \sqrt{2 \varepsilon(1+\varepsilon)} A_{U T}^{\sin \left(2 \varphi_{h}-\varphi_{S}\right)}+\frac{1}{2} \sin \theta \varepsilon A_{U L}^{\sin 2 \varphi_{h}}\right)+
$$

$$
\left.\sin \left(3 \varphi_{h}-\varphi_{S}\right) \times\left(\cos \theta \varepsilon A_{U T}^{\sin \left(3 \varphi_{h}-\varphi_{S}\right)}\right)+\sin \left(2 \varphi_{h}+\varphi_{S}\right) \times\left(\frac{1}{2} \sin \theta \varepsilon A_{U L}^{\sin 2 \varphi_{h}}\right)+\right]
$$

$$
\cos \varphi_{S} \times\left(\cos \theta \sqrt{2 \varepsilon(1-\varepsilon)} A_{L T}^{\cos \varphi_{S}}+\sin \theta \sqrt{\left(1-\varepsilon^{2}\right)} A_{L L}\right)+
$$

$$
\frac{\mathbf{P}_{T} \lambda}{\sqrt{1-\sin ^{2} \theta \sin ^{2} \varphi_{S}}} \left\lvert\, \cos \left(\varphi_{h}-\varphi_{S}\right) \times\left(\cos \theta \sqrt{\left(1-\varepsilon^{2}\right)} A_{U T}^{\cos \left(\varphi_{h}-\varphi_{S}\right)}+\frac{1}{2} \sin \theta \sqrt{2 \varepsilon(1-\varepsilon)} A_{L L}^{\cos \varphi_{h}}\right)+\right.
$$

$$
\left.\left[\cos \left(2 \varphi_{h}-\varphi_{S}\right) \times\left(\cos \theta \sqrt{2 \varepsilon(1-\varepsilon)} A_{U T}^{\cos \left(2 \varphi_{h}-\varphi_{S}\right)}\right)+\cos \left(\varphi_{h}+\varphi_{S}\right) \times\left(\frac{1}{2} \sin \theta \sqrt{2 \varepsilon(1-\varepsilon)} A_{L L}^{\cos \varphi_{h}}\right)\right]\right)
$$

## Longitudinal modulations



## The asymmetries

The asymmetries are:

$$
A_{U(L), T}^{w\left(\phi_{h}, \phi_{S}\right)}\left(x, z, p_{T} ; Q^{2}\right)=\frac{F_{U(L), T}^{w\left(\phi_{h}, \phi_{S}\right)}}{F_{U U, T}+\varepsilon F_{U U, L}}
$$

When we measure on 1D

$$
A_{U(L), T}^{w\left(\phi_{h}, \phi_{S}\right)}(x)=\frac{\int_{Q_{\min }^{2}}^{Q_{\text {max }}^{2}} d Q^{2} \int_{z_{\text {min }}}^{z_{\text {max }}} d z \int_{p_{T, \text { min }}}^{p_{T, \text { max }}} d^{2} \vec{p}_{T} F_{U(L), T}^{w\left(\phi_{h}, \phi_{S}\right)}}{\int_{Q_{\text {min }}^{2}}^{Q_{\text {max }}} d Q^{2} \int_{z_{\text {min }}}^{z_{\text {max }}} d z \int_{p_{T, \text { min }}}^{p_{T, \text { max }}} d^{2} \vec{p}_{T}\left(F_{U U, T}+\varepsilon F_{U U, L}\right)}
$$

## Ed. Berger criterion (separation of CFR \&TFR)

## The typical hadronic correlation length in rapidity is

$$
\Delta y_{h} \simeq 2
$$


if the dynamics of quark fragmentation is to be studied independently of "contamination" from target fragmentation, it is necessary that $Y \gtrsim 4$, or, equivalently, that

$$
\begin{equation*}
W_{X}=\left[\frac{Q^{2}(1-x)}{x}\right]^{1 / 2} \gtrsim 7.4 \mathrm{GeV} \tag{17}
\end{equation*}
$$

If the inequality Eq. (17) is satisfied, it should be possible to measure fragmentation functions $D\left(z, Q^{2}\right)$ over essentially the full range of $z, 0<z<1$. Somewhat smaller values of $W_{X}$ may be adequate if attention is restricted to the large $z$ region. As $Y$ is increased above 2, or

$$
\begin{equation*}
W_{X} \gtrsim 3 \mathrm{GeV} \tag{18}
\end{equation*}
$$

the quark and target fragmentation regions begin to separate. As long as $Y \gtrsim 2$, the hadrons with the largest values of $z$ are most likely quark fragments. Data ${ }^{14}$ from $e^{+} e^{-} \rightarrow$ $h X$ show that a distinct function $D(z)$ may have developed for $z \gtrsim 0.5$ at $W=3 \mathrm{GeV}$. The region extends to $z \simeq 0.2$ for $W=4.8 \mathrm{GeV}$, and to $z \simeq 0.1$ for $W=7.4 \mathrm{GeV}$. For $z>0.3$, fragmentation functions have been obtained from data ${ }^{15}$ on $e p \rightarrow e^{\prime} \pi^{ \pm} X$ at $E=11.5 \mathrm{GeV}$, with $3<W_{X}<4 \mathrm{GeV}$.

## Statistical correlations


charged pions also available for charged hadrons charged kaons
have to be taken into account



## Mean values



## Collins asymmetry on deuteron



The Di-hadron Fragm. Funct. mechanism
Collins, Heppelman, Ladinsky, NP B420 (94)


$$
\begin{aligned}
\mathbf{P}_{h} \times \mathbf{R}_{T} \cdot \mathbf{S}_{T}^{\prime} & \propto \cos \left(\phi_{S_{T}^{\prime}}-\left(\phi_{R_{T}}+\pi / 2\right)\right) \\
& =\cos \left(\pi-\phi_{S}-\left(\phi_{R_{T}}+\pi / 2\right)\right) \\
& =\sin \left(\phi_{R_{T}}+\phi_{S}\right)
\end{aligned}
$$

azimuthal orientation of hadron pair = spin analyzer of fragmenting quark single-spin asymmetry $\rightarrow$ product

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)} \propto h_{1}^{q}(x) H_{1}^{\varangle q \rightarrow h_{1} h_{2}}\left(z, R_{T}^{2}\right)
$$

Radici, Jakob, Bianconi PR D65 (02); Bacchetta, Radici, PR D67 (03) collinear factorization evolution equations understood

## 2 h asymmetries on d



$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}-\pi\right)}=\frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{q \rightarrow h_{1} h_{2}}^{\nless}\left(z, \mathcal{M}_{h_{1} h_{2}}^{2}\right)}{\sum_{q} e_{q}^{2} q(x) D_{q}^{h_{1} h_{2}}\left(z, \mathcal{M}_{h_{1} h_{2}}^{2}\right)}
$$

## Sivers asymmetry on deuteron



