Studies of the nucleon structure in back-to-back SIDIS

Harut Avakian (JLab)

POETIC VI

September 7th-11th 2015 Palaiseau, France

6th International Conference on Physics Opportunities at an Electron-Ion Collider

- Introdction
- Accessing spin-orbit correlations in di-hadron production
- Back to back production of hadrons in SIDIS
 - first measurements with CLAS
 - 2. future measurements at EIC
- Summary

QCD: from testing to understanding

production in SIDIS provides access to correlations inaccessible in simple SIDIS (BEC,dihadron fragmentation, correlations of target and current regions, entanglement....)

Hadron production in hard scattering

Correlations of the spin of the target or/and the momentum and the spin of quarks, combined with final state interactions define the azimuthal distributions of produced particles

Dihadron production at JLAB12

Use the clasDIS (LUND based) generator + FASTMC to study hh pairs X_F - momentum

Dihadron sample defined by SIDIS cuts + $x_F>0$ (CFR) and $x_F<0$ (TFR) for both hadrons

Wide angular coverage is important

Dihadron asymmetries from CLAS

$$\frac{F_{LL}}{F_{UU}} \sim \frac{g_1(x)}{f_1(x)}$$

$$F_{UU,T} = x f_1^q(x) D_1^q(z, \cos \theta, M_h) f_1(x)$$

 $F_{LL} = x g_1^q(x) D_1^q(z, \cos \theta, M_h)$

$$D_1^{u \to \pi + \pi -} \approx D_1^{d \to \pi + \pi -}$$

Dihadron double spin asymmetry measured at 6 GeV consistent with DIS

Accessing transversity in dihadron production at JLab

$$A_{UT}(\phi_R, \theta) = \frac{1}{fP_t} \frac{(N^+ - N^-)}{(N^+ + N^-)}$$

Bacchetta, Radici

$$\frac{H_{1,sp}^{\triangleleft,u}(z,M_h)[4h_1^u-h_1^d(x)]}{D_1^u(4f_1^u+f_1^d)}$$

H. Avakian, POETIC, Sep 8

 $D_1^u(z, M_{\pi\pi}) \left(4f_1^d(x) + f_1^u(x) \right)$

Sivers effect in the target fragmentation

Wide coverage of CLAS12 and EIC will allow studies of kinematic dependences of the Sivers effect, both in current and target fragmentation regions

Target fragmentation region: Λ production

probability to produce the hadron h when a quark q is struck in a proton target

Measurements of fracture functions opens a new avenue in studies of the structure of the nucleon in general and correlations between current and target fragmentation in particular

$$A_{LUL}^{TFR} = hS_{\parallel} \frac{y \left(1 - \frac{y}{2}\right) \sum_{a} e_{a}^{2} \Delta M^{L}}{\left(1 - y + \frac{y^{2}}{2}\right) \sum_{a} e_{a}^{2} M}$$

$$D^{LL} = \frac{\sum_a e_a^2 \Delta M^L}{\sum_a e_a^2 M}$$

polarization transfer coefficient

- •Large acceptance of CLAS12 and EIC provide a unique possibility to study the nucleon structure in target fragmentation region
- •First measurements already performed using the CLAS data at 6 GeV.

Back-to-back hadron (b2b) production in SIDIS

M. Anselmino, V. Barone and A. Kotzinian, Physics Letters B 713 (2012)

$$\mathcal{F}_{LU}^{\sin(\phi_1 - \phi_2)} = \frac{|\vec{P}_{1\perp}\vec{P}_{2\perp}|}{m_N m_2} \mathcal{C}[w_5 M]$$

Leading Twist

	U	L	T
U	M	$M_L^{\perp,h}$	M_T^h, M_T^{\perp}
L	$\Delta M^{\perp,h}$	ΔM_L	$\Delta M_T^h, \Delta M_T^\perp$
T	$\Delta_T M_T^h, \Delta_T M_T^\perp$	$\Delta_T M_L^h$	$\Delta_T M_T, \Delta_T M_T^{hh}$
		$\Delta_T M_L^{\perp}$	$\Delta_T M_T^{\perp \perp}, \Delta_T M_T^{\perp h}$

momenta, in the deep inelastic inclusive lepto-production of two hadrons, one in the target fragmentation region and one in the current fragmentation region.

Back-to-back hadron production in SIDIS would allow:

- study SSAs not accessible in SIDIS at leading twist
- measure fracture functions
- control the flavor content of the final state hadron in current fragmentation (detecting the target hadron)
- study entanglement in correlations in target vs current
- access quark short-range correlations and γSB (Schweitzer et al)

Features of partonic 3D non-perturbative distributions

Non-perturbative sea in nucleon is a key to understand the nucleon structure

Large flavor asymmetry as evidence $\bar{d} > \bar{u}$

2.5
SeaCuest, 5% of anticipated data
E966
CT10 NLO
Preview
0.5
0
0.1
0.2
0.3
0.4
0.5
Bjorken x

Predictions from dynamical model of chiral symmetry breaking [Schweitzer, Strikman, Weiss JHEP 1301 (2013) 163]

- $-- k_T \text{ (sea)} >> k_T \text{ (valence)}$
- -- short-range correlations between partons (small-size q-qbar pairs)
- -- directly observable in P_T -dependence of hadrons in SIDIS

 correlations of spins of q-q-bar with valence quark spin and transverse momentum will lead to observable effects

B2B hadron production in SIDIS: First measurements

Significant asymmetries observed by CLAS at 6 GeV

b2b distributions: EIC 5x50 (proton-pion)

Lambda production in EIC (5x50 GeV)

At forward angles Lambdas are mainly from target fragments

Summary

- •Extending the studies of the nucleon structure beyond the traditional current fragmentation, when a hadron in the target fragmentation region is observed in association with another hadron in the current fragmentation region (b2b SIDIS) provides qualitatively new tool to study the nucleon structure.
- •SSA in b2b SIDIS have been studied at JLab for proton pion and Lambda kaon final states and very significant effects reported for the first time.
- •Large acceptance of the EIC combined with clear separation of target and current fragmentation regions provide a unique possibility to study the nucleon structure in target fragmentation region and correlations of target and current fragmentation regions

Support slides

b2b SSAs

old studies

significantly higher dilutions reduces the effect

b2b SSAs

b2b SSA (ALU) for ep->e'pπX for e16 data set

with fiducial electron cuts, M x is the missing mas of the e'\piX system.

b2b distributions: EIC 5x50 (Lambda-pi)

Dihadron asymmetries from CLAS

$$F_{UU,T} = x f_1^q(x) D_1^q(z, \cos \theta, M_h) \quad f_1(x)$$

$$F_{LL} = x g_1^q(x) D_1^q(z, \cos \theta, M_h)$$

$$D_1^{u\to\pi+\pi-}\approx D_1^{d\to\pi+\pi-}$$

Dihadron double spin asymmetry measured at 6 GeV consistent with DIS

Lambda production at Jlab (CLAS12)

b2b distributions: CLAS12(Lambda-pion)

b2b distributions: CLAS12 (proton-pion)

CLAS6 kinematics

Transverse Momentum Dependent Factorization

Scale Dependence From Standard TMD Factorization?

