

MEIC Design Update

POETIC 2015 September 7 2015

Outline

MEIC baseline

- Design strategy for high luminosity and polarization
- 2.1km figure-8 ring-ring collider, e-ring based on PEP-II design and components and CEBAF as full energy injector, new ion complex based on super-ferric magnets
- Focus: minimization of technical risk
- Design and cost estimate successfully reviewed in January 2015

Present focus

- Design optimization for cost reduction and further minimization of technical risk
- Development and execution of pre-project R&D program

Future plans

MEIC Design Goals

Energy

Full coverage of \sqrt{s} from **15** to **65** GeV Electrons 3-10 GeV, protons 20-100 GeV, ions 12-40 GeV/u

Ion species

Polarized light ions: **p**, **d**, ³He, and possibly Li Un-polarized light to heavy ions up to A above 200 (Au, Pb)

Space for at least 2 detectors

Full acceptance is critical for the primary detector

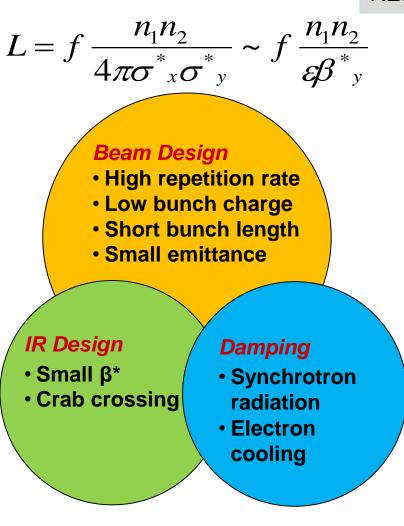
Luminosity

10³³ to 10³⁴ cm⁻²s⁻¹ per IP in a broad CM energy range

Polarization At IP: longitudinal for both beams, transverse for ions only All polarizations >70%

Upgrade to higher energies and luminosity possible 20 GeV electron, 250 GeV proton, and 100 GeV/u ion

Design goals consistent with the White Paper requirements


Science Requirements and Conceptual Design for a

Polarized Medium Energy

Electron-lon Collider at Jefferson Lab

Design Strategy: High Luminosity and polarization

 The MEIC design concept for high luminosity is based on *high bunch repetition rate CW colliding beams* KEK-B already reached above 2x10³⁴ /cm²/s

U.S. DEPARTMENT OF Office of Science

All rings are figure-8 \rightarrow critical advantages for both ion and electron beam polarization

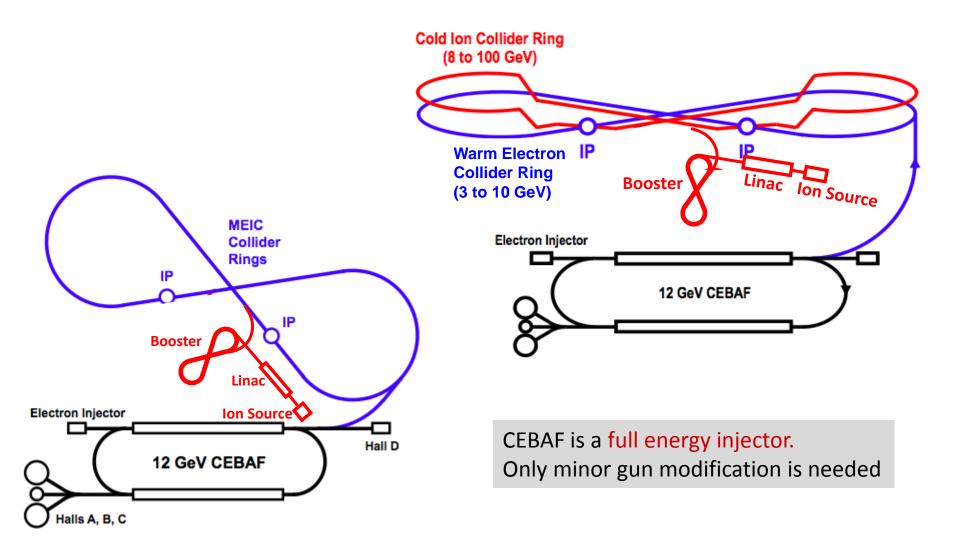
- Spin precessions in the left & right parts of the ring are <u>exactly cancelled</u>
- Net spin precession (*spin tune*) is zero, thus <u>energy independent</u>
- Spin is <u>easily controlled</u> and stabilized by small solenoids or other compact spin rotators

MEIC Baseline

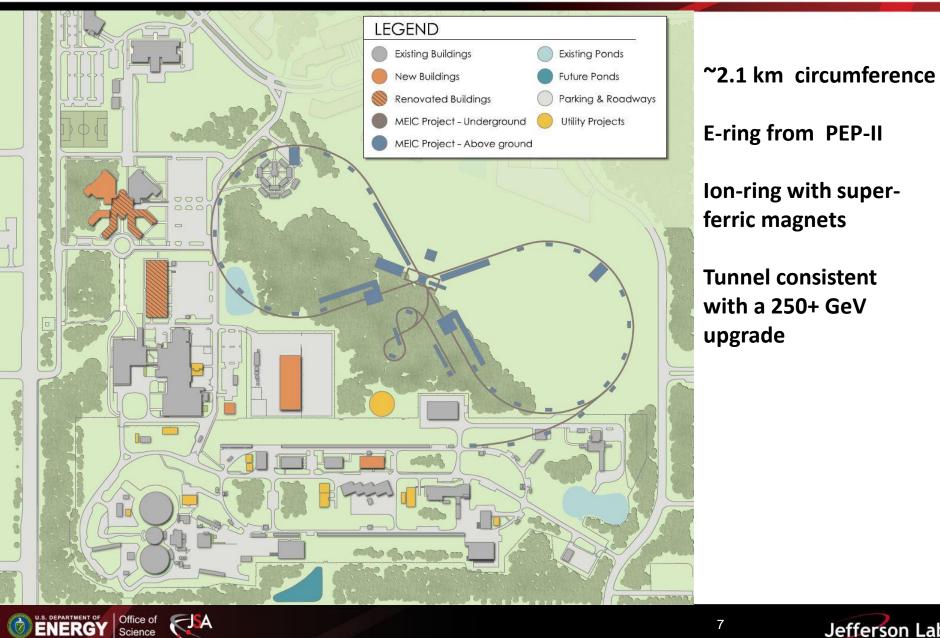
Baseline for the cost estimate

- Collider ring circumference: ~2100 m
- Electron collider ring and lines : PEP-II magnets, RF (476 MHz) and vacuum chambers
- Ion collider and booster ring: super-ferric magnets
- SRF ion linac
- Electron cooling: DC cooler and single-pass ERL, bunched-beam e-cooler

Energy range


- Electron: 3 to 10 GeV
- Proton: 20 to 100 GeV
- Lead ions: up to 40 GeV

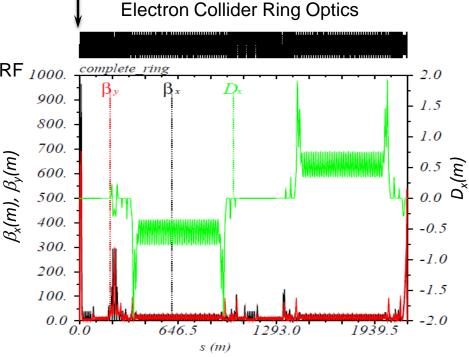
Design point	p energy (GeV)	e- energy (GeV)	Main luminosity driver
low	30	4	space charge
medium	100	5	beam beam
high	100	10	synchrotron radiation


Baseline Layout

Campus Layout

Ø

7

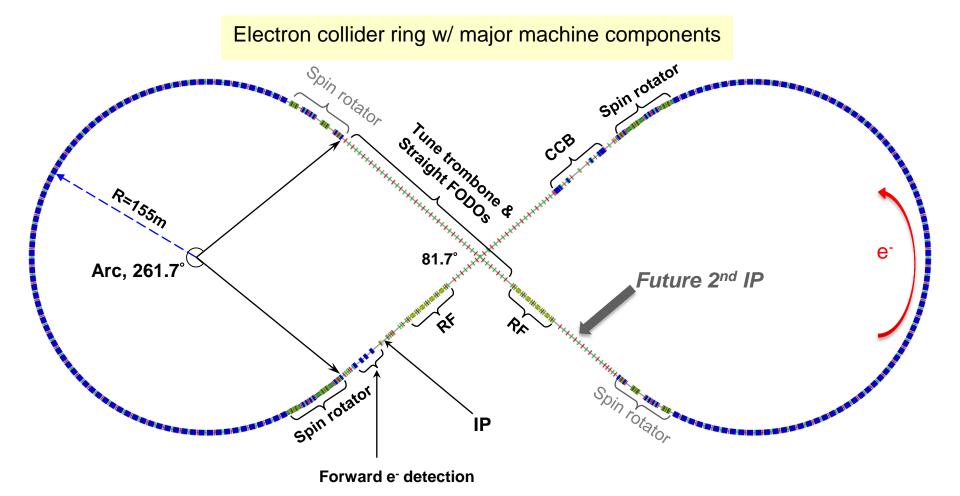


MEIC Electron Complex

• CEBAF provides up to 12 GeV, high repetition rate and high polarization (>85%) electron beams, no further upgrade needed beyond the 12 GeV CEBAF upgrade.

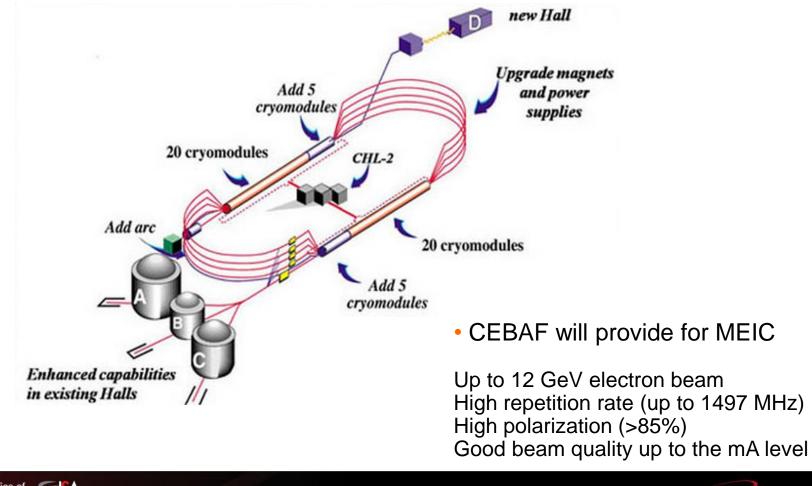
IP

- Electron collider ring design
 - circumference of 2154.28 m = 2 x 754.84 m arcs + 2 x 322.3 m straights
 - Meets design requirements
 - Provides longitudinal electron polarization at IP(s)
 - incorporates forward electron detection
 - accommodates up to two detectors
 - includes non-linear beam dynamics
 - reuses PEP-II magnets, vacuum chambers and RF 1000.
- Beam characteristics
 - 3A beam current at 6.95 GeV
 - Normalized emittance 1093 μm @ 10 GeV
 - Synchrotron radiation power density **10kW/m**
 - total power 10 MW @ 10 GeV
- CEBAF and the electron collider provide the required electron beams for the EIC.



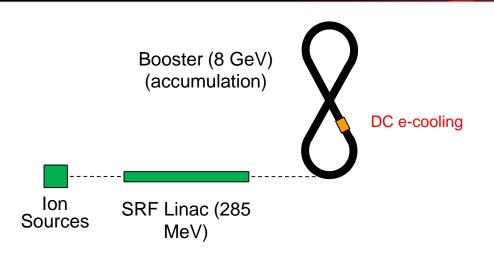
Electron Collider Ring Layout

Circumference of 2154.28 m = 2 x 754.84 m arcs + 2 x 322.3 m straights
 Figure-8, crossing angle 81.7°



CEBAF - Full Energy Injector

• CEBAF fixed target program 5-pass recirculating SRF linac

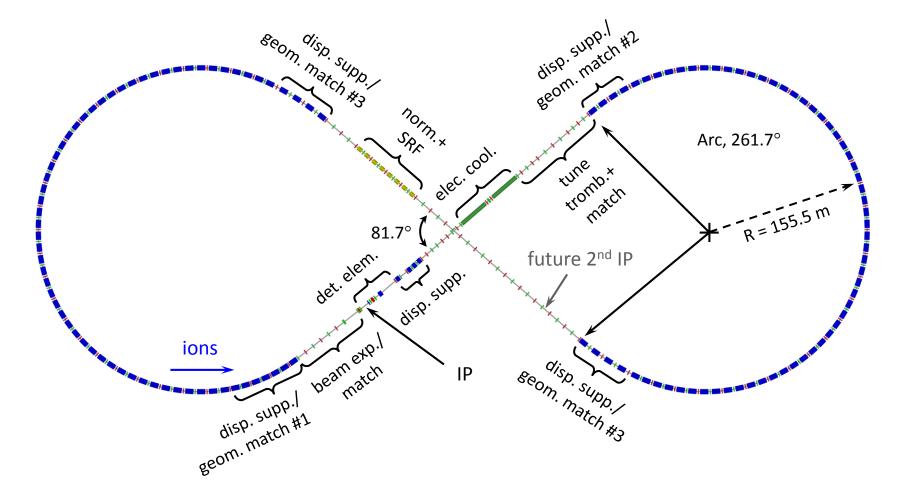

Exciting science program beyond 2025

Can be operated concurrently with the MEIC

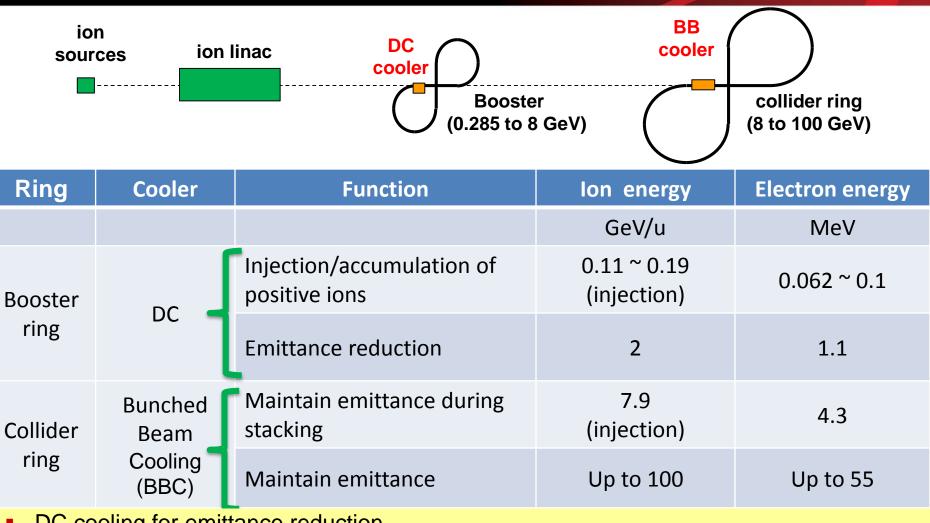
Jefferson Lab

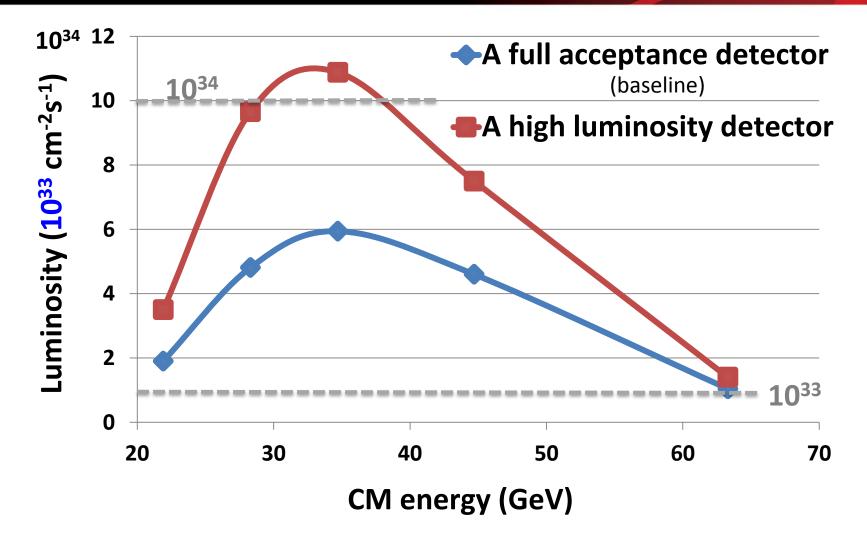
Ion Injector Complex

Status of the ion injector complex:


- Relies on demonstrated technology for injectors and sources
- SRF linac
- 8 GeV Booster to avoid transition for all ion species and based on super-ferric magnet technology
- Injection/extraction lines to/from Booster are designed

Ion Collider Ring


- Figure-8 ring with a circumference of 2153.9 m
- Two 261.7° arcs connected by two straights crossing at 81.7°


MEIC Multi-Step Cooling Scheme

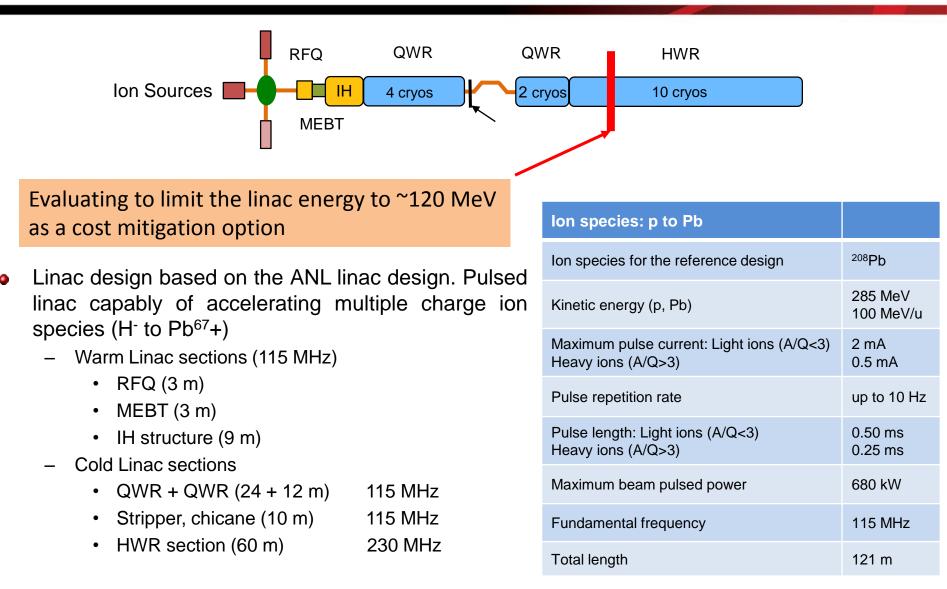
- DC cooling for emittance reduction
- BBC cooling for emittance preservation

e-p Luminosity

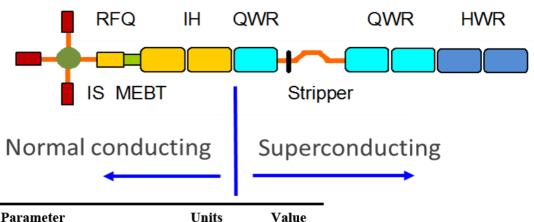
The baseline performance requires a ERL bunched beam cooler but no circulator cooler

Design optimization

- Study of lower energy SRF linac, stripping scheme (Collaboration ANL)
- DC cooler design


(Collaboration Budker institute)

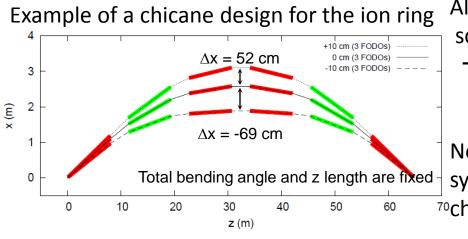
- Polarization design and spin tracking
- ERL cooler design
- Reduction of e- emittance in e- ring
- Complete scheme of proton and ion beam formation
- Beam synchronization


SRF Linac

New pulsed SRF ion linac design

	•					
Parameter	Units	Value				
Ion species		$\operatorname{H}^{\!\!+}$ to Pb				
Fundamental frequency	MHz	100				
Kinetic energy of protons & lead ions	MeV/u	130&42				
Maximum pulse current						
Light ions (A/q≤3)	mA	2				
Heavy ions (A/q>3)	mA	0.5				
Pulse repetition rate	Hz	up to 10				
Pulse length						
Light ions $(A/q \le 3)$	ms	0.5				
Heavy ions (A/q>3)	ms	0.25				
Maximum pulsed beam	kW	260				
power						
# of QWR cryomodules		3				
# of HWR cryomodules		2				
Total length	m	~55				

•QWR and HWR cavity design based on existing design for the ANL Atlas upgrade
•Energy reduction from 285 to 100 MeV → potential cost reduction by a factor 2-3
•Preliminary evaluation of impacts of lower injection energy to booster is positive, more evaluation in progress



Beam synchronization

Issue \rightarrow synchronize energy dependent ion velocity with electrons

- Conventional schemes involve magnet movement
 - Moving magnets in the ion collider ring
 - Moving whole arcs or a small number of magnets in chicane(s)
 - With or without harmonic jump
 - Moving magnets in the **electron** collider ring & adjusting RF in both rings
 - Moving (almost) whole arcs or a small number of magnets in chicane(s)
 - With or without harmonic jump
 - Some combination of the two schemes

Report on MEIC synchronization is to be published in September 2015

All simpler and more practical conventional schemes require harmonic jump
 → asymmetric collision pattern a.k.a.
 "gear changing"

Non conventional schemes (scanning synchronization) do not require orbit ⁷⁰change but move slightly the interaction point

Gear changing: the good and the bad....

The bad

Leads to potential orbit and beam size instabilities (MEIC possible mitigating Factors: strong focusing, Landau damping may dump instabilities)

The good

- Highly desirable to have each bunch from a ring collide with all other bunches of the other ring for physics measurements
- No need to track FOM for each bunch pair as a function of time, each bunch train can be treated as a long macro-bunch thus decoupling the experimental uncertainties from the microstructure of the accelerator
- Especially important for polarization measurement in a high repetition accelerator where bunch by bunch measurements are difficult/impossible

JLAB in collaboration with Old Dominion University is developing a new code GHOST (GPU-accelerate High-Order Symplectic Tracking) to tackle beam-beam and gear-changing effects (development time ~ 2 years)

MEIC R&D Program

Pre-Project R&D Activity	Schedule								
	FY2015		FY2	016		FY2017			,
	Q4	Q1 Q2 Q4			Q 1	Q2	Q3	Q4	
Super-ferric dipole prototype Phase 1 (Texas A&M)									
Super-ferric dipole prototype Phase 2(Texas A&M)									
Super-ferric dipole testing (Texas A&M)									
952 MHz cavity prototype (Jlab SRF)									
Crab cavity R&D (JLAB SRF and ODU)									
Ion sources (polarized and non)									
Ion Injector design and R&D (ANL)									
DC Cooler design									
Fixed energy cooler design (Texas A&M)									
IR, detector, non-linear corrections, DA (SLAC)									
Bunched e-cooling experiment (JLAB, IMP Langzhou)									
FF quad design and downselect									
Magnetized e- source for ERL cooler (JLAB)									
Ion complex polarization									
bunched e- cooling simulation (JLAB, ODU)									

Pre-project R&D necessary to support a pre-conceptual Design Report (CDO) Total pre-project R&D budget ~5 M\$ (EIC NP R&D funds, LDRD, ops redirect, SBIR, VA Commonwealth funds

MEIC super-ferric dipole

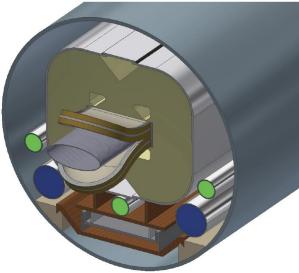


Figure 3. Isometric view of the end region of the v1a ICR dipole in its cryosta

- •2 X 4m long dipole
- •NbTi cable
- •3 T
- •Correction sextupole
- •Common cryostat

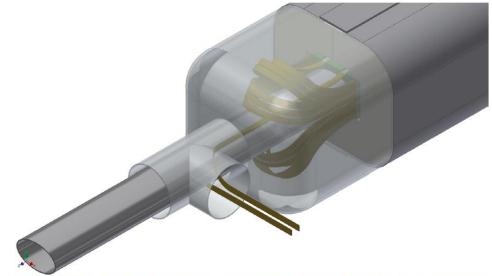
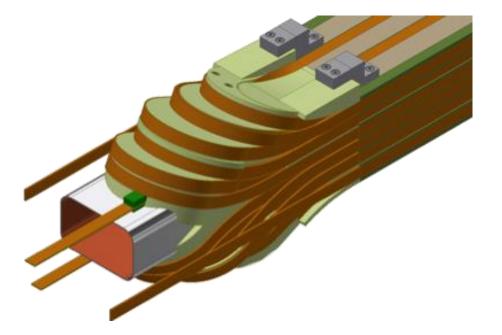
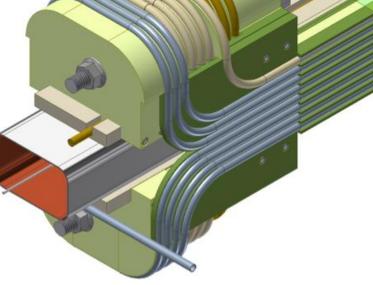


Figure 4. ICR arc dipole structure, showing lead-end cabling, He shell, and beam tube.

Figure 6. v1b MEIC dual dipole: 2 3.85 m dipoles assembled on a common rail with correction sextupole (red) at center.




Jefferson Lab

Cabling techniques

NbTi Rutherford cable

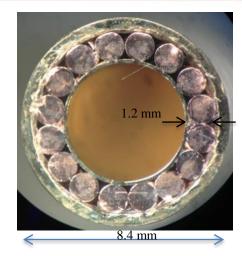
NbTi Cable-in-Conduit

Pros: Uses mature cable technology (LHC).

Cons: Ends tricky to support axial forces. Entire cold mass is a He vessel.

ENERGY Office of Science

Semi-rigid cable makes simpler end winding. Semi-rigid round cable can be precisely located. Cryogenics contained within cable.


Cable requires development and validation.

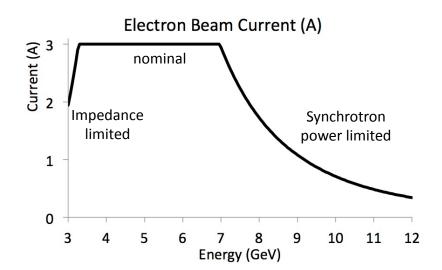
Fabricating CIC conductor for MEIC

cabling wires onto perforated spring tube

cutaway showing foil over-wrap

drawing sheath onto the cable

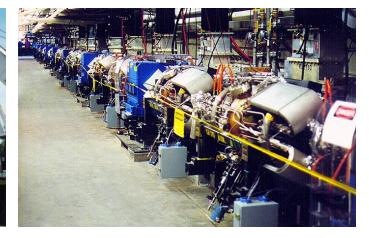
cross-section of fabricated cable


cable bent 180° on 2" radius.

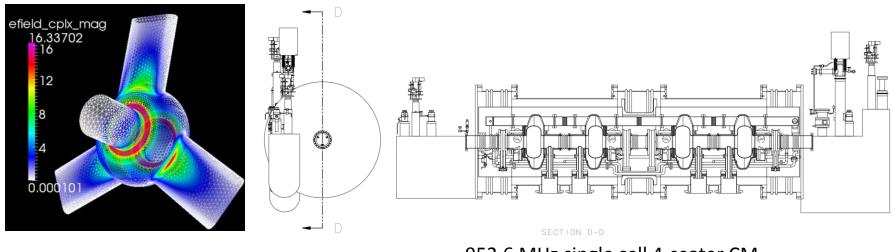


e-ring RF design

- Re-use proven PEP-II RF stations
- 476 MHz HOM damped 1-cell cavities
 - 34 cavities available
- 1.2 MW klystrons, 13 available
 - Including power supplies etc.
- Current limited by synch. rad. power at high energy, impedance at low energy



PEP-II RF cavity


PEP-II Cavities in the SLAC tunnel

ion-ring RF design

- 952.6 MHz HOM damped 1-cell cavities, modular JLab type cryomodule
 - High frequency/high voltage for short bunch (re-bucket at energy)
 - Double repetition rate for future luminosity upgrade

New HOM damped cavity concept

952.6 MHz single cell 4-seater CM (~4.3m flange to flange)

Crab cavity

Design by ODU (A. Castilla Ph.D project)

- 952.6 MHz "RF dipole" like LHC
- Modest RF system (no beam loading)
- Must have good HOM damping
- Count for 1 IP in baseline

• Assume cryostat cost/cavity same as ion storage ring

Parameter	Units	Electron	Proton	
Beam energy E_b	GeV	10	100	
Bunch frequency n_b	MHz	952	2.0	
Crossing angle $arphi_c$	mrad	50		
Betatron function at the IP eta_x^*	cm	10		
Betatron fn. at the crab cavity β_x^c	m	200	750	
Integrated kicking voltage V_T	MV	1.76	14.48	
Number of cavities (per side of IP)		2	6	
Total number of cavities (per specie)	,	4	12	

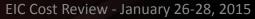
Conclusions and Outlook

The MEIC **baseline** based on a ring-ring design is mature and can deliver luminosity from a few 10^{33} to a few 10^{34} and polarization over **70%** in the \sqrt{s} 15-65 GeV range with **low technical risks.**

We are planning and executing the pre-project R&D (total cost ~5 M\$)

We continue to optimize the present design for cost and performance.

The design can be upgraded in energy and luminosity


We are planning to produce a pre-conceptual design in ~2 years

Backup Slides

SISA

Performance MEIC baseline

Achieved with a single pass ERL cooler

For a full acceptance detector

CM energy	GeV	21.9 (low)		44.7 (m	edium)	63.3 (high)		
		р	е	р	E	р	е	
Beam energy	GeV	30	4	100	5	100	10	
Collision frequency	MHz	4	76	47	76	1	159	
Particles per bunch	10 ¹⁰	0.66	3.9	0.66	3.9	2.0	2.8	
Beam current	A	0.5	3	0.5	3	0.5	0.72	
Polarization	%	>70%	>70%	>70%	>70%	>70%	>70%	
Bunch length, RMS	cm	2.5	1.2	1	1.2	2.5	1.2	
Norm. emitt., vert./horz.	μm	0.5/0.5	74/74	1/0.5	144/72	1.2/0.6	1152/576	
Horizontal and vertical β^*	cm	3	5	2/4	2.6/1.3	5/2.5	2.4/1.2	
Vert. beam-beam param.		0.01	0.02	0.006	0.014	0.002	0.013	
Laslett tune-shift		0.054	small	0.01	small	0.01	small	
Detector space, up/down	m	7/3.6	3.2/3	7/3.6	3.2/3	7/3.6	3.2 / 3 (3)	
Hour-glass (HG) reduction		0.89		0.88		0.73		
Lumi./IP, w/HG, 10 ³³	cm ⁻² s ¹		1.9	4.6			1.0	

For a high(er) luminosity detector

Horizontal and vertical β^*	cm	1.2	2	1.6 / 0.8	1.6 / 0.8	2 /1	1.6 / 0.8	
Vert. beam-beam param.		0.01	0.02	0.004	0.021	0.001	0.021	
Detector space, up/down	m	±4.5	3	±4.5	3	±4.5	3	
Hour-glass (HG) reduction		0.67		0.74		0.58		
Lumi./IP, w/HG, 10 ³³	cm ⁻² s ¹		3.5	7.	.5	1.4		

e-ion luminosity

For a full acceptance detector

		Electron	Proton	Deuteron	Helium	Carbon	Calcium	Lead
		е	P	d	³ He ⁺⁺	¹² C ⁶⁺	⁴⁰ Ca ²⁰⁺	²⁰⁸ <i>Pb</i> ⁸²⁺
Beam energy	GeV	5	100	50	66.7	50	50	39.4
Particles/bunch	10 ¹⁰	3.9	0.66	0.66	0.33	0.11	0.033	0.008
Beam current	A	3	0.5	0.5	0.5	0.5	0.5	0.5
Polarization		>70%	>70%	> 70%	> 70%	<u> </u>	<u> </u>	<u> </u>
Bunch length, RMS	cm	1.2	1	1	1	1	1	1
Norm. emit., horz./vert.	μm	144/72	1/0.5	0.5/0.25	0.7/0.35	0.5/0.25	0.5/0.25	0.5/0.25
β^* , hori. & vert.	cm	2.6/1.3	4/2	4/2	4/2	4/2	4/2	5/2.5
Vert. beam-beam parameter		0.014	0.006	0.006	0.006	0.006	0.006	0.005
Laslett tune-shift			0.01	0.041	0.022	0.041	0.041	0.041
Detector space	m	3.2/3			7/3	3.6		
Hour-glass (HG) reduction factor			0.89	0.89	0.89	0.89	0.89	0.89
Lumi/IP/ <i>nuclei</i> , w/ HG correction	10 ³³ cm ⁻² s ⁻¹		4.6	4.6	2.2	0.77	0.23	0.04
Lumi/IP/ <i>nucleon</i> , w/HG correction,	10 ³³ cm ⁻² s ⁻¹		4.6	9.2	6.6	9.2	9.2	7.8

For a high(er) luminosity detector

β*, hori. & vert.	cm	1.6/0.8	1.6/0.8	1.6/0.8	1.6/0.8	1.6/0.8	1.6/0.8	1.6/0.8
Vert. beam-beam parameter		0.02	0.004	0.004	0.004	0.004	0.004	0.004
Detector space	m	3			4.5	5		
Hour-glass (HG) reduction factor			0.74	0.74	0.74	0.74	0.74	0.74
Lumi/IP/ <i>nuclei</i> , w/ HG correction	10 ³³ cm ⁻² s ⁻¹		7.5	9.3	3.7	1.37	0.38	0.08
Lumi/IP/ <i>nucleon</i> , w/HG correction,	10 ³³ cm ⁻² s ⁻¹		7.5	15.1	11.1	15.1	15.1	17.3

(d)

