Neutrino-production of a charmed meson and the transverse spin structure of the nucleon

Lech Szymanowski

National Centre for Nuclear Research (NCBJ)
Warsaw, Poland

POFTIC6

the 6th International Conference on the "Physics Opportunities at an ElecTron-Ion Collider"

Ecole Polytechnique, Palaiseau, 7 - 11 September 2015

based on Phys. Rev. Lett. 115 (2015) 092001 [arXiv 1505.00917]

in collaboration with

B. Pire (Ecole Polytechnique, CPhT, Palaiseau)

Recent progresses in Transversity partonic distributions

What is transversity?

• Transverse spin content of the proton:

$$\begin{array}{ccc} |\uparrow\rangle_{(x)} & \sim & |\rightarrow\rangle + |\leftarrow\rangle \\ |\downarrow\rangle_{(x)} & \sim & |\rightarrow\rangle - |\leftarrow\rangle \\ \text{spin along } x & \text{helicity states} \end{array}$$

- Observables which are sensitive to helicity flip thus give access to transversity partonic distributions: Poorly known PDF, TMDs, GPDs.
- SIDIS analysis

→ transversity distributions are not small

M. Radici et al ,JHEP 1505 (2015) 123

Lattice calculations

QCDSF and UKQCD Coll. Phys.Rev.Lett. 98 (2007) 222001

Theoretical models

→ cross-channel analysis,

K Semenov et al, Eur.Phys.J.A50 (2014) 90

- Transversity is a chiral-odd quantity
 - ightarrow the chiral odd quantities one wants to measure appear in pairs

Accessing Transversity GPDs of the nucleon

How to get access to transversity GPDs?

- At twist 3 chiral odd GPDs may couple to chiral-odd twist 3 meson DAs [Goloskokov, Kroll], [Ahmad, Goldstein, Liuti]
 - $ightarrow \pi$ electroproduction data at JLab consistent with this scenario
 - ightarrow However processes involving twist 3 DAs may face problems with factorization (end-point singularities)
- One can consider a 3-body final state process [Ivanov, Pire, LSz, Teryaev], [Enberg, Pire, LSz], [El Beiyad et al.], [Boussarie, Pire, LSz, Wallon]
 - → Leading twist process
 - \rightarrow more tailored to EIC kinematics

$$\gamma N \to \rho \rho N'$$
 $\gamma N \to \pi \rho N'$ $\gamma N \to \gamma \rho N'$

We consider the exclusive reactions

$$\nu_l(k)N(p_1) \rightarrow l^-(k')D^+(p_D)N'(p_2),
\bar{\nu}_l(k)N(p_1) \rightarrow l^+(k')D^-(p_D)N'(p_2),$$

in the kinematical domain where collinear factorization leads to a description of the scattering amplitude in terms of nucleon GPDs and the D-meson distribution amplitude, with the hard subprocess ($q=k'-k;Q^2=-q^2$):

$$W^+(q)d \to D^+d'$$
 $W^-(q)u \to D^-u'$,

described by the handbag Feynman diagrams

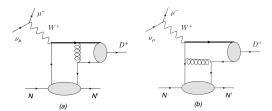


Figure : Feynman diagrams for the factorized amplitude for the $\nu_{\mu}N \to \mu^{-}D^{+}N'$ process; the thick line represents the heavy quark.

Our aim:

- ullet to show that the transverse amplitude $W_Tq o Dq'$ gets its leading term in the collinear QCD framework as a convolution of chiral odd leading twist GPDs with a coefficient function of order $\frac{m_c}{Q^2}$ (to be compared to the $O(\frac{1}{Q})$ longitudinal amplitude)
- \bullet to show how to access these GPDs through the azimuthal dependence of the $\nu N \to \mu^- D^+ N$ differential cross section

$$\begin{split} &\frac{d^4\sigma(\nu N\to l^-N'D)}{dx_B\,dQ^2\,dt\,d\varphi} = \tilde{\Gamma}\Big\{\frac{1+\sqrt{1-\varepsilon^2}}{2}\sigma_{--} + \varepsilon\sigma_{00} \\ &+\sqrt{\varepsilon}(\sqrt{1+\varepsilon}+\sqrt{1-\varepsilon})(\cos\varphi\,\operatorname{Re}\sigma_{-0} + \sin\varphi\,\operatorname{Im}\sigma_{-0})\,\Big\}, \end{split}$$

with

$$\tilde{\Gamma} = \frac{G_F^2}{(2\pi)^4} \frac{1}{16x_B} \frac{1}{\sqrt{1 + 4x_B^2 m_N^2/Q^2}} \frac{1}{(s - m_N^2)^2} \frac{Q^2}{1 - \epsilon} \,,$$

and the "cross-sections" $\sigma_{lm}=\epsilon_l^{*\mu}W_{\mu\nu}\epsilon_m^{\nu}$ are product of amplitudes for the process $W(\epsilon_l)N\to DN'$, averaged (summed) over the initial (final) hadron polarizations.

T. Arens, O. Nachtmann, M. Diehl and P. V. Landshoff, Z. Phys. C 74, 651 (1997).

Standard notations of deep exclusive leptoproduction:

•
$$P = (p_1 + p_2)/2$$
, $\Delta = p_2 - p_1$, $t = \Delta^2$, $x_B = Q^2/2p_1.q$,

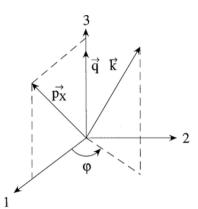
•
$$y = p_1.q/p_1.k$$
 and $\epsilon \simeq 2(1-y)/[1+(1-y)^2].$

• n are light-cone vectors and $\xi = -\Delta . n/2P.n$ is the skewness variable.

The azimuthal angle φ is defined in the initial nucleon rest frame as:

$$\sin\,\varphi = \frac{\vec{q}\cdot[(\vec{q}\times\vec{p}_D)\times(\vec{q}\times\vec{k})]}{|\vec{q}||\vec{q}\times\vec{p}_D||\vec{q}\times\vec{k}|}\,,$$

while the final nucleon momentum lies in the 1-3 plane ($\Delta^y=0$)



Theoretical input:

• D-meson distribution amplitude

A. Szczepaniak, E. M. Henley and S. J. Brodsky, Phys. Lett. B 243, 287 (1990);
T. Kurimoto, H. n. Li and A. I. Sanda, Phys. Rev. D 65, 014007 (2002);
S. Descotes-Genon and C. T. Sachrajda, Nucl. Phys. B 650, 356 (2003);
V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, Phys. Rev. D 69, 034014 (2004);
T. Feldmann, B. O. Lange and Y. M. Wang, Phys. Rev. D 89, no. 11, 114001 (2014);
V. M. Braun and A. Khodjamirian, Phys. Lett. B 718, 1014 (2013).

$$\langle 0|\bar{d}(y)\gamma^{\mu}\gamma^{5}c(-y)|D(p_{D})\rangle = if_{D}P^{\mu}\int_{0}^{1}e^{i(2z-1)p_{D}\cdot y}\phi_{D}(z),$$

where $\int_0^1 dz \; \phi_D(z) = 1$ and $f_D = 0.223$ GeV.

twist-2 DA

CLEO meaurement: M Artuso et al prl 95,251801 (2005)

Theoretical input ctnd:

Transversity GPDs

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda' | \bar{\psi}(-\frac{1}{2}z) i\sigma^{+i} \psi(\frac{1}{2}z) | p_{1}, \lambda \rangle \Big|_{z^{+}=\mathbf{z}_{T}=0}
= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda') \left[H_{T}^{q} i\sigma^{+i} + \tilde{H}_{T}^{q} \frac{P^{+}\Delta^{i} - \Delta^{+}P^{i}}{m_{N}^{2}} \right]
+ E_{T}^{q} \frac{\gamma^{+}\Delta^{i} - \Delta^{+}\gamma^{i}}{2m_{N}} + \tilde{E}_{T}^{q} \frac{\gamma^{+}P^{i} - P^{+}\gamma^{i}}{m_{N}} u(p_{1}, \lambda).$$
(1)

The leading GPD $H_T(x,\xi,t)$ is equal to the transversity PDF in the $\xi=t=0$ limit

The transversity PDF has recently been argued by M. Radici et al [JHEP 1505 (2015) 123] to be sizable for the d-quark, which is contributing to our process.

The longitudinal amplitude of leading twist:

slight modification of the calculation in

B. Z. Kopeliovich, I. Schmidt and M. Siddikov, Phys. Rev. D **86**, 113018 (2012) and D **89**, 053001 (2014); G. R. Goldstein, O. G. Hernandez, S. Liuti and T. McAskill,

AIP Conf. Proc. 1222 (2010) 248.

with usual chiral-even GPDs:

$$T_{L} = \frac{-iC}{Q} \qquad \bar{N}(p_{2}) \left[\mathcal{H}_{D}\hat{n} + \frac{1}{2m_{N}} \mathcal{E}_{D} i \sigma^{n\Delta} - \tilde{\mathcal{H}}_{D} \hat{n} \gamma_{5} - \frac{\Delta . n}{2m_{N}} \tilde{\mathcal{E}}_{D} \gamma_{5} \right] N(p_{1}),$$

with $C = \frac{8\pi}{9} \alpha_s V_{dc}$ and $(\bar{z} = 1 - z)$:

$$\mathcal{F}_D(\xi,t) = f_D \int dz \frac{\phi_D(z)}{\bar{z}} \int dx \frac{F^d(x,\xi,t)}{x - \xi + i\epsilon},$$

for any chiral even d-quark GPD in the nucleon $F^d(x,\xi,t)$; g is the weak interaction coupling constant and V_{dc} the CKM matrix element.

The transverse amplitude T_T up to $O(m_c/Q^2)$

• T_T vanishes when $m_c = 0 = m_d$.

For chiral-even GPDs due to the colinear kinematics and the leading twist CF For chiral-odd GPDs due to the odd number of γ matrices in the Dirac trace.

- ullet $T_T
 eq 0$ due to $m_c
 eq 0$ in the hard CF Fact. thm with HEAVY quark: J. C. Collins, Phys. Rev. D **58**, 094002 (1998)
 - hard-scattering factorization of meson leptoproduction
 Fact. thm with LIGHT quark: J. C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56
 valid at leading twist with the inclusion of heavy quark masses in the hard CF
 - The proof is applicable independently of the relative sizes of m_c and $\mathcal Q$
 - the error is a power of Λ/Q
 - in our case, this means including $\frac{m_c}{k_c^2-m_c^2}$ in the off-shell heavy quark propagator in the leading twist CF
 - inclusion $\frac{m_c}{k_c^2-m_c^2}$ in T_L has no effect

 T_T reads:

$$\tau = 1 - i2$$

$$T_{T} = \frac{iC\xi m_{c}}{\sqrt{2}Q^{2}}\bar{N}(p_{2}) \left[\mathcal{H}_{T}^{\phi}i\sigma^{n\tau} + \tilde{\mathcal{H}}_{T}^{\phi}\frac{\Delta^{\tau}}{m_{N}^{2}} + \mathcal{E}_{T}^{\phi}\frac{\hat{n}\Delta^{\tau} + 2\xi\gamma^{\tau}}{2m_{N}} - \tilde{\mathcal{E}}_{T}^{\phi}\frac{\gamma^{\tau}}{m_{N}}\right]N(p_{1}),$$

in terms of transverse form factors defined as :

$$\mathcal{F}_{T}^{\phi} = f_{D} \int \frac{\phi(z)dz}{\bar{z}} \int \frac{F_{T}^{d}(x,\xi,t)dx}{(x-\xi+i\epsilon)(x-\xi+\alpha\bar{z}+i\epsilon)},$$

- ullet F_T^d is any d-quark transversity GPD,
- $\bullet \qquad \qquad \alpha = \frac{2\xi m_c^2}{Q^2 + m_c^2}$
- $ar{\mathcal{E}}_T^\phi = \xi \mathcal{E}_T^\phi ilde{\mathcal{E}}_T^\phi$.
- ullet \mathcal{F}_T^ϕ has legitimate limit for small $lpha,\Rightarrow$ the dependence on the heavy meson DA effectively factorizes

Observables

$$\begin{split} &\frac{d^4\sigma(\nu N\to l^-N'D)}{dx_B\,dQ^2\,dt\,d\varphi} = \tilde{\Gamma}\Big\{\frac{1+\sqrt{1-\varepsilon^2}}{2}\sigma_{--} + \varepsilon\sigma_{00} \\ &+\sqrt{\varepsilon}(\sqrt{1+\varepsilon}+\sqrt{1-\varepsilon})(\cos\varphi\,\operatorname{Re}\sigma_{-0} + \sin\varphi\,\operatorname{Im}\sigma_{-0})\,\Big\}, \end{split}$$

with

$$\tilde{\Gamma} = \frac{G_F^2}{(2\pi)^4} \frac{1}{16x_B} \frac{1}{\sqrt{1 + 4x_B^2 m_N^2/Q^2}} \frac{1}{(s - m_N^2)^2} \frac{Q^2}{1 - \epsilon} \,,$$

the "cross-sections" $\sigma_{lm}=\epsilon_l^{*\mu}W_{\mu\nu}\epsilon_m^{\nu}$ are product of amplitudes for the process $W(\epsilon_l)N\to DN'$, averaged (summed) over the initial (final) hadron polarizations

The longitudinal cross section σ_{00} is obtained by squaring the amplitude T_L ; at zeroth order in Δ_T , it reads :

$$\sigma_{00} = \frac{C^2}{2Q^2} \left\{ 8(|\mathcal{H}_D^2| + |\tilde{\mathcal{H}}_D^2|)(1 - \xi^2) + |\tilde{\mathcal{E}}_D^2| \frac{1 + \xi^2}{1 - \xi^2} \right\}$$

The transverse cross section σ_{--} is obtained by squaring the amplitude T_T ; at zeroth order in Δ_T , it reads :

$$\sigma_{--} = \frac{4\xi^2 C^2 m_c^2}{Q^4} \quad \left\{ (1 - \xi^2) |\mathcal{H}_T^{\phi}|^2 + \frac{\xi^2}{1 - \xi^2} |\bar{\mathcal{E}}_T^{\phi}|^2 - 2\xi \mathcal{R}e[\mathcal{H}_T^{\phi}\bar{\mathcal{E}}_T^{\phi*}] \right\}$$

The interference cross section σ_{-0} vanishes at zeroth order in Δ_T .

The term linear in Δ_T/m_N reads

$$\lambda=\tau^*=1+i2$$

$$\sigma_{-0} = \frac{-\xi\sqrt{2}C^2}{m_N} \frac{m_c}{Q^3} \left\{ -i\mathcal{H}_T^{*\phi}\tilde{\mathcal{E}}_D\xi(1+\xi)\epsilon^{pn\Delta\lambda} + \mathcal{H}_T^{*\phi}\Delta^{\lambda}[-(1+\xi)\mathcal{E}_D] + \tilde{\mathcal{H}}_T^{*\phi}\Delta^{\lambda}[2\mathcal{H}_D - \frac{2\xi^2}{1-\xi^2}\mathcal{E}_D] + \mathcal{E}_T^{*\phi}\Delta^{\lambda}[(1-\xi^2)\mathcal{H}_D - \xi^2\mathcal{E}_D] + \bar{\mathcal{E}}_T^{\phi*}[\Delta^{\lambda}[(1+\xi)\mathcal{H}_D + \xi\mathcal{E}_D] + i(1+\xi)\epsilon^{pn\Delta\lambda}\tilde{\mathcal{H}}_D] \right\}.$$

Observables

$$\langle \cos \varphi \rangle = \frac{\int \cos \varphi \, d\varphi \, d^4 \sigma}{\int d\varphi \, d^4 \sigma} = K_{\epsilon} \, \frac{\mathcal{R}e\sigma_{-0}}{\sigma_{00}} \,,$$

$$\langle \sin \varphi \rangle = K_{\epsilon} \frac{\mathcal{I}m\sigma_{-0}}{\sigma_{00}}$$

- ullet with $K_\epsilon=rac{\sqrt{1+arepsilon}+\sqrt{1-arepsilon}}{2\sqrt{\epsilon}}$
- ullet we neglected the $O(rac{m_c^2}{Q^2})$ contribution of σ_{--} in the denominator.
- the dependence on the heavy meson DA effectively factorizes in the transverse FFs \mathcal{H}_T^ϕ , \mathcal{E}_T^ϕ , $\tilde{\mathcal{H}}_T^\phi$, $\tilde{\mathcal{E}}_T^\phi$ as it does in longitudinal FF \mathcal{F}_D
 - \Longrightarrow heavy meson DA disappears in the ratios

- ullet The complete formula for $<\cos \varphi>$, $<\sin \varphi>$ is quite long
- Plausible assumptions:

$$\tilde{\mathcal{H}}(\xi,t) << \mathcal{H}(\xi,t)$$

known smallness of the ratio of the helicity dependent to the helicity independent d-quark DF

$$\xi$$
 sufficiently small

neglect $\xi*FFs$

Simple approximate results:

$$\begin{split} &<\cos\varphi> \approx \frac{K\mathcal{R}e[\mathcal{H}_D(2\tilde{\mathcal{H}}_T^\phi + \mathcal{E}_T^\phi + \bar{\mathcal{E}}_T^\phi)^* - \mathcal{E}_D\mathcal{H}_T^{\phi*}]}{8|\mathcal{H}_D^2| + |\tilde{\mathcal{E}}_D^2|}\,,\\ &<\sin\!\varphi> \approx \frac{K\mathcal{I}m[\mathcal{H}_D(2\tilde{\mathcal{H}}_T^\phi + \mathcal{E}_T^\phi + \bar{\mathcal{E}}_T^\phi)^* - \mathcal{E}_D\mathcal{H}_T^{\phi*}]}{8|\mathcal{H}_D^2| + |\tilde{\mathcal{E}}_D^2|}\,,\\ K &= &-\frac{\sqrt{1+\varepsilon} + \sqrt{1-\varepsilon}}{2\sqrt{\epsilon}}\,\,\frac{2\sqrt{2}\xi m_c}{Q}\,\frac{\Delta_T}{m_N} \end{split}$$

In our kinematics, $\Delta^1 = \Delta^x = \Delta_T$, $\Delta^y = 0$, $\epsilon^{pn\Delta\lambda} = -i\Delta_T$.

- ullet Collinear QCD factorization allows to calculate neutrino production of D-mesons in terms of GPDs.
- Chiral-odd and chiral-even GPDs contribute to the amplitude for different polarization states of the W
- The azimuthal dependence of the cross section allows to get access to chiral-odd GPDs
- There is no small factor preventing the measurement from being feasible, provided $\xi, \frac{m_c}{Q}, \frac{\Delta_T}{m_N}$ are not too small.
- The observables that we propose are certainly not a 1% effect. K is not small $(K=0(\frac{3}{\sqrt{\epsilon}}))$ if we focus on Q in the range of 2-3 GeV and $\Delta_T/m_N\approx 0.5$ (this conclusion is unchanged if we include terms of order $(\Delta_T/m_N)^2$).

THANK YOU FOR YOUR ATTENTION