Revealing transversity GPDs through the production of a rho meson and a photon

Renaud Boussarie

Laboratoire de Physique Théorique Orsay

POETIC VI
Palaiseau, France
in collaboration with B. Pire (CPhT, Palaiseau), L. Szymanowski (NCBJ, Warsaw), S. Wallon (LPT Orsay and UPMC)

Transversity of the nucleon using hard processes

What is transversity?

- Transverse spin content of the proton:

$$
\begin{array}{ccc}
|\uparrow\rangle_{(x)} & \sim & |\rightarrow\rangle+|\leftarrow\rangle \\
|\downarrow\rangle_{(x)} & \sim & |\rightarrow\rangle-|\leftarrow\rangle \\
\text { spin along } x & & \text { helicity states }
\end{array}
$$

- Observables which are sensitive to helicity flip thus give access to transversity $\Delta_{T} q(x)$. Poorly known.
- Transversity GPDs are completely unknown experimentally.

- For massless (anti)particles, chirality $=(-)$ helicity
- Transversity is thus a chiral-odd quantity
- Since (in the massless limit) QCD and QED are chiral even $\left(\gamma^{\mu}, \gamma^{\mu} \gamma^{5}\right)$, the chiral odd quantities $\left(1, \gamma^{5},\left[\gamma^{\mu}, \gamma^{\nu}\right]\right)$ which one wants to measure should appear in pairs

Transversity of the nucleon using hard processes: using a two body final

 state process?How to get access to transversity GPDs?

- the dominant DA of ρ_{T} is of twist 2 and chiral odd ($\left[\gamma^{\mu}, \gamma^{\nu}\right]$ coupling)
- unfortunately $\gamma^{*} N^{\uparrow} \rightarrow \rho_{T} N^{\prime}=0$
- This cancellation is true at any order: such a process would require a helicity transfer of 2 from a photon.
- lowest order diagrammatic argument:

$$
\gamma^{\alpha}\left[\gamma^{\mu}, \gamma^{\nu}\right] \gamma_{\alpha} \rightarrow 0
$$

[Diehl, Gousset, Pire], [Collins, Diehl] state process?

Can one circumvent this vanishing?

- This vanishing only occurs at twist 2
- At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti], [Goloskokov, Kroll]
- However processes involving twist 3 DAs may face problems with factorization (end-point singularities)
- One can also consider a 3-body final state process [Ivanov, Pire, Szymanowski, Teryaev], [Enberg, Pire, Szymanowski], [El Beiyad, Pire, Segond, Szymanowski, Wallon]

Probing transversity using ρ meson + photon production

- Processes with 3 body final states can give access to all GPDs
- We consider the process $\gamma N \rightarrow \gamma \rho N^{\prime}$
- Collinear factorization of the amplitude for $\gamma+N \rightarrow \gamma+\rho+N^{\prime}$ at large $M_{\gamma \rho}^{2}$

Typical non-zero diagram for a transverse ρ meson
Factorized amplitude

Master formula based on leading twist 2 factorization

$$
\mathcal{A} \propto \int_{-1}^{1} d x \int_{0}^{1} d z T(x, \xi, z) \times H(x, \xi, t) \Phi_{\rho}(z)+\cdots
$$

- Both the DA and the GPD can be either chiral even or chiral odd.
- At twist 2 the longitudinal ρ DA is chiral even and the transverse ρ DA is chiral odd.
- Hence we will need both chiral even and chiral odd non-perturbative building blocks and hard parts.

- Helicity flip GPD at twist 2 :

$$
\begin{aligned}
& \int \frac{d z^{-}}{4 \pi} e^{i x P^{+} z^{-}}\left\langle p_{2}, \lambda_{2}\right| \bar{\psi}_{q}\left(-\frac{1}{2} z^{-}\right) i \sigma^{+i} \psi\left(\frac{1}{2} z^{-}\right)\left|p_{1}, \lambda_{1}\right\rangle \\
= & \frac{1}{2 P^{+}} \bar{u}\left(p_{2}, \lambda_{2}\right)\left[H_{T}^{q}(x, \xi, t) i \sigma^{+i}+\tilde{H}_{T}^{q}(x, \xi, t) \frac{P^{+} \Delta^{i}-\Delta^{+} P^{i}}{M_{N}^{2}}\right. \\
+ & \left.E_{T}^{q}(x, \xi, t) \frac{\gamma^{+} \Delta^{i}-\Delta^{+} \gamma^{i}}{2 M_{N}}+\tilde{E}_{T}^{q}(x, \xi, t) \frac{\gamma^{+} P^{i}-P^{+} \gamma^{i}}{M_{N}}\right] u\left(p_{1}, \lambda_{1}\right)
\end{aligned}
$$

- We will consider the simplest case when $\Delta_{\perp}=0$.
- In that case and in the forward limit $\xi \rightarrow 0$ only the H_{T}^{q} term survives.
- Transverse ρ DA at twist 2 :
$\langle 0| \bar{u}(0) \sigma^{\mu \nu} u(x)\left|\rho^{0}(p, s)\right\rangle=\frac{i}{\sqrt{2}}\left(\epsilon_{\rho}^{\mu} p^{\nu}-\epsilon_{\rho}^{\nu} p^{\mu}\right) f_{\rho}^{\perp} \int_{0}^{1} d u e^{-i u p \cdot x} \phi_{\perp}(u)$

Non perturbative

building blocks

- Helicity conserving GPDs at twist 2 :

$$
\begin{aligned}
& \int \frac{d z^{-}}{4 \pi} e^{i x P^{+} z^{-}}\left\langle p_{2}, \lambda_{2}\right| \bar{\psi}_{q}\left(-\frac{1}{2} z^{-}\right) \gamma^{+} \psi\left(\frac{1}{2} z^{-}\right)\left|p_{1}, \lambda_{1}\right\rangle \\
= & \frac{1}{2 P^{+}} \bar{u}\left(p_{2}, \lambda_{2}\right)\left[H^{q}(x, \xi, t) \gamma^{+}+E^{q}(x, \xi, t) \frac{\sigma^{\alpha+} \Delta_{\alpha}}{2 m}\right] \\
& \int \frac{d z^{-}}{4 \pi} e^{i x P^{+} z^{-}}\left\langle p_{2}, \lambda_{2}\right| \bar{\psi}_{q}\left(-\frac{1}{2} z^{-}\right) \gamma^{+} \gamma^{5} \psi\left(\frac{1}{2} z^{-}\right)\left|p_{1}, \lambda_{1}\right\rangle \\
= & \frac{1}{2 P^{+}} \bar{u}\left(p_{2}, \lambda_{2}\right)\left[\tilde{H}^{q}(x, \xi, t) \gamma^{+} \gamma^{5}+\tilde{E}^{q}(x, \xi, t) \frac{\gamma^{5} \Delta^{+}}{2 m}\right]
\end{aligned}
$$

- Helicity conserving (vector) DA at twist 2 :

$$
\langle 0| \bar{u}(0) \gamma^{\mu} u(x)\left|\rho^{0}(p, s)\right\rangle=\frac{p^{\mu}}{\sqrt{2}} \frac{\epsilon \cdot x}{p \cdot x} f_{\rho} m_{\rho} \int_{0}^{1} d u e^{-i u p \cdot x} \phi_{\|}(u)
$$

Kinematics

Kinematics to handle GPD in a 3-body final state process

- use a Sudakov basis :
light-cone vectors p, n with $2 p \cdot n=s$
- assume the following kinematics:
- $\Delta_{\perp} \sim 0$
- $M^{2}, m_{\pi}^{2}, m_{\rho}^{2} \ll M_{\pi \rho}^{2}$
- initial state particle momenta:

$$
q^{\mu}=n^{\mu}, p_{1}^{\mu}=(1+\xi) p^{\mu}+\frac{M^{2}}{s(1+\xi)} n^{\mu}
$$

- final state particle momenta:

$$
\begin{aligned}
p_{2}^{\mu} & =(1-\xi) p^{\mu}+\frac{M^{2}}{s(1-\xi)} n^{\mu} \\
k^{\mu} & =\alpha n^{\mu}+\frac{\vec{k}_{t}^{2}}{\alpha s} p^{\mu}+k_{\perp}^{\mu} \\
p_{\rho}^{\mu} & =\alpha_{\rho} n^{\mu}+\frac{\vec{p}_{t}^{2}+m_{\rho}^{2}}{\alpha_{\rho} s} p^{\mu}-k_{\perp}^{\mu}
\end{aligned}
$$

Computation of the hard part

20 diagrams to compute

The other half can be deduced by $q \leftrightarrow \bar{q}$ (anti)symmetry Red diagrams cancel in the chiral odd case

Chiral odd amplitude

The chiral odd case

The z and x dependence of the amplitude can be factorized

$$
\begin{gathered}
\mathcal{A}=\mathcal{N}(z, x) T^{i} \\
T^{i}=(1-\alpha)\left[\left(\epsilon_{q \perp} \cdot k_{\perp}\right)\left(\epsilon_{k \perp} \cdot \epsilon_{\rho \perp}\right)-\left(\epsilon_{k \perp} \cdot k_{\perp}\right)\left(\epsilon_{q \perp} \cdot \epsilon_{\rho \perp}\right)\right] k_{\perp}^{i} \\
- \\
-\alpha(1+\alpha)\left(\epsilon_{\rho \perp} \cdot k_{\perp}\right)\left(\epsilon_{k \perp} \cdot \epsilon_{q \perp}\right) k_{\perp}^{i}+\alpha\left(\alpha^{2}-1\right) \xi s\left(\epsilon_{q \perp} \cdot \epsilon_{k \perp}\right) \epsilon_{\rho}^{i} \\
-\alpha\left(\alpha^{2}-1\right) \xi s\left[\left(\epsilon_{q \perp} \cdot \epsilon_{\rho \perp}\right) \epsilon_{k \perp}^{i}-\left(\epsilon_{k \perp} \cdot \epsilon_{\rho \perp}\right) \epsilon_{q \perp}^{i}\right]
\end{gathered}
$$

Hence calculating differential cross sections is simple :

$$
d \sigma \propto\left|\int_{0}^{1} d z \int_{-1}^{1} d x \mathcal{N}(z, x) \phi_{\rho}(z) H_{T}^{q}(x)\right|^{2} \sum_{\text {helicities },(i, j)} T^{i} T^{j}
$$

The chiral even case

- All 20 (10) diagrams are computed, both with vector and axial coupling
- The z and x dependences do not factorize but they are known.

Final computation

Final computation

$$
\mathcal{A} \propto \int_{-1}^{1} d x \int_{0}^{1} d z T(x, \xi, z) \times H(x, \xi, t) \Phi_{\rho}(z)+\cdots
$$

- One performs the z integration analytically using an asymptotic $\mathrm{DA} \propto z(1-z)$
- One then plugs a GPD model into the formula and performs the integral wrt x numerically.

A model based on Double Distribution

Realistic Parametrization of GPDs

- GPDs can be represented in terms of Double Distribution [Radyushkin] based on Schwinger representation of a toy model for GPDs which has the structure of a triangle diagram in scalar ϕ^{3} theory

$$
H^{q}(x, \xi, t=0)=\int_{-1}^{1} d \beta \int_{-1+|\beta|}^{1-|\beta|} d \alpha \delta(\beta+\xi \alpha-x) f^{q}(\beta, \alpha)
$$

- ansatz for these Double Distribution [Radyushkin]:
- $f^{q}(\beta, \alpha)=\Pi(\beta, \alpha) q(\beta)$ in the chiral even case
- $f_{T}^{q}(\beta, \alpha)=\Pi(\beta, \alpha) \Delta_{T} q(\beta)$ in the chiral odd case
- $q(x)$: PDF [MSTW, GRV...], $\Delta_{T} q(x)$: Chiral odd PDF [Anselmino et al.]
- $\Pi(\beta, \alpha)=\frac{3}{4} \frac{(1-\beta)^{2}-\alpha^{2}}{(1-\beta)^{3}}$: profile function
- This calculation is still being done but predictions for cross sections and counting rates will be ready very soon.
- Our result will also be applied to electroproduction $\left(Q^{2} \neq 0\right)$ after adding Bethe-Heitler contributions and interferences.
- This mechanism will give us access to transversity GPDs but also to the usual GPDs by analogy with Timelike Compton Scattering, the $\gamma \rho$ pair playing the role of the γ^{*}.
- Possible measurement in JLAB and in COMPASS

