Introduction	Access to GPD through a 3 body final state	Computation	Conclusion

Revealing transversity GPDs through the production of a rho meson and a photon

Renaud Boussarie

Laboratoire de Physique Théorique Orsay

POETIC VI

Palaiseau, France

in collaboration with B. Pire (CPhT, Palaiseau), L. Szymanowski (NCBJ, Warsaw), S. Wallon (LPT Orsay and UPMC)

000	00000	0000	
Transversity o	f the nucleon using hard processes		
	What is transversity?		
Transv	erse spin content of the proton:		

- Observables which are sensitive to helicity flip thus give access to transversity $\Delta_T q(x)$. Poorly known.
- Transversity GPDs are completely unknown experimentally.

- For massless (anti)particles, chirality = (-)helicity
- Transversity is thus a chiral-odd quantity
- Since (in the massless limit) QCD and QED are chiral even $(\gamma^{\mu}, \gamma^{\mu}\gamma^{5})$, the chiral odd quantities $(1, \gamma^{5}, [\gamma^{\mu}, \gamma^{\nu}])$ which one wants to measure should appear in pairs

Introduction	Access to GPD through a 3 body final state	Computation	Conclusion
000	00000	0000	
Transversity of state process?	of the nucleon using hard processes ?	s: using a two body	final

How to get access to transversity GPDs?

- the dominant DA of ρ_T is of twist 2 and chiral odd ($[\gamma^{\mu}, \gamma^{\nu}]$ coupling)
- unfortunately $\gamma^*\,N^{\uparrow}\to\rho_T\,N'=0$
 - This cancellation is true at any order : such a process would require a helicity transfer of 2 from a photon.
 - lowest order diagrammatic argument:

 $\gamma^{\alpha}[\gamma^{\mu},\gamma^{\nu}]\gamma_{\alpha}\to 0$

[Diehl, Gousset, Pire], [Collins, Diehl]

Introduction	Access to GPD thro	ough a 3 body final state	Computation	Conclusion
000	00000		0000	
Transversity of	the nucleon u	ising hard processes:	using a two bod	ly final
state process?				

Can one circumvent this vanishing?

- This vanishing only occurs at twist 2
- At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti], [Goloskokov, Kroll]
- However processes involving twist 3 DAs may face problems with factorization (end-point singularities)
- One can also consider a 3-body final state process [Ivanov, Pire, Szymanowski, Teryaev], [Enberg, Pire, Szymanowski], [El Beiyad, Pire, Segond, Szymanowski, Wallon]

- Processes with 3 body final states can give access to all GPDs
- We consider the process $\gamma\,N o\gamma\,
 ho\,N'$
- Collinear factorization of the amplitude for $\gamma+N\to\gamma+\rho+N'$ at large $M_{\gamma\rho}^2$

Typical non-zero diagram for a transverse ho meson

Factorized amplitude

Introduction	Access to GPD through a 3 body final state	Computation	Conclusion
000	0000	0000	
Master form	ula based on leading twist 2 factoriz	ation	

 $\mathcal{A} \propto \int_{-1}^{1} dx \int_{0}^{1} dz \; T(x,\xi,z) imes H(x,\xi,t) \Phi_{
ho}(z) + \cdots$

- Both the DA and the GPD can be either chiral even or chiral odd.
- At twist 2 the longitudinal ρ DA is chiral even and the transverse ρ DA is chiral odd.
- Hence we will need both chiral even and chiral odd non-perturbative building blocks and hard parts.

Introduction	Access to GPD through a 3 body final state	Computation	Conclusion
000	00000	0000	
Non perturb	ative chiral odd building blocks		

• Helicity flip GPD at twist 2 :

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) i\sigma^{+i}\psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H_{T}^{q}(x, \xi, t) i\sigma^{+i} + \tilde{H}_{T}^{q}(x, \xi, t) \frac{P^{+}\Delta^{i} - \Delta^{+}P^{i}}{M_{N}^{2}} + E_{T}^{q}(x, \xi, t) \frac{\gamma^{+}\Delta^{i} - \Delta^{+}\gamma^{i}}{M_{N}} + \tilde{E}_{T}^{q}(x, \xi, t) \frac{\gamma^{+}P^{i} - P^{+}\gamma^{i}}{M_{N}} \right] u(p_{1}, \lambda_{1})$$

• We will consider the simplest case when $\Delta_\perp=0$

- In that case and in the forward limit $\xi \to 0$ only the H^q_T term survives.
- Transverse ρ DA at twist 2 :

$$\langle 0|\bar{u}(0)\sigma^{\mu\nu}u(x)|\rho^{0}(p,s)\rangle = \frac{i}{\sqrt{2}}(\epsilon^{\mu}_{\rho}p^{\nu} - \epsilon^{\nu}_{\rho}p^{\mu})f^{\perp}_{\rho}\int_{0}^{1}du \ e^{-iup\cdot x} \ \phi_{\perp}(u)$$

Introduction	Access to GPD through a 3 body final state	Computation	Conclusion
000	00000	0000	
Non perturbativ	e <mark>chiral even</mark> building blocks		

• Helicity conserving GPDs at twist 2 :

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) \gamma^{+} \psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$
$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H^{q}(x, \xi, t)\gamma^{+} + E^{q}(x, \xi, t) \frac{i\sigma^{\alpha +} \Delta_{\alpha}}{2m} \right]$$

$$\int \frac{dz^-}{4\pi} e^{ixP^+z^-} \langle p_2, \lambda_2 | \bar{\psi}_q \left(-\frac{1}{2} z^- \right) \gamma^+ \gamma^5 \psi \left(\frac{1}{2} z^- \right) | p_1, \lambda_1 \rangle$$
$$= \frac{1}{2P^+} \bar{u}(p_2, \lambda_2) \left[\tilde{H}^q(x, \xi, t) \gamma^+ \gamma^5 + \tilde{E}^q(x, \xi, t) \frac{\gamma^5 \Delta^+}{2m} \right]$$

• Helicity conserving (vector) DA at twist 2 :

$$\langle 0|\bar{u}(0)\gamma^{\mu}u(x)|\rho^{0}(p,s)\rangle = \frac{p^{\mu}}{\sqrt{2}}\frac{\epsilon x}{p \cdot x}f_{\rho}m_{\rho}\int_{0}^{1}du \ e^{-iup \cdot x}\phi_{\parallel}(u)$$

Introduction	Access to GPD through a 3 body final state	Computation	Conclusion
000	00000	0000	

Kinematics

Kinematics to handle GPD in a 3-body final state process

• use a Sudakov basis :

light-cone vectors p, n with $2p \cdot n = s$

- assume the following kinematics:
 - $\Delta_{\perp} \sim 0$
 - $M^2, \ m_\pi^2, \ m_\rho^2 \ll M_{\pi\rho}^2$
- initial state particle momenta:

$$q^{\mu} = n^{\mu}, \ p_1^{\mu} = (1+\xi) p^{\mu} + \frac{M^2}{s(1+\xi)} n^{\mu}$$

• final state particle momenta:

9/15

Introduction	Access to GPD through a 3 body final state	Computation	Conclusion
000	00000	0000	
Computation of	the hard part		

20 diagrams to compute

The other half can be deduced by $q \leftrightarrow \bar{q}$ (anti)symmetry Red diagrams cancel in the chiral odd case

Introduction	Access to GPD through a 3 body final state	Computation	Conclusion
		0000	
Chiral odd amp	litude		

The chiral odd case

The z and x dependence of the amplitude can be factorized

 $\mathcal{A} = \mathcal{N}(z, x)T^i$

$$T^{i} = (1-\alpha) \left[(\epsilon_{q\perp}.k_{\perp}) (\epsilon_{k\perp}.\epsilon_{\rho\perp}) - (\epsilon_{k\perp}.k_{\perp}) (\epsilon_{q\perp}.\epsilon_{\rho\perp}) \right] k_{\perp}^{i} - (1+\alpha) (\epsilon_{\rho\perp}.k_{\perp}) (\epsilon_{k\perp}.\epsilon_{q\perp}) k_{\perp}^{i} + \alpha (\alpha^{2}-1) \xi s (\epsilon_{q\perp}.\epsilon_{k\perp}) \epsilon_{\rho}^{i} - \alpha (\alpha^{2}-1) \xi s \left[(\epsilon_{q\perp}.\epsilon_{\rho\perp}) \epsilon_{k\perp}^{i} - (\epsilon_{k\perp}.\epsilon_{\rho\perp}) \epsilon_{q\perp}^{i} \right]$$

Hence calculating differential cross sections is simple :

$$d\sigma \propto \left| \int_0^1 dz \int_{-1}^1 dx \mathcal{N}(z,x) \phi_{
ho}(z) H^q_T(x) \right|^2 \sum_{helicities,(i,j)} T^i T^j$$

Introduction	Access to GPD through a 3 body final state	Computation	Conclusion
000	00000	0000	
The chiral even	case		

The chiral even case

- All 20 (10) diagrams are computed, both with vector and axial coupling
- The z and x dependences do not factorize but they are known.

Introduction	Access to GPD through a 3 body final state	Computation	Conclusion
000	00000	0000	
Final computat	ion		

Final computation

$$\mathcal{A} \propto \int_{-1}^{1} dx \int_{0}^{1} dz \ T(x,\xi,z) \times H(x,\xi,t) \Phi_{
ho}(z) + \cdots$$

- One performs the z integration analytically using an asymptotic DA $\propto z(1-z)$
- One then plugs a GPD model into the formula and performs the integral wrt x numerically.

Introduction 000	Access to GPD through a 3 body final state 00000	Computation	Conclusion
A model based on Double Distribution			

Realistic Parametrization of GPDs

• GPDs can be represented in terms of Double Distribution [Radyushkin] based on Schwinger representation of a toy model for GPDs which has the structure of a triangle diagram in scalar ϕ^3 theory

$$H^{q}(x,\xi,t=0) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \ \delta(\beta+\xi\alpha-x) \ f^{q}(\beta,\alpha)$$

• ansatz for these Double Distribution [Radyushkin]:

- $f^q(eta, lpha) = \Pi(eta, lpha) \, q(eta)$ in the chiral even case
- $f_T^q(eta, lpha) = \Pi(eta, lpha) \, \Delta_T q(eta)$ in the chiral odd case
- q(x) : PDF [MSTW, GRV...], $\Delta_T q(x)$: Chiral odd PDF [Anselmino et al.]

•
$$\Pi(\beta, \alpha) = \frac{3}{4} \frac{(1-\beta)^2 - \alpha^2}{(1-\beta)^3}$$
 : profile function

Introduction	Access to GPD through a 3 body final state	Computation	Conclusion
000	00000	0000	
Conclusion			

- This calculation is still being done but predictions for cross sections and counting rates will be ready very soon.
- Our result will also be applied to electroproduction $(Q^2 \neq 0)$ after adding Bethe-Heitler contributions and interferences.
- This mechanism will give us access to transversity GPDs but also to the usual GPDs by analogy with Timelike Compton Scattering, the $\gamma\rho$ pair playing the role of the γ^* .
- Possible measurement in JLAB and in COMPASS