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Transversity of the nucleon using hard processes

What is transversity?

Transverse spin content of the proton:
| ↑〉(x) ∼ | →〉+ | ←〉
| ↓〉(x) ∼ | →〉 − | ←〉

spin along x helicity states

Observables which are sensitive to helicity �ip thus give access to
transversity ∆T q(x). Poorly known.

Transversity GPDs are completely unknown experimentally.

For massless (anti)particles, chirality = (-)helicity

Transversity is thus a chiral-odd quantity

Since (in the massless limit) QCD and QED are chiral even (γµ, γµγ5),
the chiral odd quantities (1, γ5, [γµ, γν ]) which one wants to measure
should appear in pairs
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Transversity of the nucleon using hard processes: using a two body �nal
state process?

How to get access to transversity GPDs?

the dominant DA of ρT is of twist 2 and chiral odd ([γµ, γν ] coupling)

unfortunately γ∗N↑ → ρT N
′ = 0

This cancellation is true at any order : such a process would require a
helicity transfer of 2 from a photon.

lowest order diagrammatic argument:

γα[γµ, γν ]γα → 0

[Diehl, Gousset, Pire], [Collins, Diehl]
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Transversity of the nucleon using hard processes: using a two body �nal
state process?

Can one circumvent this vanishing?

This vanishing only occurs at twist 2

At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti],
[Goloskokov, Kroll]

However processes involving twist 3 DAs may face problems with
factorization (end-point singularities)

One can also consider a 3-body �nal state process [Ivanov, Pire,
Szymanowski, Teryaev], [Enberg, Pire, Szymanowski], [El Beiyad, Pire,
Segond, Szymanowski, Wallon]
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Probing transversity using ρ meson + photon production

Processes with 3 body �nal states can give access to all GPDs

We consider the process γ N → γ ρN ′

Collinear factorization of the amplitude for γ +N → γ + ρ+N ′ at large
M2
γρ

H ρ

GPD

M 2
γρ

t′

t

Factorized amplitude

Typical non-zero diagram for a transverse ρ meson
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Master formula based on leading twist 2 factorization

A ∝
∫ 1

−1

dx

∫ 1

0

dz T (x, ξ, z)×H(x, ξ, t)Φρ(z) + · · ·

Both the DA and the GPD can be
either chiral even or chiral odd.

At twist 2 the longitudinal ρ DA is
chiral even and the transverse ρ DA is
chiral odd.

Hence we will need both chiral even
and chiral odd non-perturbative
building blocks and hard parts.

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ
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Non perturbative chiral odd building blocks

Helicity �ip GPD at twist 2 :∫
dz−

4π
eixP

+z−〈p2, λ2|ψ̄q
(
−1

2
z−
)
iσ+iψ

(
1

2
z−
)
|p1, λ1〉

=
1

2P+
ū(p2, λ2)

[
Hq
T (x, ξ, t)iσ+i + H̃q

T (x, ξ, t)
P+∆i −∆+P i

M2
N

+ EqT (x, ξ, t)
γ+∆i −∆+γi

2MN
+ ẼqT (x, ξ, t)

γ+P i − P+γi

MN

]
u(p1, λ1)

We will consider the simplest case when ∆⊥ = 0.

In that case and in the forward limit ξ → 0 only the Hq
T term survives.

Transverse ρ DA at twist 2 :

〈0|ū(0)σµνu(x)|ρ0(p, s)〉 =
i√
2

(εµρp
ν − ενρpµ)f⊥ρ

∫ 1

0

du e−iup·x φ⊥(u)
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Non perturbative chiral even building blocks

Helicity conserving GPDs at twist 2 :∫
dz−

4π
eixP

+z−〈p2, λ2|ψ̄q
(
−1

2
z−
)
γ+ψ

(
1

2
z−
)
|p1, λ1〉

=
1

2P+
ū(p2, λ2)

[
Hq(x, ξ, t)γ+ + Eq(x, ξ, t)

iσα+∆α

2m

]
∫
dz−

4π
eixP

+z−〈p2, λ2|ψ̄q
(
−1

2
z−
)
γ+γ5ψ

(
1

2
z−
)
|p1, λ1〉

=
1

2P+
ū(p2, λ2)

[
H̃q(x, ξ, t)γ+γ5 + Ẽq(x, ξ, t)

γ5∆+

2m

]

Helicity conserving (vector) DA at twist 2 :

〈0|ū(0)γµu(x)|ρ0(p, s)〉 =
pµ√

2

ε.x

p.x
fρmρ

∫ 1

0

du e−iup·xφ‖(u)
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Kinematics

Kinematics to handle GPD in a 3-body �nal state process

use a Sudakov basis :
light-cone vectors p, n with 2p · n = s

assume the following kinematics:
∆⊥ ∼ 0

M2, m2
π , m

2
ρ �M2

πρ

initial state particle momenta:

qµ = nµ, pµ1 = (1 + ξ) pµ + M2

s(1+ξ)
nµ

�nal state particle momenta:

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ

pµ2 = (1− ξ) pµ +
M2

s(1− ξ)n
µ

kµ = αnµ +
~k 2
t

αs
pµ + kµ⊥

pµρ = αρ n
µ +

~p 2
t +m2

ρ

αρs
pµ − kµ⊥ 9 / 15
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Computation of the hard part

20 diagrams to compute

The other half can be deduced by q ↔ q̄ (anti)symmetry
Red diagrams cancel in the chiral odd case
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Chiral odd amplitude

The chiral odd case

The z and x dependence of the amplitude can be factorized

A = N (z, x)T i

T i = (1− α) [(εq⊥.k⊥) (εk⊥.ερ⊥)− (εk⊥.k⊥) (εq⊥.ερ⊥)] ki⊥

− (1 + α) (ερ⊥.k⊥) (εk⊥.εq⊥) ki⊥ + α
(
α2 − 1

)
ξs (εq⊥.εk⊥) εiρ

− α
(
α2 − 1

)
ξs
[
(εq⊥.ερ⊥) εik⊥ − (εk⊥.ερ⊥) εiq⊥

]
Hence calculating di�erential cross sections is simple :

dσ ∝
∣∣∣∣∫ 1

0

dz

∫ 1

−1

dxN (z, x)φρ(z)H
q
T (x)

∣∣∣∣2 ∑
helicities,(i,j)

T iT j
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The chiral even case

The chiral even case

All 20 (10) diagrams are computed, both with vector and axial coupling

The z and x dependences do not factorize but they are known.
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Final computation

Final computation

A ∝
∫ 1

−1

dx

∫ 1

0

dz T (x, ξ, z)×H(x, ξ, t)Φρ(z) + · · ·

One performs the z integration analytically
using an asymptotic DA ∝ z(1− z)

One then plugs a GPD model into the formula
and performs the integral wrt x numerically.

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ
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A model based on Double Distribution

Realistic Parametrization of GPDs

GPDs can be represented in terms of Double Distribution [Radyushkin]

based on Schwinger representation of a toy model for GPDs which has the structure of a

triangle diagram in scalar φ3 theory

Hq(x, ξ, t = 0) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|
dα δ(β + ξα− x) fq(β, α)

ansatz for these Double Distribution [Radyushkin]:

fq(β, α) = Π(β, α) q(β) in the chiral even case

fqT (β, α) = Π(β, α) ∆T q(β) in the chiral odd case

q(x) : PDF [MSTW, GRV...], ∆T q(x) : Chiral odd PDF [Anselmino et al.]

Π(β, α) = 3
4

(1−β)2−α2

(1−β)3 : pro�le function
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Conclusion

This calculation is still being done but predictions for cross sections and
counting rates will be ready very soon.

Our result will also be applied to electroproduction (Q2 6= 0) after adding
Bethe-Heitler contributions and interferences.

This mechanism will give us access to transversity GPDs but also to the
usual GPDs by analogy with Timelike Compton Scattering, the γρ pair
playing the role of the γ∗.

Possible measurement in JLAB and in COMPASS
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