TMDs in the Saturation Picture:
Quasi-Classical Approximation and
Quantum Evolution

Yuri Kovchegov
The Ohio State University
based on work with Matt Sievert



Outline

* Introduction and goals:
— Classical fields, Wilson lines
— Non-linear small-x evolution

« TMDs in the quasi-classical approximation at large-x:

— Unpolarized quark distribution, Sivers function, Boer-Mulders
distribution

— Mixing between the nuclear and nucleon TMDs

* TMD evolution
— Large-x case
— Small-x: quark TMDs of an unpolarized target
— Small-x TMDs of a polarized target: an outlook



Introduction:
calculations in saturation physics



Two-step prescription

To calculate observables in the saturation picture one has to
follow the two-step procedure:

* C(Calculate the observable in the classical approximation.

* Include nonlinear small-x evolution corrections (BK/JIMWLK),
introducing energy-dependence.

 (To compare with experiment, need to at least fix the scale of
the running coupling, NLO corrections, etc.)



DIS: Quasi-Classics



Dipole Amplitude

* The total DIS cross section is expressed in terms of the (Im
part of the) forward quark dipole amplitude N:
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Dipole Amplitude

* The quark dipole amplitude is defined by

N(2y2) =1 o (o [Viz) Vi)

Here we use the Wilson lines along the light-cone direction

V(z) = Pexp {z’g / det A (2", 2~ = 0,:(:)]

In the classical Glauber-Mueller/McLerran-Venugopalan

approach the dipole amplitude resums multiple rescatterings:
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DIS in the Classical Approximation

The dipole-nucleus amplitude in
the classical approximation is
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DIS: Small-x Evolution



Dipole Amplitude

* The energy dependence comes in through nonlinear small-x

BK/JIMWLK evolution, which resums the long-lived s-channel
gluon corrections:
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Nonlinear evolution at large N

Here N=1-S (the Im part of the forward scattering amplitude)
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TMDs in the Quasi-Classical
Approximation at Large-x
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Quark Production in SIDIS

e Start with inclusive classical quark
production cross section in SIDIS.

Tl

e The kinematics is standard:

s~ Q% >17
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Quark Production
Note: effective x

L2 s~ Q%> 1%

CUeff%?T<<1

A4 X Lo Wigner distribution
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Wilson lines

* Here
1
Dyylto0,b7] = (T [V +00,b7] Vyf[+00,b]
is the quark dipole scattering S-matrix with
_ - -
Velb”,a | =P exp 22g de= AT (2T =0,27,2)

denoting Wilson lines. This is the standard ‘staple’ (in a gauge where the
link at infinity does not contribute).

* The leading contribution to D, is x<->y symmetric and will be denoted S,.



Definitions
 Quark TMDs are defined through the correlator
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* The correlator is decomposed in terms of quark TMDs as
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Quark TMDs of a Nucleus

Note: effective x

.2 s~ Q% >12

xeff%?T<<1

Nuclear correlator
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Quasi-Classical Sivers Function

Yu.K., M. Sievert, arXiv:1310.5028 [hep-ph]



Quasi-Classical STSA in SIDIS

 To generate STSA we need spin-dependence and a complex
phase. They may come from three sources:
— Sivers functions of the (polarized) nucleons: transversity channel
— Orbital rotation due to OAM (just gives real OAM-dependence)

— Going beyond classical approximation in D, by including extra
rescatterings per nucleon (the odderon): this gives a phase, but is A-
suppressed. Hence we will drop it.
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Quasi-Classical STSA in SIDIS

* When the dust settles one gets
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e J=1L4S = total spin of the nucleus (analogue of proton spin)
L = net OAM of the nucleons (analogue of quark and gluon OAM)

S = net spin of all nucleons (analogue of net spin of quarks and gluons)
* §,, =dipole rescattering S-matrix

« W = Wigner distributions of nucleons, unp = unpolarized (may have <5>=0),

trans = transversity, with
symm
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LO TMDs

N 1N . :
. f1 and fiT arethe LO unpolarized quark TMD (in a nucleon) and the
“nucleon” Sivers function:

* They can be arbitrary non-perturbative objects: we can always “run” them
through the quasi-classical “grinder”. ;)

* Resulting quasi-classical Sivers function can be used as initial condition for
evolution equations (e.g. CSS for s ~Q? or small-x evolution if s>>Q?2).



OAM and Transversity channels

* The final formula is a sum of the contributions of the OAM and
Transversity (Sivers function density) channels:

dpt d?pdb~ d?k’ - ,
S X ) S @) = Mo [ TEBE Badty S et e

2(2m)3 (27)2
: OAM [+ _TTYYN N / OAM
X ’1,513]_9' <£_Q)A Wunp p 7]_97[) 7T fl (:U7kT) channel
1 T+
b s () W (vt ) A k) Siglon ]
N P Yy

Transversity channel

 The non-perurbative input comes though the Wigner functions and LO
TMDs: the dipole scattering is perturbative due to Q, >> Ay,



Rigid Rotator Model

* To get the feel for what the result is like, our main formula can be

evaluated using a rigid-rotator nucleus with simple (powers of k;) models
of LO TMDs.

* The resultis (for k; not much larger than Q)

mNNC 1 1
27’(‘0&8017 6+%pmaxR k%

2 2 k2 k2 2 2
d*b < 4 T prmax(b) C —k7/Q5(b) ;L 9 T pi __°T ) —kZ/Q%(b)
x/ { T Pmaxz(b) C1 [e + 2(b) i 02(b) + a;Bmy Cye

OAM channel Transversity channel

1LTA(:E7 kT) -

e Note a “new” functional form for Sivers function due to the OAM channel
(not a Gaussian).



Rigid Rotator Model

* The OAM contribution in this model (!) calculation is shown below
(arbitrary units). It changes sign as a function of k.
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Rigid Rotator Model

* The transversity (Sivers density) contribution comes out to be a simple
Gaussian (in this calculation); units are again arbitrary:

fit
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STSA at Large-k;

* Fork;>>Q,we get
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* At high-k; the transversity (Sivers density) channel dominates over the
OAM one.

* However, the OAM channel dominates over a fairly broad range
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Quasi-Classical STSA in DY

* The DY process in the quasi-classical approximation looks as follows:

* Note that ordering interactions along the x™ direction makes the reversal
of the Wilson line direction between SIDIS and DY explicit.



Origin of Sign Reversal

7 (@, k) = —fi7 (z, kr)
SIDIS DY

* |In the transversity (Sivers density) channel the origin of the sign reversal is
simple: the (LO) Sivers function of the nucleon changes sign, and multiple
rescatterings do not affect this.

* |Inthe OAM channel the reversal ultimately happens for the simple reason
pictured here:




Classical picture of STSA in Drell-Yan

Think of a transversely polarized proton as a rotating disk with the axis
perpendicular to the collision axis

The proton is not transparent: it has some amount of screening/
shadowing (e.g. gray disk, black disk, etc.)

Incoming anti-quark (in DY) is more likely to interact near the “front” of
the proton: hence, due to the rotation, the outgoing virtual photon is
more likely to be produced left-of-beam, thus generating STSA.




Classical picture of STSA in SIDIS

e Ditto for SIDIS: except now the incoming virtual photon is more likely to
interact near the “back” of the proton, in order for the produced quark to
be able to escape out of the proton remnants.

 Owing to the same rotation, the outgoing quark is more likely to be
produced right-of-beam, thus generating STSA in SIDIS with the opposite
sign compared to STSA in DY!




Mini-Summary

* |t appears that STSA can be easily interpreted as a
combination of OAM and some amount of

(anti-)shadowing.

* Sign-flip between STSA and DY has a very simple
interpretation in this framework too.

* Note the mixing between the nuclear Sivers function
and the nucleon unpolarized quark distribution.



Quasi-Classical TMD Mixing

Yu.K., M. Sievert, arXiv:1505.01176 [hep-ph]



Unpolarized Quark TMD

 We can also calculate the unpolarized quark TMD in the
qguasi-classical picture at large-x:
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* Note again the mixing between TMDs: the nuclear
unpolarized quark TMD depends on the nucleonic Sivers
function fi7" |



Boer-Mulders Distribution

* One can also calculate the Boer-Mulders function:
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* Now we have the mixing between the nuclear Boer-Mulders
function with the transversity h{v and pretzelocity h#v of
the nucleons.



Mini-Summary

* We can calculate any TMD in the quasi-classical
approximation, providing initial conditions for TMD
evolution.

e TMDs of nucleus and nucleons mix.

* Calculation is done consistently in the high parton
density limit of QCD.



TMD Evolution at Large-x

Yu.K., M. Sievert, arXiv:1505.01176 [hep-ph]



Evolution Corrections

We work in A* =0 gauge (projectile light-cone gauge) and look for emissions
giving Ins ~ In Q2.

Such emissions and virtual corrections come only from the semi-infinite
Wilson line describing the outgoing quark:

How do we sum them up?



Crossing Symmetry

* To sum up evolution corrections for the semi-infinite Wilson line in the
amplitude and another one in the cc amplitude, use the “crossing”

symmetry to reflect the cc Wilson line into the amplitude (forming the
standard SIDIS light-cone staple):

R O =

 We end up with a % a dipole with, from the standpoint of the dipole
evolution, only virtual corrections.

x|

YL



Nonlinear Evolution

To sum up the gluon cascade at large-N. we write the following equation
for the dipole S-matrix:

1

T{ <> } = { % } dashed line =

all interactions
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Now we only need % of the virtual correction (last term on the right).



TMD Evolution at large-x

* Keeping only (a half of) the virtual corrections of the dipole evolution we
write

Dy Suyloo,b-](¥) = — L2CF /d%( L0 o oo b)(Y)

2 72 x—2)%(z—vy)?

where rapidity is (s = Q?)
Y =nfs (z —y)*] = n[Q* (z — y)°]

* The z-integral is UV divergent, and has to be regulated by 1/Q. The

solution is
QQd 2 a,C
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with the initial condition at Q, given by the quasi-classical expression (see
above).



Sudakov Form-Factor

* We reproduced the standard Sudakov form-factor, which is characteristic
of the CSS evolution.

Q2
du® a,C o
Suafoo 071Q%) = exp | = [ S Sl (@ )] | Siyloo™b(QH)
Q3

* To calculate any TMD of an unpolarized nucleus, simply ‘evolve’ the
classical semi-infinite dipole amplitude using the form-factor above, and
use it in the quark-quark correlator to extract all TMDs

2A g, _ . ;.
(PA(.T,E, P’ Q2) — (27'2;'5 /d2—|—p d2_b d2rd2k/ e—z(&—k‘_—xg).z
X (Wunp(pa b; P) ¢unp(fjjakl3p; Q(2)) - Wpol, M(p7 b; P) Agol(iakl3p; Q%))) S([(:;:b’s;] (Q2)

* For gluon TMD evolution simply replace the Casimir, C. =» N_in S.



Quark TMD Evolution: small-x,
unpolarized nucleus

Yu.K., M. Sievert, arXiv:1505.01176 [hep-ph]



Quark Production in SIDIS at Small-x

To find unpolarized target TMDs at small-x it is convenient to start by

considering the quark production cross section for SIDIS on an unpolarized
nucleus.

The dominant process is different, even at the lowest order:
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 Compared to the standard LO process, > ;< > W
the one above comes in with an extra factor of
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and is dominant at very low x.




SIDIS to All Orders

e SIDIS process can now be easily generalized to include all-order
interactions with the shock waves:

Mo YL Ty YL

Now we have infinite
Wilson lines!
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e The SIDIS cross section is
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Quark TMD Evolution at Small-x

* Taking the large-Q? limit of the SIDIS cross section we can extract the
unpolarized quark TMD out of it:

A by = 2o [Pridy Po oy Toz Y=z
2
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* Since the Wilson lines are now infinite, we have infinite dipoles, whose
evolution is given by the BK equation at large-N_:

as N, 9 T3,
aYSxo,xl (Y) — 92 d L2 56(2)2 $%1 [SXO,XQ (Y) SX2,X1 (Y) - SXO,Xl (Y)]

* Initial conditons are given by the quasi-classical Glauber-Mueller formula
again.

For unpolarized gluon TMD at low-x
see F. Dominguez et al, ‘11; Balitsky & Tarasov ‘15 (next talk)



Polarized Quark TMD Evolution
at Small-x: an Outline

Yu.K., M. Sievert, arXiv:1505.01176 [hep-ph]
Yu.K., D. Pitonyak, M. Sievert, R. Venugopalan,
in preparation



Target Spin-Dependent SIDIS

To transfer spin information between the polarized target and the produced quark
we either need to exchange quarks in the t-channel, or non-eikonal gluons.

Here’s an example of the quark exchange:

x| YL




Target Spin-Dependent SIDIS

It is straightforward to include multiple shock wave interactions into the
polarized SIDIS cross section:

XOO000DO0O000L

4 MK!j}“I/VVVVW + cec = the answer




Small-x Polarized-Quark TMD Evolution

Evolution corrections can be included into the polarized TMDs using
the diagrams below:
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Interestingly the quark and non-eikonal gluon ladders mix (see the right panel),
resulting in a more complicated evolution equation.



Small-x Polarized-Quark TMD Evolution

* A generic quark-spin dependent TMD can be written as (target spin is Z,
tagged quark spinis A)

d2£CJ_ deJ_ dQZJ_

fA(xakT;)HZ) — _/ 2(27’(’)3 e—ik-(g—g) Zfaa’(g_éag_é; >‘)
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where R is the QCD Reggeon amplitude and f_ - can be calculated from
the light-cone wave function.

* R obeys the equation like this: (Itakura, YK, McLerran, Teaney '03),
. . sAn | )
(no gluon ladders =2 approximation for TMD evolution!) as In“ s ~ 1
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Helicity TMDs

 Summing up mixing quark and gluon ladders only yields
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 The number are encouraging (a.=0.3, N.=N.=3): gir ~ (E)

e But: need to include the non-ladder graphs.



What to Expect

Without saturation effects, similar evolution for the g, structure function
was considered by Bartels, Ermolaev and Ryskin in ‘96.

Including the mixing of quark and gluon ladders, they obtained

oo s/ 2s Ne
R ~x ° 27

with z_ = 3.45 for 4 quark flavors.

The power is large and negative, and can easily become large enough to
make the net power of x smaller than -1 for the realistic strong coupling
of the order of a, =0.2 - 0.3, resulting in polarized TMDs which actually
grow with decreasing x fast enough for the integral of the TMDs over the
low-x region to be (potentially) large.

Can this solve the spin puzzle? To be continued...



Conclusions

* Quasi-classics:

— We can construct any TMD in the quasi-classical approximation: we
have calculated the unpolarized quark TMD, Sivers and Boer-Mulders
distribution

— We observed mixing between the nucleon and nuclear TMDs due to
spin-orbit coupling.

e TMD evolution:
— Large-x, both quark and gluon TMDs, polarized and unpolarized target:
we reproduced the standard Sudakov form-factor (cf. CSS evolution).
— Small-x quark TMDs of the unpolarized target: we showed that they
evolve with the BK/JIMWLK evolution.

— Small-x polarized-target TMDs appear to evolve with the QCD
Reggeon-like evolution. (D. Pitonyak, M. Sievert, R. Venugopalan, YK,
in preparation).



Outlook

Quasi-classical expressions provide initial conditions which
can be used in a global fit of all the TMD data.

All is ready for a global fit of small-x evolved unpolarized-
target TMDs.

The missing part is the polarized-target TMD evolution.



